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Abstract 
Mesoscale calculations have been conducted in order to gain further insight into the dynamic compaction 
characteristics of granular ceramics. The primary goals of this work are to numerically determine the shock 
response of granular tungsten carbide and to assess the feasibility of using these results to construct the bulk 
material Hugoniot. Secondary goals include describing the averaged compaction wave behavior as well as 
characterizing wave front behavior such as the strain rate versus stress relationship and statistically describing 
the laterally induced velocity distribution. The mesoscale calculations were able to accurately reproduce the 
experimentally determined Hugoniot slope but under predicted the zero pressure shock speed by 12%. The 
averaged compaction wave demonstrated an initial transient stress followed by asymptotic behavior as a 
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function of grain bed distance. The wave front dynamics demonstrate non-Gaussian compaction dynamics in the 
lateral velocity distribution and a power-law strain rate–stress relationship. 

Keywords 
Shock compaction, Granular materials, Mesoscale simulations, Ceramics, Porosity 

1. Introduction 
The bulk response of a rapidly compacted granular material is not well understood and is a current active area of 
research. The compaction of granular materials is of great interest when developing an understanding of 
processes such as powder metallurgy, geo-physical flows, and ignition mechanisms in energetic materials. In 
order to better understand the bulk response, computational simulations which resolve both the bulk and grain 
level response have been conducted, thus the term mesoscale calculations. A variety of mesoscale studies have 
been performed where heterogeneous grain-on-grain interactions were resolved. These studies ranged in 
complexity from resolving the shock and compaction interaction of tens to hundreds of grains in a two-
dimensional configuration to resolving thousands of mixed material grains in a three-dimensional configuration. 
These studies have utilized various computational techniques such as Eulerian hydrocodes, the finite element 
method, or discrete elements, to resolve the dynamics of a variety of heterogeneous or granular materials, 
including Ti–SiC (Benson et al., 1995b), aluminum (Nieh et al., 1996), copper (Benson, 1995a), alumina (Bourne, 
2005), polycrystalline copper (Case and Horie, 2005), polycrystalline iron (Horie and Yano, 2001), plastic-bonded 
explosives (Milne et al., 2005), steel (Williamson, 1990), Nn–Si (Do and Benson, 2001), HMX (Benson and Conley, 
1999, Menikoff, 2001, Lowe and Greenaway, 2005), and sugar (Baer and Trott, 2002). 

Small scale two-dimensional hydrocode studies involving tens of grains are typically performed to gain 
understanding of localized phenomena such as shock induced heating, viscous flow or dissipation as related to 
hot-spot formation (Williamson, 1990, Nieh et al., 1996, Do and Benson, 2001, Tang and Wang, 2001). Larger 
scale studies, involving hundreds of grains, are done to resolve not only the grain dynamics, but also the bulk 
material response. These two-dimensional simulations have been used to successfully estimate bulk material 
properties of porous granular systems such as compaction density, energy deposition, zero pressure shock 
speed, and Hugoniot slope (Benson, 1994, Benson, 1995a, Benson et al., 1995b; Benson et al., 2001, Crawford, 
2005, Hae-Jin et al., 2005). These studies, specifically Benson et al., 1995b, Tong et al., 1995, demonstrated that 
the shock consolidation of granular powder mixtures was dominated by both inertia and viscoplastic properties 
of the matrix materials, thus corroborating predictions from various analytic porous collapse models and 
experimental observations (Carroll and Holt, 1972, Carroll et al., 1986, Meyers et al., 1999). A comprehensive 
numerical study of the shock compaction dynamics of granular systems, in which a parametric study of system 
variables such as grain material, particle geometry, porosity and stress levels, demonstrated that spatially 
averaged computational results are in close agreement with experimental flyer plate results (Benson et al., 
1997, Nesterenko, 2001). These numeric studies also included detailed descriptions of the energy deposition as 
a function of material properties. 

During the shock consolidation process, the material response and energy coupling can be classified into either 
quasistatic or dynamic regimes (Nesterenko, 2001). Quasistatic compaction results in plastic deformation of the 
particles, void collapse and straight line particle interfaces, as would be observed in granular materials 
compacted in a static press. Dynamic compaction, however, results in the formation of flow structures such as 
jets and vortices during the plastic deformation and void collapse process. Dynamic compaction is characterized 
by the cascade of energy, in excess of the energy required to close the voids, down to the sub-grain level where 
it manifests itself in large scale deformations of the grain interfaces, inter-granular heating, thermal softening 
and the formation of melt layers, all of which couples in the formation of hot-spots (Nesterenko, 2001). Benson 
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et al. (1997) demonstrated that microkinetic energy, which is a measure of the energy in excess of the energy 
dissipated by the void collapse process, can be used as an effective metric by which the quasistatic and dynamic 
responses of the powder can be distinguished. In that study, the transition from quasistatic to dynamic 
compaction was investigated as a function of shock stress, particle size, initial porosity, material density, 
material strength and viscous dissipation. 

With the development of massively parallel computational systems, large scale three-dimensional simulations, 
which include thousands of grains, have become possible (Baer and Trott, 2002, Baer, 2002). These studies have 
focused on understanding initiation mechanisms of granular reactive materials, namely the formation of hot-
spots as a result of microkinetic energy coupling. The computational requirements for such calculations have 
been the limiting factor with respect to performing parametric studies to investigate shock induced 
phenomenology over a wide range of shock loading conditions and material configurations. 

The work presented here varies significantly in two ways from previous two-dimensional computational 
parametric studies. First, in order to better understand the compaction dynamics of granular tungsten carbide 
(WC) thousands of particles are resolved in two-dimensions; thus there are hundreds of particles in the shock 
direction. Although the computational studies mentioned above might have utilized hundreds of particles, in a 
two-dimensional configuration this translates to tens of particles in the shock direction. This increased spatial 
domain allows the compaction wave a greater distance over which to evolve compared to previous studies. This 
is done in order to establish a better understanding not only of the grain level interactions but also of the bulk 
mechanical deformation, including the initial transience within the compaction wave structure, wave quasi-
steadiness, and the mechanically induced stress within both the granular and bulk material. Within the context 
of this enlarged computational domain, other characteristics of the compaction process such as transverse 
motion, shock front width, and lateral stresses are examined. Second, this study investigates a material system 
and loading regime where the strength of the bulk material, tungsten carbide, is comparable to the induced 
shock stress. 

The goals of this work are to investigate grain level compaction phenomenology which should lead to a better 
understanding of bulk material response, i.e., resolving the bulk Hugoniot. This work seeks to investigate 
phenomenological behavior occurring on the order of the grain such as stress bridging, contact surface 
interaction, transmitted and reflected shock waves, and elastic–plastic deformation, all of which contribute to 
the overall bulk behavior of the material. An additional goal is to understand the dynamics which occur within 
the compaction wave where the material experiences high stress gradients, large deformation and particle 
rearrangement. In this paper, the term compaction wave will be used interchangeably with shock wave for 
waves traveling through the granular material. When a wave is traveling through other materials in the 
simulation, it will be referred to as a shock wave exclusively. 

The dynamic compaction characteristics of granular tungsten carbide powder have recently been experimentally 
investigated using one-dimensional flyer plate experiments (Vogler et al., 2007). In these experiments the shock 
response was measured for WC powder with an initial volume fraction of approximately 55%. The tungsten 
carbide tested was manufactured by Kennametal and consisted of single crystalline grains with a characteristic 
length of 32 μm. Fig. 1 presents a schematic of the portion of the experimental test fixture modeled in the 
simulations presented here, including the rigid driver plate, granular WC, buffer plate, and VISAR window. 
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Fig. 1. (a) Two-dimensional computational geometry showing the computational domain utilized in this work 
and (b) SEM image of tungsten carbide particles used in the experimental study. 

2. Model setup 
In order to construct a material distribution which is representative of the actual random granular distribution, a 
numeric procedure for filling the test cell which simulates particle flow during pouring was implemented. For the 
numeric filling process, the granular particles are modeled as elastic circles. Circles are not representative of the 
WC grains shown in Fig. 1b, but they do permit microstructures to be made easily and will serve as a baseline for 
future studies of more realistic grain shapes. During the fill process, particles are sequentially dropped into a 
rectangular container and, under the influence of gravity, are allowed to bounce until coming to rest. Particle 
interactions are modeled as elastic, frictionless collisions with damping. Once a particle comes to rest its position 
is fixed before the next particle is dropped. Thus, subsequent particles interact with the rigid bed of previously 
dropped particles. The diameter of each particle to be dropped can be selected from a statistical distribution, 
but the current results are for configurations with a single particle diameter. During a particle’s trajectory, it may 
pass through the side walls of the container and appear on the other side, or it may come to rest straddling the 
interface. In so doing, periodic boundary conditions and periodic geometries can be generated during the fill 
process. The process is continued until the particles fill the domain of interest. This process creates material 
distributions as illustrated in Fig. 2a, which is a small section of a larger domain. Notice all the particles are 
initially in contact with their neighboring particles and, due to the natural inclination of particles to seek the 
lowest potential energy under the influence of gravity, a two-dimensional body centered cubic order is 
established. The volume (area) fraction of the material distribution presented in Fig. 2a is on the order of 80%. In 
order to achieve the 55% volume fractions of the experiments, the particle diameters in Fig. 2a are reduced 
while holding the center coordinates of the particles fixed as suggested by Benson (1994). This procedure 
produces the material distribution presented in Fig. 2b. After reducing the diameter, no particles are in contact 
and the arrangement remains highly ordered, especially when only a single particle diameter is present. Thus, in 
order to disrupt the structured particle distribution and create a more random distribution in which grains can 
be touching, each particle is perturbed by assigning it a small velocity in a random direction. The particles are 
then allowed time to move in a Brownian-like manner, bouncing off of each other for a time period equivalent 
to that needed to two mean free paths. After this perturbation, the material distribution presented in Fig. 2c is 
realized. These material realizations result in a randomized distribution of particles which may or may not be 
touching their nearest neighbors. This third step, i.e., randomizing the grain distribution, results in distributions 
which are qualitatively different than previous two-dimensional mesoscale simulations (Benson, 1995a, Benson 
et al., 1995b; Menikoff, 2001). The grains in this simulation are not distributed in a crystalline body centered like 
configuration, as shown in Fig. 2b, nor are all the grains initially in contact. The configurations utilized in this 
work are between these two extremes. In addition, the grains are not bound by a matrix material, as is common 
with many reactive material mesoscale investigations but are instead separated by void. 
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Fig. 2. Distribution of circular particles during the filling process (a) after initial dropping, (b) after shrinking 
particles to obtain desired volume fraction, and (c) after perturbation. Variations in particles shading is for 
visualization of the particles only. 

Once the granular material distributions of Fig. 2c are generated, they are utilized as initial conditions in 
mesoscale compaction simulations using CTH (McGlaum et al., 1990), a finite volume shock physics code. CTH 
uses explicit time stepping to solve the equations for conservation of mass, momentum, and energy and closes 
the equation set with user-selected equations of state and constitutive relations for the materials in the 
simulation. CTH solves the governing equations in two steps: a Lagrangian step and a remap step. In the 
Lagrangian step, the Lagrangian forms of the governing equations are integrated across the time step. The mesh 
distorts to follow the material motion with no mass flux across the cell boundaries. At the end of the Lagrangian 
step, the remap step is performed. In this step, the distorted cells are remapped back to the Eulerian mesh and 
advected mass is distributed within the Eulerian mesh. As a result of the advection process, multiple materials 
can exist within a single computational cell; several models to accommodate cells with mixed materials have 
been incorporated within CTH. Because material interfaces are not resolved, CTH is not completely ideal for this 
application since it lacks realistic fracture, grain on grain contact dynamics, material interface tracking, etc. This 
inability to model grain fracture might represent a significant deficiency since fracture may play an important 
role in the evolution process of shocked ceramics (Meyers et al., 1999). However, simulations with Eulerian 
codes which resolve grain level shock interaction have been successfully used to model a variety of material 
behaviors (Bourne, 2005, Baer and Trott, 2002). Conley and Benson (1999) argued that the shock dissipation 
associated with inter-granular friction is secondary to the viscoplastic work in the absence of large material 
deformation. This hypothesis is supported by scanning electron microscopy images of recovered shocked 
samples (Linse, 1986) and hydrodynamic parametric studies (Conley and Benson, 1999). 

The overall geometry of the computational simulations presented here includes the tungsten carbine powder 
sample, aluminum sample plate, and lithium fluoride window as illustrated in Fig. 1. In order to simplify the 
computations, the impactor was not included in the simulations. Instead the cover plate was modeled as a rigid 
boundary with a specified velocity, similar to the boundary conditions utilized by Benson (1995). The 
calculations were performed for a geometry representing a thin slice of the experiment; a 1 mm (y-direction) by 
2 mm (x-direction) cavity was filled with approximately 1400 particles as described above and shown in Fig. 3. All 
of the simulations presented here utilized identical initial grain configurations. However, simulations were 
performed with different initial grain configurations in order to assess the effect of variations in initial 
conditions. Simulations were also performed with the y-dimension increased to as large as 3 mm in order to 
assess the effect of the lateral dimension on bulk behavior. No significant deviation in the Hugoniot states 
achieved within the powder was observed with any of these variations. Just as in the experiments, the granular 
WC was backed by 1 mm of aluminum and 3 mm of lithium fluoride (LiF). For these calculations the particle 
diameter was 32 μm and the volume fraction of the WC was 55%. Periodic boundary conditions were utilized for 
the top and bottom (y-direction) of the simulation. If the boundary conditions in the y-direction were switched 
to solid walls, a different (typically higher) compaction wave speed resulted. A computational resolution was 
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selected so that at least 10 computational cells were used to represent each grain. These calculations required 
approximately 10 hours utilizing 8 nodes (16 processors, 3.06 GHz Intel Xenon processors with 2 GB of RAM) to 
advance the computational simulation to 4.5 μs. 

 

Fig. 3. Illustration of compaction wave resulting from a driver plate velocity of up = 300 m/s. Color indicates 
pressure contour. 

Material constants utilized for these calculations are listed in Table 1. A Mie-Grüneisen equation of state 
(Meyers, 1994) was used for all three materials included in these calculations. The equations of state 
parameters for WC were obtained by fitting a linear shock velocity–particle velocity (Us − up) Hugoniot through 
the inelastic data reported in Dandekar and Grady (2001). The WC was modeled as elastic, perfectly plastic using 
the strength and Poisson’s ratio values from Dandekar and Grady (2001). Dandekar and Grady state that their 
results indicate that Cercom WC deforms like an elastic–plastic solid under shock wave compression. The 
aluminum strength was modeled using a rate dependent Johnson–Cook viscoplastic model (Johnson and Cook, 
1985). The LiF material response was modeled as hydrodynamic, i.e., zero shear modulus. Both the aluminum 
and LiF equations of state parameters were taken from Steinberg (1991). The fracture strength of WC was 
determined from experimental spall strength measurements. Dandekar (2004) reported the spall strength of 
hot-pressed WC decline rapidly with increased stress; spall strength decreases from a value of 2.06–1.38 GPa 
when shocked to 3.4 and 7.2 GPa, respectively. The range of shock stress investigated here varied from 1 to 
4 GPa, thus a slightly higher constant value of fracture strength, 4.0 GPa, was selected for all the work presented 
in this study. The fracture strength of the aluminum buffer plate was estimated from spall data presented in 
multiple sources (Moshe et al., 1998, Davison and Graham, 1979); where the fracture strength for LiF was 
estimated given its low elastic limit (Graham, 1992). The sensitivity of the results presented here to fracture 
strength will be investigated in future work. 
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Table 1. Constitutive relation constants 

Parameter WC Al LiF 
Density, ρ (g/cm3) 15.560 2.703 2.638 
Zero pressure shock speed, c0 (km/s) 5.26 5.288 5.15 
Hugoniot slope, s 1.15 1.3756 1.35 
Grüneisen coefficient, Γ = V∂P/∂E)V 1.0 2.14 1.690 
Specific heat, CV (J/(g-K)) 0.1723 0.8617 1.9217 
Yield strength, Y (GPa) 5 n/a 0 
Poisson’s ratio, ν 0.20 0.28 0.50 
Fracture strength, pfrac (GPa) 4.0 0.31 0.01 
Strain coefficienta, A (GPa) n/a 0.26496 n/a 
Strain coefficienta, B (GPa) n/a 0.42642 n/a 
Strain rate coefficienta, C n/a 1.5 × 10−2 n/a 
Thermal exponenta, m n/a 1.0 n/a 
Strain exponenta, n n/a 0.34 n/a 

a Johnson–Cook viscoplastic model constants. 

3. Results 
Simulations were conducted over a range of driver plate velocities from 170 to 450 m/s. We will examine the 
simulation results for a driver velocity of 300 m/s in detail at the grain scale before moving on to the overall 
model response over a range of driver plate velocities. 

3.1. Compaction phenomenology 
A series of images illustrating the compaction dynamics is presented in Fig. 3. For the calculations shown, the 
rigid driver plate has a constant particle velocity of 300 m/s traveling from left to right. As the driver plate moves 
into the test fixture, a compaction wave propagates through the granular tungsten carbide. Fig. 3b illustrates the 
material deformation and colored pressure contours 1.5 μs after driver plate motion begins. The x-position of 
the compaction wave front within the granular WC is not uniform along the y-direction; instead it varies by as 
much as 5 particle diameters. This is similar to the several particle diameters fluctuations reported by Baer 
(2002) for HMX and stress distribution within the compaction wave fronts reported by Benson (1995a) for 
granular copper. After the compaction wave traverses the granular region, it interacts with the aluminum buffer 
where it transmits and reflects shock waves as shown in Fig. 3c. The reflected wave, a reshock, appears in the 
granular WC as a region of increased pressure striations. The transmitted wave is more uniform in the aluminum 
buffer but some variation can be seen along the shock front near x = 2.5 mm. 

The compaction process does not result in a uniform state within the granular material as can clearly be seen 
in Figs. 3b and c; instead there are significant spatial variations. The existence of dynamically induced stress 
bridges, regions of high stress, aligned with the longitudinal direction is evident in these imagines. The 
formation, growth and development of these dynamic stress bridges (also known as force chains) are similar to 
those observed in quasistatic and weak shock simulations (Bardenhagen and Brackbill, 1998) as well as 
Hopkinson bar experiments on granular PMMA (Roessig and Foster, 2001). The formation of stress bridges 
observed here occurred over the entire range of driver plate velocities tested, 170–450 m/s. After compaction, 
the stress bridges remain stationary with respect to the distribution of material, advect with the flow and 
remain relatively unchanged with respect to their magnitude. In the same way that a steady state of stress is 
achieved behind a planar shock, the dynamically induced stress bridges persist behind the compaction wave 
until they are perturbed by subsequent wave interactions. These striations of high stress persisted even after 
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the reflected reshock from the highest driver plate velocity, 450 m/s, passed back over the granular material. 
Most previous observations of stress bridges have involved relatively small deformations in the particles. Here, 
we see that they occur under conditions of relatively large deformation, largely due to stresses bypassing 
persistent voids in the compacted material. 

To better illustrate the behavior of the grains, the plastic deformation, and the collapse of voids, an expanded 
view of Fig. 3 is presented in Fig. 4 for two different driver plate velocities. At this enlarged scale, granular 
deformation can be observed. Not only do the grains plastically deform, they also exhibit bulk motion in the y-
direction while filling voids. Due to the Eulerian nature of the CTH calculations, cleavage and brittle fracture are 
not resolved in these simulations; once the WC material yields it flows plastically with constant flow stress. The 
final two images show the driver plate just entering the field of view; the granular material in contact with the 
rigid driver and the resulting deformation can been seen in these imagines. Grains in contact with the driver 
plate tend to experience large distortions. The existence of post compaction voids is evident in the compaction 
wave driven by the 300 m/s driver plate, whereas the near complete removal of voids is achieved by the 
compaction wave driven by the 450 m/s driver plate. Even for the highest driver plate velocities investigated 
here, the material plots presented in Fig. 4 do not exhibit large two-dimensional particle deformation as 
characterized by particle jetting or material velocity. Thus we expect all of the results to fall in the quasistatic 
compaction regime characterized by low microkinetic energy (Benson et al., 1997, Nesterenko, 2001). 

 

Fig. 4. Enlarged view of compaction wave for driver plate velocities of 300 and 450 m/s. Color variations are for 
illustration purposes only; all particles are identical. 

Fig. 5 presents the same three images presented in Fig. 4, for the driver plate velocity of 300 m/s, with pressure 
contours superimposed. The highest stress levels in these images result from grains which are initially aligned 
and touching, as indicated in Fig. 5a. The contact and transmission of grain level shock information, without the 
generation of release waves from free surfaces, tend to form high amplitude stress bridges. Thus, the strain 
energy associated with the formation of stress bridges and the subsequent plastic deformation lead to the 
formation of stress concentrations and eventual pore collapse. Similar behavior has been linked to the 
formation of hot-spots within energetic granular materials. Baer (2002) reported that rapid deformation occurs 
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at material contact points, producing large amplitude fluctuations of stress that persist over several particle 
diameters and that localization of energy produces hot-spots due to shock focusing and plastic work near 
internal boundaries as materials flows into interstitial regions. At this enlarged scale, the variation in the 
compaction wave is quite evident in Fig. 5b; the compaction wave front location varies by approximately five 
grain diameters. In addition, the formation of low amplitude stress bridging preceding the compaction front 
in Fig. 3b, can also been seen at the enlarged scale of Fig. 5b. The five particle diameter wave front variation was 
observed to persist in the longitudinal direction throughout the compaction event. 

 

Fig. 5. Enlarged view of grain level dynamics with pressure contours superimposed. The compaction wave 
generates large pressure for the three particles which are initially aligned and touching. Driver plate velocity is 
300 m/s. 

In order to gain a better understanding of the components of stress which combine to form the compaction 
wave illustrated in Fig. 5, the stress deviators 𝜎𝜎𝑥𝑥𝑥𝑥′ ,𝜎𝜎𝑦𝑦𝑦𝑦′  and 𝜎𝜎𝑥𝑥𝑦𝑦′  are presented in Fig. 6 at 0.50 μs after impact. The 
stress deviators are defined as 

𝜎𝜎𝑖𝑖𝑖𝑖′ = 𝜎𝜎𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖𝜎𝜎𝑘𝑘𝑘𝑘/3, (1) 

where δij is the Kronecker delta, the mean stress σkk/3 is equated to negative pressure, and the summation 
convention is followed. As the compaction wave proceeds, there are shock and release processes occurring on 
the scale of the grain, which, in turn, generate large localized normal and shear stress distributions. Fig. 
6 demonstrates that, although the predominate longitudinal stress is compressive, there are complex shock and 
rarefaction interactions on the order of the grain. These shock and release processes tend to occur more during 
the initial loading of the grains near the compaction wave front. These processes occur rapidly on a granular 
level, as compared to the compaction wave which proceeds relatively slowly through the bulk material. These 
shock induced grain level processes can also be observed in the lateral stress, σyy, where both compressive and 
tensile lateral stresses are generated near the compaction wave front. Within the compaction front, high 
amplitude localized tensile stresses can be achieved. The maximum localized tensile stress achieved in this 
simulation is 3.8 GPa; however tensile stresses rarely exceeded 3 GPa. These stresses approach the specified 
fracture strength of 4 GPa. The rapid variation in stress at the grain level could be a major contributor to brittle 
granular fracture observed in experiments involving ceramic materials (Meyers et al., 1999). The formation of 
the strong stress bridge pointed out in Fig. 5 can also be observed in Figs. 6a and b. 
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Fig. 6. Enlarged view of compaction wave with stress deviator magnitude (a) σxx′, (b) σyy′ and (c) σxy′ contours 
superimposed 0.50 μs after driver plate motion at 300 m/s begins. 

Fig. 6c shows the formation of positive and negative shear stresses, σxy, stress induced by the wave traveling in 
the x-direction. The y-direction momentum transport mechanism comes about as a result of microscopic 
particulate interactions represented by the elastic–plastic constitutive relation combining with the variations in 
dynamic grain surface boundary conditions and off-axis loading. If the WC samples were fully consolidated and 
isotropic before compaction, there would be no induced shear stress, σxy. Thus the induced stress represents a 
deviation from one-dimensional shock conditions and continuum behavior. The local deviatoric shear stress is of 
the order of the lateral and longitudinal normal stresses. Thus the sub-grain diffusion of momentum is a 
significant mechanism during the compaction of granular WC. As with the normal stresses, the magnitude of the 
shear stress appears to be highest near the leading edge of the compaction wave where most material 
deformation takes place. 

3.2. Averaged compaction phenomenology 
Averaging a solution variable, Φ(x,y), was accomplished by integrating across a column of cells of the solution 
domain parallel to the shock front, given as, 

𝛷𝛷�
 

𝑚𝑚(𝑥𝑥) = 1
ℓ ∫ 𝛷𝛷(𝑥𝑥,𝑦𝑦)d𝑦𝑦ℓ

0 , (2) 

where ℓ is the vertical dimension of the domain. Fig. 7 presents the averaged stress states, as denoted with an 
overbar, as a function of x-position at three separate times for a drive plate velocity of 300 m/s. Averaging in 
the y-direction allows one to compare the resulting mesoscale calculations to a one-dimensional shock 

formulation applied to the bulk powder. Averaged normal stresses, , −𝜎𝜎
¯
𝑥𝑥𝑥𝑥 and −𝜎𝜎

¯
𝑦𝑦𝑦𝑦, are compressive and 

therefore negative; however, −𝜎𝜎
¯
𝑥𝑥𝑥𝑥 and −𝜎𝜎

¯
𝑦𝑦𝑦𝑦 are presented for simplicity. The averaged pressure (mean stress) 

signature is presented along with the normal stresses for comparison. Since the local shear stress, σxy, changes 
sign, the magnitude of the shear stress was averaged for presentation in Fig. 7. 
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Fig. 7. Pressure and stress of compaction wave averaged in the y-direction versus grain bed position for a driver 
plate velocity of 300 m/s. 

The average stress behind the compaction wave front does not immediately attain a steady value upon driver 
motion. The amplitude of the normal stresses behind the compaction wave initially increases and then 
decreases to a quasi-steady value as the wave propagates into the grain bed. Particularly large stresses are 
induced in the grains near the driver plate interface because of its rigid nature. Grains adjacent to the driver 
plate experience large lateral deformation and stress, not only in the averaged σyy stress signature presented 
in Fig. 7, but also locally in the material plots presented in Fig. 4c and the pressure plots of Fig. 5c. As the 
compaction wave propagates through the granular material, the averaged stress behind the compaction front 
fluctuates until it reaches a quasi-steady value. From Fig. 7b it appears that the quasi-steady state longitudinal 

stress, −𝜎𝜎
¯
𝑥𝑥𝑥𝑥, is approximately 1.94 GPa, whereas the average lateral stress, −𝜎𝜎

¯
𝑦𝑦𝑦𝑦, is approximately, 0.79 GPa 

and the averaged magnitude of the quasi-steady state shear stress is 0.60 GPa. The rise time, ts, associated with 

the steady longitudinal stress, −𝜎𝜎
¯
𝑥𝑥𝑥𝑥, presented in Fig. 7b is approximately 78 ns over a spatial distance of 68 μm. 

As the compaction wave nears the buffer plate, the averaged normal stress state near the compaction front 
begins to rise. This rise in average stress appears before the compaction wave front reaches the buffer plate. 
Careful examination of material and pressure contour plots similar to those presented in Fig. 6 indicates that low 
amplitude stress bridges extending in front of the averaged compaction wave front reach the buffer plate before 
the main compaction wave. The resulting reshock from these stress bridges cause the rise in stress near the 
compaction wave leading edge as the averaged compaction wave nears the grain/buffer interface. 

The averaged magnitude of shear stress presented in Figs. 7d, e and f do not propagate through the granular 
material as a square wave. Instead, the wave exhibits an initial rise in shear stress before decaying to a quasi-
steady state value of ∼0.6 GPa. As will be shown, the initial rise in shear stress corresponds to the portion of the 
compaction wave where the grains are experiencing the largest deformation and rotation. 

Although the stress profiles behind the compaction wave never attain a constant value, the average stresses do 
oscillate about their respective quasi-steady state values. The long wavelength oscillations superimposed on the 
averaged longitudinal stress, visible in Fig. 7b, persist throughout the compaction event whereas the pressure, 
lateral stress, and shear stress all exhibit high frequency fluctuations superimposed on their respective quasi-
steady values. A comparison of the averaged density and pressure in Fig. 8 reveals that these high frequency 
variations are similar in nature to the variability in averaged density. The average density in Fig. 8a in front of the 
compaction wave is 8.54 ± 1.03 g/cm3, where 1.03 g/cm3 is the standard deviation, and 
13.44 ± 0.52 g/cm3 behind the compaction wave. The average density after the reshock wave is 
13.72 ± 0.21 g/cm3. The averaged density increases with each compaction process. The variability of the 
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averaged densities is not a smooth function of x-position before or after the arrival of the compaction wave, or 
after the reshock from the grain-LiF interaction. However, the variability in the density decreases with the 
passing of each successive compaction process by about a factor of 2. The leading edge of the compaction wave, 
as indicated in Fig. 8, is defined as the x-position location where the averaged pressure first reaches half its 
quasi-steady average value, or approximately 0.60 GPa. The compaction wave front calculated in this way is 
located at x = 0.42 mm, which is consistent with the stress contours shown in Fig. 5b. As illustrated by the 
material plots presented in Fig. 3, Fig. 4, voids and density gradients persist within the compacted material even 
after the initial compaction wave. The local density near the driver plate approaches 15 g/cm3, the highest 
recorded in the granular material for a driver plate velocity of 300 m/s. This high density near the rigid driver 
plate could be the source of the initial high amplitude stress presented in Fig. 7a. Fig. 8c demonstrates that the 
effect of the reshock wave on the averaged density is minimal; the reshock is insufficient to completely close the 
voids within the granular material. 

 

Fig. 8. Average density and pressure as a function of x- position for a driver plate velocity of 300 m/s. 

The compaction wave induces spatial variations in the thermodynamic and mechanical states within the 
granular material, which result in grain scale transverse (y-direction) material velocities. The magnitude of the 
transverse velocity, averaged across the granular material in the y-direction, is presented in Fig. 9. These figures 
indicate a significant transverse velocity near the compaction front as material moves and deforms to 
accommodate an efficient packing. After this initial transverse motion, the material rings back to near zero 
transverse velocity. The striking feature of Fig. 9 is the large rise and then decline in average transverse velocity 
magnitude within the compaction wave front, where the peak velocity, 35 m/s, is approximately 10% of the 
driver plate velocity. This feature in transverse velocity roughly corresponds to the large shear stress observed 
in Fig. 7b; as one might expect these two processes are related. The compaction wave induces a transverse 
velocity resulting in strong localized velocity gradients, which in turn result in strong localized shear stresses. 
These shear stresses decay quickly after the passage of the wave front with the reduction in transverse velocity. 
Similar behavior has been experimentally observed in fully dense steel with 30–80 μm grains (Meshcheryakov 
and Atroshenko, 1992) and in discrete element simulations on copper (Yano and Horie, 1999). In 
the Meshcheryakov and Atroshenko (1992) experiments micro-flows, including meso-rotations, resulted in a 
dispersive particle velocity centered within the shock front which was between 10 and 30% of the shock particle 
velocity. 

 

Fig. 9. Average transverse velocity magnitude at 1.5 μs after impact for a driver plate velocity of 300 m/s. 
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In order to better understand the transient nature of the state of stress behind the compaction wave front 
presented in Fig. 7, the stress signature behind the compaction wave’s leading edge was averaged along the x-
direction (longitudinal) to produce a single value indicative of the WC’s post shock state of stress. This 
longitudinally averaged stress is presented as a function of the x-position of the compaction wave’s leading edge 

in Fig. 10. As an example, the average longitudinal stress, −𝜎𝜎
¯
𝑥𝑥𝑥𝑥, behind the compaction wave front presented 

in Fig. 7b has a value of approximately 1.94 GPa while the location of the compaction wave front is 

approximately 1.25 mm. Thus Fig. 10 indicates an averaged normal stress state of −𝜎𝜎
¯
𝑥𝑥𝑥𝑥 =1.94GPa at 1.25 mm. 

 

Fig. 10. Longitudinally averaged stress and pressure versus compaction wave position for a driver plate velocity 
of 300 m/s. 

The evolution of the longitudinally averaged normal stress states presented in Fig. 10a demonstrates a nearly 
linear rise in amplitude followed by an asymptotic decay and oscillation. The high amplitude rise is largely due to 
the rigid nature of the drive plate, which deforms nearby particles more severely than material away from it. 
However, any boundary at the edge of the granular material (e.g., an aluminum cover plate as in the 
experiments) is expected to significantly perturb the material state due to phenomena such as jetting, 
penetration of the particles, etc. From these curves one can conclude that the bulk stresses induced in the 

granular materials are approximately −𝜎𝜎
¯
𝑥𝑥𝑥𝑥 =2.1GPa, −𝜎𝜎

¯
𝑦𝑦𝑦𝑦 =0.80GPa and P = 1.25 GPa, which are different than 

the values presented in Fig. 7. Averaging not only in the y-direction but also in the x-direction tends to smooth 
the variability in stress introduced by the material placement, i.e., the density fluctuations presented in Fig. 8. 
Thus it is not sufficient to determine the bulk behavior from a single snap shot in time, such as Fig. 7; one must 
seek a spatially (or, equivalently, temporally) averaged stress state. 

The mean of the absolute value of shear stress, shown in Fig. 10b, exhibits behavior similar to the normal 
stresses early on, but then drops continuously. This continuous drop is a result of the initial spike in shear stress 
becoming a smaller component of the longitudinal average, as presented in Fig. 7b. However, from the 
individual wave forms, the bulk shear stress could be estimated as approximately 0.6 GPa; thus, eventually the 
average shear stress presented in Fig. 10b should approach 0.60 GPa. In order to verify this, a longer 
computational domain is required. 

Since pressure is an averaged spherical stress, it exhibits smoother behavior as compared to the normal and 
shear stress states and might be a better indicator of the overall steadiness of the compaction wave. If the 
quasi-steady state pressure behind the compaction wave is assumed to be nominally 1.25 GPa, then the 
compaction wave propagates approximately 0.5 mm into the grain bed, or a distance of roughly 16 particle 
diameters, before attaining its quasi-steady state value. This is in contrast to the steady wave behavior observed 
in more ductile materials. Benson reported that Ni-alloy achieved steady behavior after a few particle diameters 
(1997) and that monosize copper and alumina achieved steady behavior after 8–10 particle diameters (1995a). 
Aside from material differences and the higher driver plate velocities in Benson’s work, there are several 
numeric differences between these studies. The first is that Benson utilized a smaller computational domain 
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with 15 particle diameters in the shock direction, as opposed to the 50–60 particle diameters utilized here. In 
addition, Benson used “roller” or symmetry plane boundary conditions as opposed to the periodic boundary 
conditions utilized here. 

In order to characterize the velocity of the compaction wave, the leading edge of the compaction wave was 
plotted as a function of time in Fig. 11. The leading edge of the compaction wave front is defined as the location 
where the averaged pressure obtains half its quasi-steady value. Despite the stress transience in the initial wave 
behavior presented in Fig. 7, the leading edge of the compaction wave travels with a nearly constant velocity of 
830 m/s throughout the grain bed. The small variations above and below the linear fit appear to be caused by 
the stochastic nature of the granular material. The computationally derived compaction wave speed is lower 
than the experimentally measured compaction wave speed of 970 m/s with the same particle velocity. 

 

Fig. 11. Position of compaction wave front as a function of time for a driver plate velocity of 300 m/s. The best-
fit linear relationship corresponds to a constant compaction wave speed of 830 m/s. 

With an estimate of both the rise time and the compaction wave speed, it is possible to estimate the 
compaction wave thickness. Unlike the 2–5 grain variability in the location of the compaction wave, the 
thickness is an estimate of the distance over which the granular material is compacted. The compaction front 
thickness, Δ, can be estimated from the following relationship, 

Δ = (𝑈𝑈s − 𝑢𝑢p)𝑡𝑡s, (3) 

where Us, up and ts are the compaction wave speed, particle velocity and rise time respectively (Nesterenko, 
2001). Eq. (3) yields a compaction wave thickness of 1.7 grain diameters. Nesterenko (2001)reports the 
compaction thickness for tungsten powder, with 1000–2000 μm size grains, to be on the order of a grain 
diameter. Utilizing Eq. (3) and the experimental data obtained in Vogler et al. (2007), the shock wave thickness 
for WC with a grain size of 32 μm is approximately 1.3 grain diameters. Thus, the computational estimate is in 
good agreement with both experimental data sets. 

3.3. Hugoniot response 
In this section, we calculate the bulk response of the granular material in a manner similar to that used in the 
experiments, i.e., using the Rankine–Hugoniot relationships for conservation of mass and momentum for a 
steady wave. In order to calculate the compaction wave speed from the computational results in a way which is 
more akin to the interferometric velocity measurements made experimentally, time of arrival data is collected 
from multiple tracers arranged laterally at discrete longitudinal (x-position) stations. This procedure is similar to 
the “virtual gauge” technique implemented in hydrodynamic mesoscale calculations in order to estimate the 
particle velocity of shocked HMX by Conley and Benson (1999). At each x-position tracer station, 10 tracer points 
are equally spaced along the y-direction. The particle velocity at each of these 10 tracer points are averaged and 
the average wave profile at two different x-position stations, 0.5 mm and 1.5 mm, is presented in Fig. 12 for a 
driver plate velocity of 300 m/s. The shaded region in Fig. 12 represents the min/max envelope created by all 10 
tracer points and two individual traces are presented for comparison. Due to local variations in the compaction 
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wave speed, each tracer point within a station records a different arrival time of the compaction wave. 
Variations in local compaction wave speeds are due mainly to variations in particle distribution, as shown in Fig. 
5, Fig. 6. Clusters of particles in close proximity to each other will transmit the compaction wave information 
faster than particles separated by large gaps. Just as in the stress calculations presented above, arrival time is 
marked when the averaged particle velocity achieves half the steady state value, or 150 m/s. As can be seen 
in Fig. 12, individual tracers do not necessarly “jump” to the particle velocity of 300 m/s. Instead they 
demonstrate behavior which is indicative of multiple wave interactions, they can rise, fall, or plateau before 
finally achieving the driver plate velocity. These multiple wave interactions become more pronounced as the 
compaction wave propagates along in the longitudinal direction as can be seen by comparing Figs. 12a and b. 
This multiple wave behavior is a result of the existence of voids, grain level free surfaces, and variations in 
particle position relative to one another. As presented in Fig. 5, Fig. 6, this mesoscale shock behavior manifests 
itself as a non-uniform bulk compaction wave. Eventually, however, all the tracer points must equilibrate to the 
driver plate velocity of 300 m/s. Thus when automating a process by which to calculate the shock velocity–
particle velocity relationship, it is easier and probably more reliable to utilize the particle velocity profiles as 
opposed to pressure or stress wave profiles. 

 

Fig. 12. Particle velocity histories for Lagrangian tracer points placed at a fixed x-position for a driver plate 
velocity of 300 m/s. The averaged particle velocity wave profile is presented by a solid black line, two individual 
tracers are presented by dashed line and the shaded region is the min/max envelope created by all 10 tracers. 
The compaction wave time of arrival indicated on figure is (a) 0.605 μs, (b) 1.791 μs. 

The average times of arrival for tracer stations at 0.5 mm and 1.5 mm are indicated on Fig. 12 with a dotted line 
and are 0.605 μs and 1.791 μs, respectively. By knowing the average time of arrival and the distance into the 
bed of the tracer station, each Lagrangian point station records a compaction wave speed; for the two x-stations 
presented in Fig. 12 the compaction wave speeds are 826 m/s and 838 m/s, respectively. The variation in time of 
arrival is a measure of the computational uncertainty in the compaction wave speed. These compaction wave 
speeds calculated from averaged particle velocity data compare favorably to the 830 m/s compaction wave 
speed calculated using the pressure data. 

The variation in compaction wave arrival time for a given Lagrangian station is approximately Δt∼0.10 ± 0.01 μs 
as seen in Fig. 12. Once this variation is established it remains relatively constant as the compaction wave 
propagates in the x-direction. With a compaction wave speed of nominally 830 m/s, the variation in arrival time 
corresponds to a variation in the compaction wave location of approximately 2.5 grain diameters, which is 
consistent with Fig. 3, Fig. 5b. 

In order to calculate the bulk compaction wave speed for a given driver plate velocity, the compaction wave 
speeds for all the tracer stations are ensemble averaged. With 5 x-position stations per calculation, typically, 50 
tracers in all were utilized in calculating the bulk compaction wave velocity for a given driver plate velocity. This 
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procedure was automated and repeated over a range of driver plate particle velocities in order to construct the 
shock velocity–particle velocity (Us − up) relationship for the bulk granular material presented in Fig. 13a. This is a 
common way of reporting the shock behavior of materials and the linear fit to this data 
is Us = 1.410 up + 399 m/s. The error bars in Fig. 13a represent the minimum and maximum compaction wave 
speed, as calculated by the Lagrangian particle velocities, recorded within the target as described above. For a 
driver plate velocity of 300 m/s, the minimum and maximum compaction velocities recorded in the target were 
820 and 838 m/s, respectively. As can be seen in Fig. 13a, the variation in wave speed tended to decrease as the 
particle velocity increased. Experimental Us − up data for tungsten–carbide (Vogler et al., 2007; Vogler, 2007—
unpublished results) are presented along with the computational data in Fig. 13 for comparison. The 
experimental Us − up results were fit with a straight line, Us = 1.456 up + 452.8 m/s. The slopes of the 
computational and experimental linear fits are quite similar, but their intercepts are about 54 m/s or 12% 
different. For identical initial geometry, it was found that changing the y-direction boundary conditions from 
periodic to symmetric resulted in a 2% increase in the compaction wave speed. 

 

Fig. 13. Experimental and computational shock response in (a) the shock velocity–particle velocity plane and (b) 
the stress density plane. 

With shock velocity and particle velocity known for a steady wave, it is possible to calculate the longitudinal 
stress using the Rankine–Hugoniot relationship from conservation of momentum 

𝜎𝜎𝑥𝑥𝑥𝑥 = −𝜌𝜌00𝑈𝑈s𝑢𝑢p, (4) 

where ρ00 is the initial velocity of the distended material, and the density of the shocked material from 
conservation of mass 

𝜌𝜌 = 𝜌𝜌00
𝑈𝑈s

𝑈𝑈s−𝑢𝑢p
. (5) 

The simulation results are shown in the stress–density plane in Fig. 13b; the solid and dashed lines are 
transformations of the best-fit experimental and computational lines of Fig. 13a to the stress–density plane 
using Eqs. (4), (5). The computational results are somewhat less stiff than the experimental results. From Eq. (4), 
the longitudinal stress for the up = 300 m/s particle velocity simulation is approximately −σxx = 2.1 GPa, which 

agrees well with the quasi-steady state longitudinal averaged normal stress, −𝜎𝜎
¯
𝑥𝑥𝑥𝑥 =2.1GPa, presented in Fig. 

10a. The density after compaction from Eq. (5) is 13.47 g/cm3, whereas the average density presented in Fig. 8b 
is 13.44 ± 0.52 g/cm3. In order to further compare the experimental results obtained in Vogler et al. (2007) to 
the computational results obtained here, the reshock stress is presented on Fig. 13b as well. Although the 
reshock states under predict the experimental results, the relative increase in the reshock stress as well as the 
Rayleigh paths taken to achieve the reshocked state in the computational and experimental results are similar. 
Both the experimental and numerical results indicate that the reshock state lies above the Hugoniot. The 
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mechanism governing the reshock and the apparent strengthening of the granular bed are not well understood. 
The simulations of the WC were carried out using a simple Mie-Grüneisen equation of state with a static yield 
condition, thus neither phase change nor strain-hardening of the WC are responsible for the reshock states lying 
above the principle Hugoniot. 

3.4. Wave front characterization 
In order to characterize the behavior of the wave front several metrics were explored. Swegle and Grady 
(1985) found that steady waves in many fully dense materials exhibit a power law relationship between stress 
and strain, ε˙∝σn, where n is approximately four. This empirical relationship was measured for granular tungsten 
carbine to be ε˙∝σ1.2 (Vogler et al., 2007) and the exponent was approximately 1.0 for TiO2 data from the 
literature (Anderson et al., 1994). The current mesoscale computational results were fit to the same empirical 
relationship in order to directly compare the experimental and computational results as shown in Fig. 14. 

 

Fig. 14. Strain rate–stress relationship for experiments and simulations. 

The strain rate–stress relationship was experimentally determined at the interface between the sample buffer 
plate and the lithium fluoride window at x = 3 mm (see Fig. 1a). The strain rate–stress relationship was 
numerically determined at various positions of the mesoscale model. First, the relationship was calculated 
within the powder at x = 1 mm by fitting ensemble averaged stress wave profiles from tracers points located 
along the y-direction yielding an exponent of n = 0.7. Since the magnitude of the stress wave transmitted into 
the sample buffer plate exceeds the Hugoniot elastic limit (HEL) of aluminum, the transmitted wave separates 
into elastic and plastic (bulk) components as it traversed the buffer plate. The baseline calculations were 
performed for an aluminum buffer plate with Johnson–Cook (J–C) viscoplastic behavior. The calculated wave 
profiles, after they were transmitted through the buffer plate, were fit to the strain rate–stress relationship with 
a resulting stress exponent of n = 1.6. Thus the wave profiles significantly steepened as a result of the 
nonlinearity associated with the wave interaction with the aluminum buffer. To minimize effects of the wave 
evolution in the aluminum buffer, additional calculations were performed with a buffer plate that remained 
elastic over the stress range of interest. In these simulations, the waves did not steepen as drastically and a 
stress exponent of n = 0.8 resulted. Even though the resulting exponents from these various simulations do not 
match the experimentally determined exponent, the simulations of the granular compaction follow the power 
law relationship suggested by Swegle and Grady (1985). Improvements to numeric simulations might be 
obtained if additional physical phenomena such as contact, sliding, friction, and fracture were included. 

Fig. 9 demonstrated that the compaction wave front induces significant mean transverse or y-velocity 

magnitude, |𝑣𝑣𝑦𝑦|
¯

, which then quickly decays. This process occurs even though the mean transverse velocity, 𝑣𝑣
¯
𝑦𝑦, 

at any given x-position is near zero. In order to gain a better understanding of the induced transverse 
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momentum as a result of the grain interactions within the compaction wave front, the transverse velocity was 
statistically investigated. The computational calculations presented above were performed using 400 
computational cells in the y-direction; however only data obtained from computational cells containing material 
were investigated (i.e., void spaces were ignored) resulting in approximately 300 y-velocity data points per x-
position. In order to assess the steadiness of the compaction wave, the mean and standard deviation of the 
transverse velocity magnitude at the compaction front, |vy|¯, was calculated as the compaction wave 
propagated through the grain bed. The means are presented in Fig. 15a as a function of x-position, where the 
error bars represent one standard deviation. The gray area superimposed on Fig. 15a indicates the space bound 

by the minimum standard deviation from the mean |𝑣𝑣𝑦𝑦|
¯

 over the entire x-range. This illustrates that the mean 
transverse velocity magnitude remains bound by the light gray area in Fig. 15a. and therefore appears to be 
steady as it propagates through the grain bed. 

 

Fig. 15. Statistical view of compaction wave front (a) mean and standard distribution of lateral velocity 
magnitude (b) probability density functions of lateral velocity. 

The transverse velocity, vy, at the compaction wave front for the entire computational domain was fit to a 
variety of probability density functions with twenty evenly spaced bins and a minimum of 30 occurrences in 
each bin using the Matlab statistical toolbox (MATLAB, 2004). Fitting all of the mean transverse velocities with 
one distribution is justified given the wave steadiness found in Fig. 15a. Two of the resulting distributions, 
normal and gamma, as well as the computational data, are presented in Fig. 15b for comparison. As expected, 

the distribution of the transverse velocity, 𝑣𝑣
¯
y, is centered about zero. The normal distribution presented in Fig. 

15a has a mean of 3.2 m/s and a standard deviation is 43 m/s, where as the gamma distribution has an alpha of 
1 and a beta of 3600. The Kolmogorov–Smirnov goodness-of-fit test with a 5% significance level was applied to 
these two distributions (Harnet, 1975). The normal distribution failed this test while the gamma distribution 
passed. Except for the large number of occurrences near zero, the data appears normal. 

The average transverse velocity magnitude through the entire compaction event is 31 m/s; the mean transverse 
velocity magnitude varies from 22 to 44 m/s, with an overall standard deviation of approximately 26 m/s. This 
overall average of 31 m/s suggests that approximately 10% of the momentum in the shock front is redirected to 
the transverse direction. This transverse momentum contributes to the generation of local shear stresses, 
granular frictional heating, and other forms of internal dissipation. 

Multiple grain realizations were generated and utilized as initial conditions for this study. The compaction wave 
speed measured in different initial grain configurations, with statistically identical initial conditions, was within 
the variations measured in a single grain realization measured at different axial locations. The statistical analysis 
presented above was performed for one simulation, the 300 m/s driver plate simulation. An assessment as to 
the stationary nature of the compaction wave could be determined by performing multiple engagements for 
different powder arrangements. The statistical analysis performed here took an alternative approach by 
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sampling the same engagement at 24 different axial locations. This is effectively the same as sampling at a fixed 
location for 24 different simulations with different powder arrangements. Since the grain beds are randomly 
filled and the compaction wave has attained a steady profile, sampling the induced lateral velocity further along 
in the longitudinal direction is equivalent to sampling the lateral velocity at fixed position in simulations with 
differing grain arrangement. 

4. Discussions and conclusions 
The dynamic compaction of granular ceramics is a complicated process which involves phenomenology at 
multiple length scales: molecular, micro, and bulk. In order to gain a better understanding of some of these 
processes, phenomena resolved to the grain level were investigated in two-dimensional numeric simulations 
using an Eulerian code. 

It was found that the variations in material state induced by the compaction wave included an initial transience 
spanning approximately 16 particle diameters in the longitudinal direction. Thus, simulations utilizing tens or 
even hundreds of grains may not provide an adequate distance for this transience to pass and, therefore, might 
be ill suited for resolving bulk behavior. Even after this initial transience, the post-compaction state of the 
granular material varied about a quasi-steady state value. Thus, when seeking bulk information from a 
mesoscale simulation, it is not enough to look at a single snap shot in time; one must seek spatially and 
temporally averaged quantities. However, there are many aspects of material behavior (e.g., initiation of 
energetic materials through hot spot formation, localization of deformation, and fracture) that are controlled 
not by the average response but by the extreme values achieved within the matrix distribution. In these cases, 
the nature of the initial material distribution, as well as hysteresis due to loading and unloading, play an 
important role, even if it is secondary to the average state. Thus great care must be taken when making 
generalizations from micro to bulk behaviors. 

Careful examination of the compaction wave indicates that it is composed of a combination of wave interactions 
including shock, release and momentum transport phenomenology. Grains initially in contact rapidly transmit 
shock information and form dynamic stress bridges which can extend up to 5 grain diameters in front of the 
compaction wave and persist after the compaction wave front passes, causing large variability in the location of 
the compaction front and post shock state. Although these stress bridges precede the arrival of the compaction 
wave, they do not result in large scale deformation; material deformation occurs over a shorter length scale. 
Shock processes have thicknesses on the order of tens of mean free paths in gases (Bird et al., 2002), on the 
order of a few times the mean atomic spacing for single crystals (Meyers, 1994), or on the order of the grain for 
solids with microstructure (Holian, 2002, Vogler and Clayton, 2007). The compaction process for a porous 
granular material is comparatively large, on the order of the grain diameter. The average compaction wave 
thickness, calculated with a driver plate particle velocity of 300 m/s, is approximately 1.7 grains diameters, 
which is in good agreement with the experimental result of 1.3 grain diameters. 

Transmission of the compaction wave through the granular material is a complicated process. In addition to the 
dynamic stress bridges, momentum transport plays a key role. In the two-dimensional calculations performed 
here, grains not initially in contact must rely on momentum transport to close the gaps and carry the 
compaction process forward. The velocity of the grains, and therefore the velocity of the compaction wave 
through the void space, is on the order of the particle velocity of the driver plate, whereas the transmission 
velocity associated with the formation of stress bridges occurs on the order of the shock velocity of the bulk 
material. Each of the transport mechanisms, momentum and shock, has an associated time scale. The 
combination of differing transport mechanisms results in a compaction wave through a granular material that is 
much slower than a shock traversing its fully dense counterpart. Although local variations were observed, the 
compaction wave velocity remained relatively constant as it traversed the grain bed. 
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Complete densification was not achieved, even for the highest driver plate velocities investigated. As a result, 
the compaction wave did not produce a constant material state; temporal and spatial variations in stress and 
density persisted in the post compacted material. These variations result not only from multiple wave and 
transport mechanisms traversing a random grain distribution but also the existence of voids in the post 
compaction state. The compaction process, over the stress regime investigated here, results in a quasistatic 
compact as defined by Nesterenko (2001). The fact that no jetting or vortices were observed in these 
calculations is a result of the high strength and density of the underlying material; much more energy would be 
required to fully compact the material. The numeric simulations indicate that complete compaction would occur 
near stress levels of 5 GPa; however, it is clear from the experimental Hugoniot data that the material stress 
levels would have to be much higher. Although averaged quantities such as stress and density qualitatively 
match experimental results, the numeric simulations tend to under predict the stress–density Hugoniot. 

The simulations accurately predicted the slope s for the linear Us–up relationship but under predicted the zero 
pressure shock speed, c0, by 12%. Experimental data for both porous tungsten (Trunin et al., 1989) and porous 
tantalum carbide (Marsh, 1980) demonstrate that the zero pressure shock speed is a strong function of initial 
bulk density, ρ00. In contrast, the Hugoniot slope s is nearly invariant to initial bulk density. These experimental 
data demonstrate that changes in bulk density result in a nearly linear change in the zero pressure shock speed 
for porous tungsten. The tungsten data resulted in the following relationship: Δρ00 = 7.4 ΔC0, where Δρ0 is in 
units of g/cm3 and ΔC0 is in units of km/s. From this relation, the 12% difference between the experimental and 
numeric zero pressure shock speed, or ΔC0 = 54 m/s, corresponds to a small change in initial density, 
Δρ00 = 0.38 g/cm3. This change is small compared to the measured initial density of 
approximately ρ00 ∼ 8.3 g/cm3. Thus the difference between the experimental and numerical zero pressure 
shock speed could be due to small density variations. Owing to the possible variations in material distributions 
and the inability of a two-dimensional calculation to capture out-of-plane shock phenomenology, this variation 
in zero pressure shock speed may be not properly resolved without performing three-dimensional calculations. 
Other mechanisms missing from these simulations (e.g., realistic fracture and contact) may also play a role in the 
discrepancy between simulations and experiments. 

The average stress state achieved within the granular material for a driver plate velocity of 300 m/s is −𝜎𝜎
¯
𝑥𝑥𝑥𝑥 

=2.1 GPa, −𝜎𝜎
¯
𝑦𝑦𝑦𝑦 = 0.80 GPa and |𝜎𝜎

¯
𝑥𝑥𝑦𝑦| = 0.60GPa. It is interesting to note that the averaged shear stress could 

be approximated from the normal stress as, 

|𝜎𝜎
¯
𝑥𝑥𝑦𝑦| ≅ 1

2
(|𝜎𝜎

¯
𝑥𝑥𝑥𝑥| − |𝜎𝜎

¯
𝑦𝑦𝑦𝑦|). (6) 

This indicates that the principle stress axis is, on average, approximately 45° from the longitudinal direction. This 
is an interesting observation which could be utilized in the formation of a more complete state of stress within a 
continuum model formulation. Whether this is a result of the granular material geometry, i.e., all grains being 
the same size, or true of granular materials in general, will be investigated in future work. 

The steady wave empirical strain rate–stress relationship ε˙∝σn was fit to the computational data in order to 
compare the compaction dynamics within the wave front to experimental results. The strain–rate stress 
exponent within the granular material was n = 0.7 and steepened to 1.6 by the time it reached the buffer-lithium 
fluoride interface, values that are similar to those found experimentally for porous WC and TiO2 but very 
different from the value of 4 seen for a broad range of fully-dense materials (Swegle and Grady, 1985). A 
statistical investigation of the transverse velocity indicates that non-Gaussian processes are occurring within the 
compaction wave front as grains are deformed and rearrange. The granular motion in the compaction front 
leads to a process whereby approximately 10% of the longitudinal momentum in the shock front is transported 
to the lateral direction, which represents a significant dissipation mechanism. 
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For the calculations presented here, no effort was made to optimize the input parameters to match 
experimental data; instead, in future publications we will examine the effects of model parameters such as 
constitutive behavior for granular WC, grain shape, particle size and arrangement distribution, and 
dimensionality of the simulations. Of interest are the effects of these parameters not only on the overall bulk 
response but also on the distributions of states that describe the compacting material. Additional experimental 
and numerical studies on granular ceramics other than WC will help us improve our understanding of the 
dynamic behavior of this class of materials. Eventually, it would be valuable to perform similar calculations using 
a different numerical approach to study the effects of phenomena such as inter-granular friction and granular 
fracture, which cannot currently be captured with the Eulerian code used here. 

5. Future work 
There is much opportunity to further explore and probe the internal dynamics associated with the shock 
compaction of granular ceramic materials using mesoscale calculations. With an understanding of the limitations 
and accuracy of the current methodology we are planning the following future work. In order to better 
understand the variations in the solution as a result of the initial geometry several grain shapes will be explored 
including triangular and square grains. This morphology study will include grain size distribution variations, as 
well as, grain order variations. This study will eventually lead to a better understanding of the required fidelity of 
material distributions and the importance of identifying significant features in the initial geometry. A parametric 
study of the mechanical and thermodynamic material properties will be conducted in order to assess the 
sensitivity of the mesoscale simulations to various initial conditions. We expect strength to play a major in the 
bulk material behavior whereas we expect dynamic fracture strength to be secondary in its effect. In addition to 
these parametric studies, the authors intend to investigate alternate numeric formulations which are more 
appropriate to model phenomena not included in this work such as grain contact and fracture. A leading 
candidate for this work is the computational code EMU, which is a peridynamics code currently under 
development at Sandia National Laboratories (Silling, 2000, Demmie and Silling, 2007). The ultimate goal is to 
understand the compaction dynamics of loose granular ceramic materials, to determine the measurements 
necessary to model these materials under extreme loading conditions and to make accurate predictions with 
little to no experimentation. 
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