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EIT IMAGING OF ADMITTIVITIES WITH A D-BAR METHOD AND SPATIAL

PRIOR: EXPERIMENTAL RESULTS FOR ABSOLUTE AND DIFFERENCE IMAGING

S. J. HAMILTON

Abstract. Electrical Impedance Tomography (EIT) is an emerging imaging modality that uses harmless

electrical measurements taken on electrodes at a body’s surface to recover information about the internal
electrical conductivity and or permittivity. The image reconstruction task of EIT is a highly nonlinear inverse

problem that is sensitive to noise and modeling errors making the image reconstruction task challenging. D-

bar methods solve the nonlinear problem directly, bypassing the need for detailed and time-intensive forward
models, to provide absolute (static) as well as time-difference EIT images. Coupling the D-bar methodology

with the inclusion of high confidence a priori data results in a noise-robust regularized image reconstruction

method. In this work, the A Priori D-bar Method for complex admittivities is demonstrated effective on
experimental tank data for absolute imaging for the first time. Additionally, the method is adjusted for,

and tested on, time-difference imaging scenarios. The ability of the method to be used for conductivity,
permittivity, absolute as well as time-difference imaging provides the user with great flexibility without a

high computational cost.

1. Introduction

Electrical Impedance Tomography (EIT) is a portable, non-invasive imaging modality that applies low-
amplitude low-frequency current through electrodes at the boundary of a body and measures the resulting
voltages. These surface measurements then serve as boundary data in a mathematical inverse problem that
is solved to determine the electrical conductivity and/or permittivity inside the body. There are a wide range
of applications of EIT from monitoring heart and lung function of hospitalized patients to non-destructive
evaluation of materials such as concrete. See [(Mueller and Siltanen, 2012, Chapter 12)] for further uses.

The electric potential u(x, y) inside a simply-connected Lipschitz domain Ω ⊂ R2 is modeled by the
admittivity equation

(1) ∇ · (γ(x, y)∇u(x, y)) = 0,

where γ(x, y) = σ(x, y)+iωε(x, y). The admittivity γ(x, y) is comprised of the electrical conductivity σ(x, y),
electrical permittivity ε(x, y) and the angular frequency of the applied current ω. It is assumed that there
exist positive constants σ0 and E such that σ(x, y) > σ0, ‖σ‖W 2,∞(Ω) ≤ E, and ‖ε‖W 2,∞(Ω) ≤ E.

The surface current and voltage measurements correspond to boundary conditions in the form of a
Neumann-to-Dirichlet (ND), or ‘current density-to-voltage’, map Rγ : γ ∂u

∂ν

∣∣
∂Ω
−→ u|∂Ω, where ν de-

notes the outward-facing unit normal vector to the domain boundary ∂Ω, whereas the Dirichlet-to-Neumann
(DN) map is Λγ : u|∂Ω −→ γ ∂u

∂ν

∣∣
∂Ω

. Ensuring conservation of charge and specifying a ground, the DN
map Λγ can be recovered as the inverse of the ND map. The inverse problem of EIT is then to recover the
internal admittivity of an object through knowledge of the DN map (i.e. boundary measurements).

Reconstruction methods for EIT can be broken down into two main categories: iterative methods, and
direct methods. Most iterative methods solve an optimization problem to minimize the difference between
the measured voltages (or a DN map) and the data predicted by a forward model that uses a guess conduc-
tivity/admittivity as its input for each iterate. This requires a fine-tuned forward model (accurate domain
shape, precise locations of the electrodes, knowledge of the contact impedance at the electrode-skin interface,
etc.) since (1) must be solved repeatedly to produce data for each iteration. See [Edic et al. (1998); Jain
et al. (1997)] for examples of iterative methods for complex admittivity imaging.

Non-iterative/Direct Methods are mainly comprised of non-iterative linearized methods (e.g. Calderón
(1980); Cheney et al. (1990)) and methods that solve the full nonlinear problem without iterations. The
most common direct nonlinear methods are Bayesian inversion [Calvetti et al. (2015a,b); Kaipio et al. (2000)],
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Experimental Setup D-bar Image New Method

Figure 1. Demonstration of the A Priori Absolute Imaging D-bar Method on experimental
data with an agar heart and lungs. Left: Experimental setup, Middle: D-bar reconstruction,
Right: New method using a priori information displaying improved visualization of the lungs
and heart. The reconstructed absolute conductivity is shown.

Factorization methods [Brühl (2001); Brühl and Hanke (2000); Brühl et al. (2003); Gebauer and Hyvönen
(2007); Harrach and Seo (2009); Hyvönen (2007)], and D-bar methods [Astala and Päivärinta (2006a,b);
Brown and Uhlmann (1997); Francini (2000); Knudsen et al. (2009); Mueller and Siltanen (2012); Nachman
(1996); Novikov (1988)] which are capable of real-time thoracic imaging [Dodd and Mueller (2014)].

In many applications of EIT, at least some prior knowledge of the internal structure of the imaged body
is known. Reconstruction methods that make use this a priori information have produced sharper EIT
images [Avis and Barber (1995); Baysal and Eyüboglu (1998); Dehghani et al. (1999); Dobson and Santosa
(1994); Ferrario et al. (2012); Kaipio et al. (1999); Soleimani (2006); Vauhkonen et al. (1998)] and have been
incorporated directly into the D-bar framework [Alsaker (2016); Alsaker and Mueller (2016); Hamilton et al.
(2017)] by embedding the a priori knowledge into the direct nonlinear solution method.

Here we present the first absolute admittivity images recovered from experimental data using the admit-
tivity D-bar method [Hamilton et al. (2012)]. Additionally, we develop an a priori D-bar framework for the
time-difference imaging setting. We demonstrate the utility of the a priori admittivity D-bar methods for
absolute and time-difference imaging, and present the first admittivity reconstructions using the methods on
experimental data (see Figure 1). As the methods here are developed for the admittivity setting, they can
be used for conductivity only, as well as admittivity EIT imaging.

The remainder of the manuscript is organized as follows. Section 2 provides a brief review of the D-bar
for 2D Admittivity EIT imaging, and develops the a priori D-bar methods for absolute and time-difference
imaging. In Section 3, the effectiveness of the methods is demonstrated for experimental EIT data: absolute
as well as time-difference reconstructions are presented. A discussion of the results takes place in Section 4
and conclusions are drawn in Section 5. The reader is encouraged to view the manuscript on a computer
screen for best visualization of the images as details may be masked in printed versions.

2. Methods

This section provides a brief review of the 2D Admittivity D-bar framework and equations for admittivity
image reconstructions based on [Francini (2000); Hamilton et al. (2012)]. Details of the numerical imple-
mentation can be found in [Hamilton and Mueller (2013); Hamilton et al. (2012); Herrera et al. (2015)].

2.1. Absolute Imaging with the D-bar Method. The D-bar method for complex admittivities is based
on transforming the admittivity equation (1) to a first-order 2× 2 system of special solutions, called Complex
Geometrical Optics solutions (CGOs), that have a specific asymptotic behavior. These CGO solutions
satisfy a ‘D-bar’ equation in a non-physical auxiliary variable (giving the method it’s name), from which the
admittivity can then be recovered.

Two separate solutions u1(z, k) and u2(z, k) to the admittivity equation (1)

∇ · (γ(z)∇u1(z, k)) = 0, and ∇ · (γ(z)∇u2(z, k)) = 0,

that are asymptotic to eikz

ik and e−ikz̄

−ik , respectively, for large |z| or |k| are required for this method. Here

and throughout we associate the physical space R2 with C via z = (x, y) 7→ x + iy, and k ∈ C denotes the
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non-physical auxiliary parameter in the scattering domain. The ∂z and ∂̄z derivative operators are defined

traditionally as ∂z = 1
2

(
∂
∂x − i

∂
∂y

)
and ∂̄z = 1

2

(
∂
∂x + i ∂∂y

)
.

The admittivity equation (1) is transformed to the first-order system

(2) [−Dk +Q(z)]M(z, k) = 0

using the change of variables[
Ψ11(z, k) Ψ12(z, k)
Ψ21(z, k) Ψ22(z, k)

]
= γ1/2(z)

[
∂z u1(z, k) ∂z u2(z, k)
∂̄z u1(z, k) ∂̄z u2(z, k)

]
M(z, k) = Ψ(z, k)

[
e−ikz 0

0 eikz̄

]
Q(z) =

[
0 − 1

2 ∂z log γ(z)
− 1

2 ∂̄z log γ(z) 0

]
,(3)

where DkM(z, k) =

[
∂̄z 0
0 ∂z

]
M(z, k)− ik

[
1 0
0 −1

] [
0 M12(z, k)

M21(z, k) 0

]
. It is assumed that γ = 1

in a neighborhood of ∂Ω. The admittivity γ is extended from Ω into the plane by setting γ(z) = 1 for
z ∈ C \ Ω. Readers familiar with the conductivity D-bar method [Nachman (1996)] will recognize (2) as
an analog to the Schrödinger equation where here Q(z) is a 2× 2 matrix potential. Francini (2000) showed
that (2) has a unique solution M(·, k) for M(·, k)− I ∈ Lp(R2) for some p > 2. The CGO solutions M(·, k)
satisfy a D-bar equation in the k-variable

(4) ∂̄kM(z, k) = M(z, k̄)

[
e(z, k̄) 0

0 e(z,−k)

]
S(k).

where S(k) =

[
0 S12(k)

S21(k) 0

]
is the matrix of non-physical scattering data, a type of nonlinear Fourier

transform data of the matrix potential. The admittivity is then recovered from the solution to the ∂̄k equation
(4) using the low-frequency CGO solutions M(·, 0) via

(5) γ(z) = exp

{
− 2

πz̄
∗Q12(z)

}
= exp

{
− 2

πz
∗Q21(z)

}
,

where

(6) Q12(z) =
∂z [M11(z, 0) +M12(z, 0)]

M22(z, 0) +M21(z, 0)
, and Q21(z) =

∂̄z [M22(z, 0) +M21(z, 0)]

M11(z, 0) +M12(z, 0)
.

Letting e(z, k) denote the unitary multiplier e(z, k) = ei(kz+k̄z̄) = e2i<(zk), the scattering data S(k) is
defined by

(7)

S12(k) = i
π

∫
C
Q12(z)e(z,−k̄)M22(z, k) dµ(z)

S21(k) = − i
π

∫
C
Q21(z)e(z, k)M11(z, k) dµ(z),

which can be written as the boundary integral equations, where ν denotes the outward unit normal vector
to the boundary,

(8)

S12(k) = i
2π

∫
∂Ω

e−ik̄zΨ12(z, k)ν(z) ds(z)

S21(k) = − i
2π

∫
∂Ω

eik̄z̄Ψ21(z, k)ν(z) ds(z),

that are evaluated using the current and voltage measurement data in the form of the DN map by solving

(9)

Ψ12(z, k) =
∫
∂Ω

eik̄(z−ζ)

4π(z−ζ) (Λγ − Λ1)u2(ζ, k)ds(ζ)

Ψ21(z, k) =
∫
∂Ω

[
eik(z−ζ)

4π(z−ζ)

]
(Λγ − Λ1)u1(ζ, k)ds(ζ),
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where

(10)

u1(z, k) = eikz

ik −
∫
∂Ω

Gk(z − ζ) (Λγ − Λ1) u1(ζ, k) ds(ζ)

u2(z, k) = e−ikz̄

−ik −
∫
∂Ω

Gk(−z̄ + ζ̄) (Λγ − Λ1) u2(ζ, k) ds(ζ),

and Λ1 is the DN map corresponding to a constant conductivity of one. The function Gk(z) denotes the
Faddeev Green’s function [Faddeev (1966)], a special Green’s function for the Laplacian, defined by

Gk(z) := eikzgk(z), −∆Gk = δ

where

gk(z) :=
1

(2π)2

∫
R2

eiz·ξ

ξ(ξ + 2k)
dξ,

for k ∈ C \ {0}, where z · ξ = xξ1 + yξ2, and ξ = ξ1 + iξ2.
In the presence of noisy data, the fully nonlinear scattering data S(k) is approximated by replacing the

CGO solutions u1 and u2 by their asymptotic behaviors eikz

ik and e−ikz̄

−ik in the boundary integral equations

(9) for Ψ12 and Ψ21:

(11)

Ψexp
12 (z, k) =

∫
∂Ω

eik̄(z−ζ)

4π(z−ζ) (Λγ − Λ1) e
−ikζ̄

−ik ds(ζ)

Ψexp
21 (z, k) =

∫
∂Ω

[
eik(z−ζ)

4π(z−ζ)

]
(Λγ − Λ1) e

ikζ

ik ds(ζ),

allowing for the introduction of ‘Born-type’ scattering data Sexp
12 (k) and Sexp

21 (k)

(12)

Sexp
12 (k) = i

2π

∫
∂Ω

e−ik̄zΨexp
12 (z, k)ν(z) ds(z)

Sexp
21 (k) = − i

2π

∫
∂Ω

eik̄z̄Ψexp
21 (z, k)ν(z) ds(z).

Note that the superscript ‘exp’ signifies that the asymptotic behavior of the CGOs u1 and u2 has been
used and (·) denotes the complex conjugate of (·). The admittivity is then recovered using the approximate
scattering data Sexp as summarized in the flowchart in Figure 2. An alternative Sexp formulation was
introduced in [Herrera (2012); Herrera et al. (2015)] which requires the action of a tangential derivative map.

0. Setup:

• Select truncation radius R and set up
computational z and k grids.

• Form DN matrix approximations for
Λγ , Λ1.

1. Scattering Data:

For 0 < |k| ≤ R, k 6= 0

• Evaluate (11) for Ψ
exp
12 and Ψ

exp
21 .

• Compute the scattering data
S
exp
12 and S

exp
21 via (12), setting

Sexp(k) = 0 for |k| > R and k = 0.

2. Admittivity

• For each z, solve (4) for
Mij(z, 0), i, j = 1, 2.

• Compute the matrix potential
Q12 or Q21 via (6).

• Recover the admittivity γ(z)
from (5).

Figure 2. D-bar Method for Absolute Imaging

The D-bar method assumes γ ≈ 1 near ∂Ω. If this is not the case, following [Isaacson et al. (2004)], the
best constant admittivity γbest approximation to the data can be determined from the current and voltage
data, and the DN map Λγ scaled to Λγ̃ = 1

γbest
Λγ . Then, Λγ̃ corresponds to the scaled admittivity γ̃ = γ

γbest

that is approximately one near the boundary. The DN map Λγ̃ is used in place of Λγ in Step 1 above, and
the resulting admittivity γ̃ is then re-scaled by γbest to recover γ in Step 3.

Notice that Steps 1 and 2 are trivially parallelizable in k and z, respectively, allowing for fast-computations.
The low-pass filtering of the scattering data in Step 1 (setting S(k) = 0 for |k| > R) has a regularizing effect
on the method, proven in [Knudsen et al. (2009)] to be a regularization strategy for the 2D conductivity
case. Low-pass filtering of Fourier data is known to lead to a loss of sharp edges which we also see for the
non-physical scattering data. In fact, note that for large |k| frequencies, using the asymptotic conditions of
the CGO solutions M(z, k) in (7), the scattering data is essentially shifted Fourier data for the potential Q,

S12 ≡
i

π
Q̂12(2k1, 2k2), S21 ≡ −

i

π
Q̂21(−2k1, 2k2).

Figure 3 demonstrates the effect of the truncation radius on the sharpness of the recovered admittivity
for the best case scenario (idealized scattering data produced by solving (4) using (7) computed directly for



EIT IMAGING OF ADMITTIVITIES WITH A SPATIAL PRIOR 5

a known admittivity γ.) Note that as the radius increases, the image sharpens markedly. The conductivity
images are analogous and thus omitted in the interest of space.

Truth |k| ≤ 4.5 |k| ≤ 13.5

Figure 3. Recovery of permittivity from idealized scattering data, solution of the ∂̄k

equation (4) using the asymptotic condition M ∼ I for |k| ≤ 4.5 and |k| ≤ 13.5.

In addition to the low-pass filtering, another approximation is made when solving the D-bar equation (4).
In practice, (4) is decoupled into two Lipmann-Schwinger type systems that are solved using the asymptotic
behavior of the CGO solutions M ∼ I:

(13)

{
M11(z, k) = 1 + 1

πk ∗
[
M12(z, k̄)e(z,−k)S21(k)

]
M12(z, k) = 0 + 1

πk ∗
[
M11(z, k̄)e(z, k̄)S12(k)

]
{
M21(z, k) = 0 + 1

πk ∗
[
M22(z, k̄)e(z,−k)S21(k)

]
M22(z, k) = 1 + 1

πk ∗
[
M21(z, k̄)e(z, k̄)S12(k)

]
,

where ∗ denotes convolution in k over the disc of radius R. Replacing the asymptotic conditions 1 and 0
with the corresponding finite integral approximations [Alsaker (2016); Alsaker and Mueller (2016); Hamilton
et al. (2017)]

(14) M int
ij (z) =

1

πR2

∫
|k|≤R

Mij(z, k)dk, i, j = 1, 2.

greatly improves the visual structure of the admittivity as well (see Figure 4). In practice this asymptotic
replacement term cannot be computed as it requires knowledge of the true CGO solutions M for the true
admittivity γ (generated by solving (2)). This is where a priori knowledge comes in very handy.

Truth With M ∼ I With Mint

Figure 4. Recovery of permittivity from idealized scattering data, solution of the ∂̄k

equation (4) using vs the asymptotic replacement term, with a scattering radius of |k| ≤ 4.5.

2.2. The A Priori D-bar Method for Admittivities. In most applications at least some knowledge of
the approximate underlying structure is known, a priori. In particular, for thoracic EIT imaging a patient
may have previous CT scan on file or can at least be matched to a representative CT image using an
anatomical atlas. Such information can be used to build a spatial prior: approximate organ boundaries
known with high-confidence, and values can be assigned from literature or by using average values from an
initial admittivity reconstruction, etc.

Given such an admittivity prior γPR, the measurement scattering data S(k) can be augmented to a larger
disc of radius R2 ≥ R using

(15) SR,R2
(k) :=


S(k) 0 < |k| ≤ R
SPR R < |k| ≤ R2

0 else



6 S. J. HAMILTON

where SPR denotes the scattering data corresponding to γPR. Additionally, the asymptotic replacement term
Mint in (14) can be computed using γPR by solving (2) for MPR with QPR (via (3)). The effect of the prior
can be controlled through the extended radius R2 and the weighting of the asymptotic replacement term
Mint via the parameter α in the modified version of the D-bar equations in (13)

(16)

{
M11(z, k) = [α+ (1− α) Mint

11 (z)] + 1
πk ∗

[
M12(z, k̄)e(z,−k)S21(k)

]
M12(z, k) = [0 + (1− α) Mint

12 (z)] + 1
πk ∗

[
M11(z, k̄)e(z, k̄)S12(k)

]
{
M21(z, k) = [0 + (1− α) Mint

21 (z)] + 1
πk ∗

[
M22(z, k̄)e(z,−k)S21(k)

]
M22(z, k) = [α+ (1− α) Mint

22 (z)] + 1
πk ∗

[
M21(z, k̄)e(z, k̄)S12(k)

]
,

where α = 0 corresponds to no doubt in the prior γPR, and α = 1 the greatest doubt. The solution method
is summarized in the flowchart in Figure 5.

0. Setup:

• Select truncation radii R and R2 and weighting parameter α.
• Set up computational z and k grids.

1a. Measurement Data:

• Form DN matrix approximations for Λγ , Λ1.

For 0 < |k| ≤ R, k 6= 0

• Evaluate (11) for Ψ
exp
12 and Ψ

exp
21 .

• Compute the scattering data via (12), setting
Sexp(k) = 0 for |k| > R and k = 0.

1b. A priori Data:

• Construct and mollify the admittivity prior γPR.

• Compute QPR via (3) with γPR.

For 0 < |k| ≤ R2

• Solve (2) for MPR using QPR.

• Evaluate Mint
ij for i, j = 1, 2 using MPR in (14).

• Evaluate the scattering prior SPR using (7) with MPR.

2. Combined A Priori Method:

• For 0 < |k| ≤ R2, construct the extended scattering data SR,R2
(k) via (15).

• For each z, solve (16) for CGOs MR2, α(z, 0) with scattering data SR,R2
.

• Compute the matrix potential QR2, α via (6) with MR2, α(z, 0).

• Recover the modified admittivity distribution γR2, α(z) from QR2, α in(5).

Figure 5. A Priori D-bar Method for Absolute Imaging

Notice that, for a given prior, Steps 1a and 1b of the flowchart are completely independent allowing for
offline computation of Step 1b if desired. Furthermore, Steps 1a and 1b are trivially parallelizable in k and
Step 2 is trivially parallelizable in z allowing for additional speedup.

2.3. Difference Imaging: The Sdiff approximation. The D-bar methodology outlined above can also
be applied to time-difference imaging. A differencing-scattering transform was first introduced in [Isaacson
et al. (2006)] for real-valued conductivity-only imaging and in [Herrera et al. (2015)] for admittivies using
the tangential derivative formulation. The concept can be extended to our complex-valued admittivity
framework as follows.

The differencing-scattering transform Sdiff is defined as the difference in approximate scattering data Sexp

for admittivity γ and that for a reference measurement γref:

Sdiff (k) = Sexp,γ(k)− Sexp,γref(k).

Hence, we have

Sdiff
12 (k) = Sexp

12
,γ(k)− Sexp

12
,γref(k)

=
i

2π

∫
∂Ω

e−ik̄z Ψexp
12

,γ(z, k)ν(z)dS(z)− i

2π

∫
∂Ω

e−ik̄z Ψexp
12

,γref(z, k)ν(z)dS(z)

=
i

2π

∫
∂Ω

e−ik̄z Ψdiff
12 (z, k)ν(z)dS(z),(17)
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where

Ψdiff
12 (z, k) = Ψexp,γ

12 (k)−Ψ
exp,γref
12 (k)

=
i

4πk

∫
∂Ω

eik̄(z−ζ)

z − ζ
(Λγ − Λ1) e−ikζ̄ ds(ζ)− i

4πk

∫
∂Ω

eik̄(z−ζ)

z − ζ
(
Λγref

− Λ1

)
e−ikζ̄ ds(ζ)

=

∫
∂Ω

eik̄(z−ζ)

z − ζ
(
Λγ − Λγref

) e−ikζ̄
−ik

ds(ζ).(18)

In an analogous fashion,

Sdiff
21 (k) = − i

2π

∫
∂Ω

eik̄z̄ Ψdiff
21 (z, k)ν(z)dS(z),(19)

Ψdiff
21 (z, k) =

∫
∂Ω

[
eik(z−ζ)

z − ζ

] (
Λγ − Λγref

) eikζ
ik

ds(ζ).(20)

A difference imaging approach with the differencing scattering transform Sdiffcan then be developed by
replacing Step 1 in Section 2 with Equations (17) through (20), then computing Steps 2 and 3 with Sdiff (k)
in place of the scattering data Sexp. The reconstructed time-difference image for γdiff is then formed by
subtracting 1 (the background admittivity). If the background admittivity is not 1, a scaling can be used
as in the case of absolute EIT imaging (Section 2.1). The scaling is slightly different for difference imaging.
As before, Λγ and Λγref

are scaled by the best constant admittivity fit γbest, and the resulting admittivity
re-scaled by γbest. Then, to produce γdiff, the background admittivity γbest is subtracted. The schematic in
Figure 6 describes the time-differencing D-bar Method for complex admittivities.

0. Setup:

• Select truncation radius R and set up
computational z and k grids.

• Form DN matrix approximations for
Λγ , Λref.

1. Scattering Data Sdiff :

For 0 < |k| ≤ R, k 6= 0

• Evaluate (18) and (20) for Ψdiff
12 and

Ψdiff
21 .

• Compute the scattering data Sdiff
12

and Sdiff
21 via (17) and (19) , setting

Sdiff (k) = 0 for |k| > R and k = 0.

2. Admittivity γdiff

• For each z, solve (4) for

Mdiff (z, 0) using Sdiff .
• Compute the matrix potential

Qdiff via (6) with Mdiff (z, 0).
• Recover the admittivity from

(5) with Qdiff and subtract 1 to

obtain γdiff .

Figure 6. D-bar Method for Time-Difference Imaging

2.4. Difference Imaging with a A Priori information. A priori information can also be included
into time-difference imaging. One option is to include the same spatial prior (approximate organ/structure
locations) as was used in the absolute EIT imaging setting, but instead assign the admittivity values of the
prior from an initial time-difference image (e.g. using the method described in Section 2.3, or from any other
time-differencing method). Alternatively, one could build a spatial prior by extracting boundaries from an
initial time-difference image using segmentation. Once a prior is obtained, a similar a priori D-bar method
can be employed for time-differencing EIT, as described by the flowchart in Figure 7.

3. Results

3.1. Experimental Setup. In this work we apply the solution methods to experimental data taken using
two different EIT machines: ACT3 and ACT4 from Rensselaer Polytechnic Institute.

The archival ACT3 data used agar targets of a heart (0.75 S/m) a two lungs (0.24 S/m) in a saline bath
of 0.424 S/m filled to a height of 1.6cm. The targets were placed in a circular tank of radius 15cm with 32
electrodes of width 2.5cm and trigonometric current patterns were used with an amplitude of 0.2mA and
frequency 28.8kHz (see Isaacson et al. (2004) for additional experimental details).

The archival ACT4 data used agar heart a lung targets as well. The conductivity of the heart was
approximately 0.5 S/m and the lungs 0.1 S/m. Graphite was added to the agar to create a susceptivity of
approximately 0.03 S/m at the applied 33kHz [Muller (2014); Muller et al. (2013)]. Trigonometric voltage
patterns of maximum amplitude 0.5V were applied (ACT4 applies voltages and measures currents) on an
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0. Setup:

• Select truncation radii R and R2 and weighting parameter α.
• Set up computational z and k grids.

1a. Measurement Data:

• Form DN matrices for Λγ , Λref.

For 0 < |k| ≤ R, k 6= 0

• Evaluate (18) and (20) for Ψdiff
12 , Ψdiff

21 .

• Compute the scattering data Sdiff
12 , Sdiff

21

via (17) and (19) , setting Sdiff (k) = 0 for
|k| > R and k = 0.

1b. A priori Data:

• Construct and mollify the admittivity prior γPR.

• Compute QPR via (3) with γPR.

For 0 < |k| ≤ R2

• Solve (2) for MPR using QPR.

• Evaluate Mint
ij for i, j = 1, 2 using MPR in (14).

• Evaluate the scattering prior SPR using (7) with MPR.

2. Combined A Priori Diff Imaging Method:

• For 0 < |k| ≤ R2, construct the extended scattering data SR,R2
(k) via (15) using Sdiff and SPR.

• For each z, solve (16) for CGOs MR2, α(z, 0) with scattering data SR,R2
.

• Compute the matrix potential QR2, α via (6) with MR2, α(z, 0).

• Recover the modified admittivity distribution γR2, α(z) from QR2, α in (5) and subtracting 1.

(Form γPR)

Figure 7. A Priori D-bar Method for Time-Difference Imaging

ACT3
Heart & Lungs

ACT4
Heart & Lungs

ACT4
Heart & Lung

Figure 8. Experimental Setups for two different EIT machines: ACT3 and ACT4 from
RPI. Agar targets simulating a chest phantom with a heart and lungs are used.

elliptical tank with principal semi-axes of length 16.5cm and 11.9cm and 32 electrodes each of width 2.5cm.
The agar targets were in a saline bath of 0.224 S/m filled to a height of 2.51cm. To reconstruct the admittivity,
the measured currents and voltages of the ACT4 data were used to synthesize the voltages that would have
occurred if 1mA maximum amplitude trigonometric currents patterns were applied.

3.2. Implementing the Algorithms. The discrete matrix approximations Rγ (to the ND map Rγ) and
Lγ (to the DN map Λγ) were formed using discrete inner products as described in Isaacson et al. (2004).
Recall that the absolute images require a simulated DN map Λ1 (see (9) and (10)). The boundaries for the
respective domains were formed by clicking around the edge of the tanks in the photos shown in Figure 8 and
a parameterized boundary function was created using Fourier Series as in [Jain (1997)]. The DN map Λ1 was
then simulated using FEM. It should be noted that the FEM solver was not fined tuned to the intricacies of
the different systems.

The priors were formed using the photos in Figure 8. See Figure 9 for the boundaries of the respective
priors. For the the ACT4 Heart and one lung data, two priors were tested: a heart and two lungs (Prior 1)
as well as a heart and only one lung (Prior 2).

The interested reader is referred to [Hamilton et al. (2012)] for a detailed numerical implementation of the
D-bar method for absolute imaging (Figure 2), and [Hamilton et al. (2017)] for the numerical implementation
of the a priori method. The numerical solution technique for the time-differencing D-bar methods are
analogous and thus omitted in the interest of space. The admittivities were reconstructed on a 64× 64
spatial z-grid using the measurement scattering data Sexp computed on a 32× 32 k−grid. As the scattering
data is unstable for high frequencies (as it blows up in magnitude), the data is only computed for |k| ≤ R,
for a given radius R. Additionally, the scattering data may blow up in some directions faster than others
and therefore a thresholding condition is added. A common threshold of 0.3 was used across all examples
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ACT3 Prior ACT4 Prior 1 ACT4 Prior 2

Figure 9. From left to right. The boundaries of the ACT3 agar data and the boundaries
for the ACT4 agar data. Reconstructions of the heart with one lung are performed using
‘ACT4 Prior 1’ and compared to those from ‘ACT4 Prior 2’.

(i.e., any scattering data Sexp
12 (k) or Sexp

21 (k) for which the magnitude of the real or imaginary parts exceeded
0.3 was set to zero). The choice of scattering radius R was also fixed across all examples at R = 4.0. For
clinical implementation, training data sets could be used to determine appropriate common thresholds and
radii but this is outside the scope of this work.

3.3. Experimental Results: ACT3 Agar targets. We begin with the ACT3 data with agar targets.
The absolute and time-difference D-bar reconstructions for the heart with two lungs are shown in the top
and bottom rows of Figure 10 with the approximate target locations are outlined in black dots. The priors
γPR were formed using the average pixel value in each region (Absolute: heart=0.6418, left lung=0.2932,
right lung=0.2998, Time Difference: heart=0.1751, left lung=-0.1323, right lung=-0.1255) extracted from
the corresponding reconstructed D-bar images. The scattering prior SPR was then formed using γPR and
combined with the original scattering data (Sexp and Sdiff respectively). Then the new conductivity was
reconstructed via the corresponding a priori method (absolute or time-difference) using the increased radius
R2 = 5.33 and α = 1, 2

3 , and 0.
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R = 4.0
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(5.33, 1)

Med Prior

(5.33, 2
3 )

Strong Prior

(6.67, 0)

Figure 10. Comparison of conductivity reconstructions for ACT3 data on an agar chest
phantom. Top: Absolute conductivity reconstructions. Bottom: Time-difference conductiv-
ity reconstructions. D-bar results are compared to those using the ‘ACT3 prior’ and average
extracted regional values for various parameter pairs (R2, α).

In the absolute D-bar conductivity reconstruction, the maximum value in the heart region was 0.769 S/m
and the minimum in the lungs was 0.221 S/m. Table 1 tracks the average regional admittivity values for the
absolute images displayed in Figure 10 as spatial a priori information is included.
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Table 1. Reconstructed admittivity average values (S/m) for the ACT3 Heart & Lungs data.

D-bar Light Prior Med Prior Strong Prior

Heart 0.6418 0.6499 0.6787 0.7068
L. Lung 0.2932 0.2856 0.2785 0.2694
R. Lung 0.2998 0.2899 0.2814 0.2701

3.4. Experimental Results: ACT4 Agar targets. Next we explore the ACT4 data for the elliptical
tank. The absolute and time-difference D-bar reconstructions for the heart with two lungs are shown in the
top and bottom rows of Figure 11, respectively, where approximate target locations are outlined with black
dots. The average pixel value in each region (Absolute: heart=0.6219 + 0.1323i, left lung=0.1769 + 0.0258i,
right lung=0.2053 + 0.0328i, Time Difference: heart=0.2687 + 0.1025i, left lung=−0.0867 + 0.0229i, right
lung=−0.0652 + 0.0267i) were extracted from the reconstructed D-bar images and used to form the admit-
tivity prior γPR. The new admittivity was reconstructed via the corresponding a priori method (absolute
or time-difference) using the increased radius R2 = 5.33 and α = 2

3 , 1
3 . Recall that α = 1 represents full

doubt in the prior and thus the choice of α = 2
3 with a slight increase in R2 is a mild inclusion of the prior

yet still results in significant improvement in localization of the heart and lungs for both the absolute and
time-difference imaging cases.
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Figure 11. Absolute and time-difference D-bar admittivity reconstructions of the ACT4
chest phantom with two lungs. Results are compared to those using the ‘ACT4 Prior 1’ with
average extracted values using parameter pairs (R2, α). The colormap on the susceptivity
images is maxed out at 0.1 S/m.

In the absolute D-bar admittivity reconstruction, the maximum value in the heart region was 0.527+0.097i
S/m and the minimum in the lungs was 0.125− 0.013i S/m. Table 2 tracks the average regional admittivity
values for the absolute images displayed in Figure 11 as spatial a priori information is included.

Table 2. Reconstructed admittivity average values (S/m) for the ACT4 Heart & Lungs data.

D-bar Light Prior Med Prior

Heart 0.4298 + 0.0737i 0.5270 + 0.1205i 0.5806 + 0.1427i
L. Lung 0.1763 + 0.0227i 0.1622 + 0.0250i 0.1579 + 0.0246i
R. Lung 0.1979 + 0.0194i 0.1859 + 0.0229i 0.1821 + 0.0242i

Next, Figures 12 and 13 present the absolute and time-difference D-bar reconstructions for the heart with
one lung. The absolute images were formed using the Sexp approximation. The approximate target locations
are outlined with black dots. Priors 1 and 2 were tested even though the phantom contains only one lung:
Figure 12 uses Prior 1 (two lungs), whereas Figure 13 uses Prior 2 (one lung). Average pixel values from each
region (Absolute: heart=0.3979 + 0.0899i, left lung=0.1710 + 0.0264i, right lung=0.3208 + 0.0017i, Time
Difference: heart=0.1115+0.0767i, left lung=−0.0773+0.0231i, right lung=0.0296+0.0046i) were extracted
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Figure 12. Absolute and time-difference D-bar admittivity reconstructions of the ACT4
chest phantom with one lung data. Results are compared to those using the ‘ACT4 Prior
1’ with average extracted values using parameter pairs (R2, α). The colormap on the sus-
ceptivity images is maxed out at 0.1 S/m.

from the reconstructed D-bar images and used to form the admittivity prior γPR. The results are compared
to those resulting from including a priori data using parameters R2 = 5.33 and α = 2

3 , 1
3 . Figure 13 presents

the analogous results to Figure 12 but instead using the ‘ACT4 Prior 2’ which only contains the heart and
left lung.
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Figure 13. Absolute and time-difference D-bar admittivity reconstructions of the ACT4
chest phantom with one lung data. Results are compared to those using the ‘ACT4 Prior
2’ with average extracted values using parameter pairs (R2, α). The colormap on the sus-
ceptivity images is maxed out at 0.1 S/m.

In the absolute D-bar admittivity reconstruction of the heart and one lung, the maximum value in the
heart region was 0.5335 + 0.1234i S/m and the minimum in the lung was 0.1374 + 0.0085i S/m. Table 3
tracks the average regional admittivity values for the absolute images displayed in Figures 12 and 13 as
spatial a priori information is included for the two priors: two vs. one lung(s).

4. Discussion

Figures 10, 11, 12, and 13 demonstrate that the D-bar method (flowchart in Fig 2) can produce high-
quality absolute (static) EIT images. We remind the reader that the DN map Λ1 was simulated with
imprecise knowledge of the boundary and electrode locations (estimated from the photographs in Figure 8)
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Table 3. Reconstructed admittivity average values (S/m) for the ACT3 Heart & Lung
data using Priors 1 and 2.

D-bar Light Prior 1 Med Prior 1 Light Prior 2 Med Prior 2

Heart 0.3979 + 0.0899i 0.4616 + 0.1427i 0.4911 + 0.1665i 0.4697 + 0.1441i 0.5043 + 0.1685i
L. Lung 0.1710 + 0.0264i 0.1592 + 0.0287i 0.1549 + 0.0289i 0.1583 + 0.0287i 0.1537 + 0.0288i

and was not tuned to the particular EIT device (ACT3 or ACT4). Such a fine-tuning of the forward model
used for Λ1 would likely result in further improved absolute images. Note that using the two lungs prior
for the ACT4 ‘Heart & Lung’ data has a minimal effect on reconstructions compared to using the prior
with only one lung (compare Figures 12 and 13), with the change only being notable for the decrease in
the artifact to the right of the lung in the absolute conductivity images. Additionally, the time-difference
images demonstrate that the new a priori time-difference method (flowchart in Fig 7) can be useful as well
to sharpen classical time-difference images.

The absolute D-bar method was able to recover the admittivity values of the phantoms for the all but the
ACT4 susceptivity of the heart. In particular, the conductivity of the ACT3 phantom was recovered to within
2.5% for the heart, and 7.9% for the lungs. The average regional values improved with the introduction of
the prior data even though only average regional values from the initial D-bar image were used.

Including a priori information (spatial prior with admittivity values assigned either from literature or ex-
tracted average values from an initial EIT reconstruction) significantly sharpens the boundaries of inclusions.
In all cases, it is clear that the spatial resolution of the boundaries of the inclusions improves as the prior
is weighted more heavily (as α→ 0 and R2 increases) even though only regional average values are used for
the prior. It is also clear that the Sexp reconstruction (absolute EIT) was stable enough for the experimental
setting, and as it bypasses the need to compute the CGO solutions u1 and u2 in (10), the method is faster
than the full nonlinear D-bar method.

5. Conclusion

This preliminary work demonstrates three main things: 1) quality information can be gathered from
absolute EIT images using the D-bar method [Hamilton et al. (2012)] on experimental tank data, 2) the a
priori admittivity D-bar method is stable enough for experimental tank data, 3) a priori information can
also be included into time-differencing EIT resulting in sharpened images of experimental data.

Moreover, the first absolute EIT reconstructions of a complex admittivity from a D-bar method are pre-
sented. The forward model used to generate Λ1 was not fine-tuned to the specific EIT machines used therefore
demonstrating promising robustness of the method. Absolute EIT reconstructions will likely improve if the
forward model used for Λ1 is specific to the EIT device.

By forming the prior from pictures (and clicks in Matlab) as well as assigning values from the average of
the regional reconstructed EIT values, bias in the prior was limited. Using more accurate knowledge of the
prior (e.g. from a CT/MRI/ultrasound scan and more precise admittivity values), would improve results.
A more detailed study of the effect of the quality of the prior on the reconstructions is the subject of future
work, outside the scope of this proof of concept presentation.

Acknowledgements

The tank data were supplied by the EIT group at RPI [https://www.ecse.rpi.edu/homepages/saulnier/
eit/eit.html] and Peter Muller (now at Colorado State University), for which we express our thanks. The
author also thanks the EIT labs at RPI, CSU, and University of São Paulo for their insights into working
with experimental data.

References

Melody Alsaker. Computational Advancements in the D-bar Reconstruction Method for 2-D Electrical Impedance
Tomography. PhD thesis, Colorado State University, 2016.

Melody Alsaker and Jennifer L. Mueller. A D-bar algorithm with a priori information for 2-D Electrical Impedance
Tomography. SIAM J. on Imaging Sciences, 9(4):1619–1654, 2016.
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