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Abstract 
Objective 
To determine whether applying controlled resistance forces to the legs during the swing phase of gait may 
improve the efficacy of treadmill training as compared with applying controlled assistance forces in children 
with cerebral palsy (CP). 
Design 
Randomized controlled study. 

Setting 
Research unit of a rehabilitation hospital. 
Participants 
Children with spastic CP (N=23; mean age, 10.6y; range, 6–14y; Gross Motor Function Classification 
System levels, I–IV). 

Interventions 
Participants were randomly assigned to receive controlled assistance (n=11) or resistance (n=12) loads applied 
to the legs at the ankle. Participants underwent robotic treadmill training 3 times a week for 6 weeks (18 
sessions). A controlled swing assistance/resistance load was applied to both legs starting from the toe-off to 
mid-swing phase of gait during training. 

Main Outcome Measures 
Outcome measures consisted of overground walking speed, 6-minute walk distance, and Gross Motor Function 
Measure scores and were assessed pre and post 6 weeks of training and 8 weeks after the end of training. 
Results 
After 6 weeks of treadmill training in participants from the resistance training group, fast walking speed and 6-
minute walk distance significantly improved (18% and 30% increases, respectively), and 6-minute walk distance 
was still significantly greater than that at baseline (35% increase) 8 weeks after the end of training. In contrast, 
overground gait speed and 6-minute walk distance had no significant changes after robotic assistance training. 

Conclusions 
The results of the present study indicated that robotic resistance treadmill training is more effective than 
assistance training in improving locomotor function in children with CP. 
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Attaining walking ability is often an important functional goal for children with cerebral palsy (CP). Among the 
children who are diagnosed with CP, up to 90% of them have difficulty walking.1, 2 Reduced walking 
speed and endurance are 2 of the main functional problems.3, 4 Ambulation plays a central role in normal bone 
development5 and cardiopulmonary endurance,6, 7 and children who are able to ambulate are more 
accomplished in activities of daily living and social roles than children who use a wheelchair.8 The development 
of independent gait and efficiency of walking are often the focus of therapeutic interventions for children with 
CP. 

The use of treadmill training has demonstrated improvement in walking capacity in some children with 
CP.9, 10 For instance, results have indicated improvements in gait speed,9, 11 endurance,9 and the Gross Motor 
Function Classification System (GMFCS) measures.10, 12 However, although statistically significant 
improvements in walking capacity with treadmill training have been shown, it remains unclear 
whether therapeutic effects of such training are maximized, and further evidence is needed to support treadmill 
training in children with CP.13 

The results of motor learning studies indicated that active training is more effective than passive training in 
improving the efficacy of motor training.14 Thus, we postulated that active engagement from children with CP 
might improve the efficacy of locomotor training. We proposed that applying a resistance force to leg swing may 
force them to be more actively involved because they need to generate additional joint torques to counteract 
the load. In addition, applying a resistance force to leg swing may produce a deviation in step kinematics, that is, 
increase the kinematic errors, which is supported by previous studies in individuals poststroke15, 16 and 
humans with spinal cord injury.17 Error augmentation may accelerate motor learning during treadmill 
training,18, 19, 20 resulting in improvement in the efficacy of locomotor training in children with CP. 

In contrast, providing leg assistance force may facilitate leg swing, which imitates the way that physical 
therapist provides leg assistance during treadmill training, and improve locomotor function in children with CP 
through use-dependent motor learning mechanisms,21 but it may reduce the level of active engagement of 
children with CP. To date, there are no randomized controlled studies that have directly compared leg resistance 
with assistance during treadmill training in children with CP. The purpose of this study was to assess functional 
changes after resistance versus assistance treadmill training in children with CP. We hypothesized that children 
with CP in both groups would show improvements in locomotor function, which was assessed using walking 
speed and 6-minute walk distance, although greater improvements were expected after resistance training than 
after assistance training. 

Methods 
Participants 
Participants were recruited through the outpatient department of the Rehabilitation Institute of Chicago 
between October 5, 2011 and July 16, 2014. Specifically, 92 children were contacted through phone calls, 69 
children were excluded, and 23 children (11 boys and 12 girls) with CP were recruited to participate in this study 
(fig 1). The mean age of participants was 10.6 years (range, 6–14y). Their GMFCS level ranged from I to IV (I, n=1; 
II, n=11; III, n=8; IV, n=3). 
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Fig 1. Flowchart of participants' enrollment and randomization. 

Inclusion criteria included (1) a diagnosis of bilateral spastic CP attributed to complications of 
prematurity, intracranial hemorrhage, and periventricular leukomalacia according to the definition of Bax22; (2) 
aged 4 to 14 years; (3) without botulinum toxin treatment and orthopedic surgery or neurosurgery in the 6 
months before the onset of training; (4) GMFCS level ranged from I to IV; (5) able to signal pain, fear, or 
discomfort reliably; (6) with mild scoliosis (Cobb angle <20°); (7) passive range of motion within functional limits; 
and (8) able to follow instructions on behavior tests. 

Exclusion criteria included severe lower extremity contractures, fractures, osseous instabilities, osteoporosis, 
severe disproportional bone growth, unhealed skin lesions in the lower extremities, thromboembolic diseases, 
cardiovascular instability, and aggressive or self-harming behaviors. 

All procedures were approved by the Institutional Review Board of the Northwestern University. Medical 
clearance for participation was requested from the primary physician of each participant. Written consent was 
obtained from all participants and their parents. 

Apparatus 
A custom-designed cable-driven robotic gait training system was used to apply controlled resistance or 
assistance force to both legs during treadmill walking, which was reported previously.23 In brief, the cable-driven 
robotic system consists of 4 direct current motors and cable spools (fig 2). Two motors and cable spools located 
in the front of the Woodwaya treadmill were used to apply a controlled assistance force to the legs at the ankle, 
and 2 motors located at the back of the treadmill were used to apply a resistance force to the legs. The ankle 
trajectory signals were measured using a custom-designed, 3-dimensional position detector. The ankle position 
signals were used by the operator to control the timing and magnitude of loading at targeted phases of gait. An 
adaptive control algorithm was used to automatically adjust the amount of the resistance/assistance load on the 
basis of the motor performance of the participants.23 The operator controlled the robotic system via a user 
interface that was programmed in LabVIEW.b 
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Fig 2. Experimental setup for the robotic assistance/resistance treadmill training. Two motors and cable spools 
are attached to a fixed frame located in front of the treadmill and are used to apply a controlled assistance force 
to the legs at the ankle, and 2 motors are attached to a frame located at the back of the treadmill and are used 
to apply a resistance force to the legs. A computer is used to control the coordinated movement of 4 motors. 

Protocol 
Participants were stratified according to initial gait speed and were randomly assigned to receive controlled 
assistance or resistance loads applied to both legs at the ankle. The treadmill speed was set at the comfortable 
speed of each participant on a treadmill, and an overhead harness was used to provide body weight support as 
needed to prevent knee buckling and toe drag. Participants walked on a treadmill for 40 minutes, which was 
adjusted on the basis of their tolerance on the activity, excluding setup time in each training session. Training 
sessions were conducted 3 times a week for 6 weeks. For participants who were assigned to the assistance 
training group, a load that assisted swing was applied to both legs starting from the toe-off to mid-swing phase 
of gait. For participants who were assigned to the resistance training group, a controlled resistance load was 
applied to both legs. Both the treadmill speed and the resistance/assistance load were gradually increased 
during the course of 6 weeks of treadmill training. Body weight support was provided in 8 participants (3 in the 
resistance group and 5 in the assistance group), with the average support being 11.4%±4.2% of body weight at 
session 1 and 8.1%± 6.2% of body weight at session 18. The rating of perceived exertion (RPE),24 which was used 
to quantify the perceived training intensity, was monitored during the course of training, and the targeted RPE 
was 11 to 16. 

Outcome measures 
Primary outcome measures included participant's self-selected and fast overground walking speed collected on 
a 10-m instrumented walkway (GAITRitec)25, 26 and averaged across 3 trials, and walking distance assessed 
through the 6-minute timed walk.27 Secondary outcome measures included clinical assessments of motor 
function. Specifically, dimensions D (standing) and E (walking, running, jumping) of the Gross Motor Function 
Measure-66 (GMFM-66) were assessed by licensed physical therapists.28, 29 Physical function was measured 
using the Pediatric Outcomes Data Collection Instrument.30 In addition, muscle tone of major knee joint muscle 
groups was assessed clinically with the Modified Ashworth Scale (score, 0–4),31 which was used before 
the GMFM and 6-minute walk tests. 
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Data analysis 
A power analysis was performed on the basis of the results of our previous pilot study, which indicated that with 
a power of 0.8 and an α of .05, 11 participants per group would be required. Baseline characteristics and training 
parameters were compared between the 2 test groups using paired t tests and Wilcoxon rank-sum tests, as 
appropriate, and data normality was checked using the Shapiro-Wilk test. Repeated-measures analyses of 
variance (ANOVAs) were used for all parametric measures for within-group comparison. If a significant 
difference was detected, post hoc Tukey-Kramer tests were conducted to determine which conditions were 
different from each other. Modified Ashworth Scale scores were analyzed using Friedman tests with post hoc 
Wilcoxon tests. Changes in primary outcomes (ie, gait speed and endurance) were calculated by subtracting the 
baseline value from the values obtained at posttesting and follow-up testing and analyzed using repeated-
measures ANOVA with main factor of treatment (resistance vs assistance training) and repeated for time 
(posttesting and follow-up testing). Statistical significance for all tests was set at P<.05. 

Results 
Twenty participants completed all the training and assessment sessions, with 3 participants dropping out 
(because of poor attendance, child's request, and participation in another study, respectively). At baseline, there 
were no significant differences between the 2 groups in age, overground walking speed, 6-minute walk distance, 
and GMFM scores (table 1). Treadmill training speed, distance, and time were gradually increased for both 
groups (P<.01) during the course of training, with no significant difference noted between the 2 groups. In 
addition, the training intensity, which was quantified using RPE, had no significant difference between the 2 
groups (table 2). 

Table 1. Characteristics of the participants for baseline comparisons 
Characteristic Resistance Training Assistance Training P 
Age (y) 10.6±3.0 10.8±2.3 .93 
Sex: male/female 6/6 5/6 NA 
Race: white/other 

   

 African American 1 1 NA 
 Asian 1 0 NA 
 Hispanic 4 5 NA 
 White 6 5 NA 
Extremity distribution 

   

 Diplegia 7 7 NA 
 Quadriplegia 5 4 NA 
GMFCS level 

   

 I 1 0 NA 
 II 5 5 NA 
 III 5 4 NA 
 IV 1 2 NA 
Ankle braces 

   

 None 0 2 NA 
 BAFO/SMO 12 9 NA 
GMFM score 

   

 Total score 63.6±8.6 60.8±9.1 .33 
 Dimension D 25.8±8.0 22.8±11.3 .18 
 Dimension E 32.3±18.2 30.4±18.0 .64 
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Self-selected walking speed (m/s) 0.64±0.28 0.57±0.23 .35 
Fast walking speed (m/s) 1.00±0.35 0.88±0.34 .28 
6-min walk distance (m) 277.2±111.9 228.3±117.8 .27 
MAS score 0.67±0.53 0.95±0.72 .40 

NOTE. Values are mean ± SD or n. t tests and Wilcoxon rank-sum tests were used for comparison between the 2 
groups. 

Abbreviations: BAFO, bilateral ankle foot orthosis; MAS, Modified Ashworth Scale; NA, not applicable; SMO, 
supramalleolar orthosis. 

Table 2. Training paradigms including treadmill speed, time, and training intensity at sessions 1, 9, and 18 for 
robotic resistance vs assistance treadmill training groups 

Variable Resistance Training Assistance Training P 
Session 1 

   

 Speed (m/s) 0.42±0.15 0.42±0.19 .95 
 Distance (km) 0.80±0.31 0.85±0.43 .78 
 Time (min) 31±2 33±3 .15 
 RPE 12.9±2.9 11.8±1.6 .27 
 Peak force (N) 11.4±2.6 13.2±2.9 .18 
Session 9 

   

 Speed (m/s) 0.51±0.19 0.49±0.16 .85 
 Distance (km) 1.13±0.48 1.11±0.45 .95 
 Time (min) 36±3 37±4 .58 
 RPE 11.1±1.1 12.2±1.6 .23 
 Peak force (N) 13.3±4.1 16.4±2.2 .08 
Session 18 

   

 Speed (m/s) 0.55±0.18 0.53±0.22 .86 
 Distance (km) 1.13±0.42 1.28±0.57 .98 
 Time (min) 39±3 39±3 .93 
 RPE 12.0±1.8 11.3±1.5 .19 
 Peak force (N) 14.8±5.2 18.2±3.2 .15 

NOTE. Values are mean ± SD. t tests were used for comparison between the 2 groups. 

Robotic resistance treadmill training improved walking function in children with CP. Specifically, fast walking 
speed significantly increased after robotic resistance treadmill training (F2,9=4.12; ANOVA, P=.03) (fig 3). Post hoc 
tests indicated a significant increase from baseline to posttesting (mean increase, 18%; interquartile range [IQR], 
2%–31%; P=.01), although there was no significant difference between baseline and follow-up testing (increase, 
17%; IQR, −6% to 17%; P=.13). Self-selected walking speed tended to increase (mean increase, 32%; IQR, −8% to 
44%), but this was not significant because of large variability across participants (F2,9=1.66; P=.21). In addition, 6-
minute walk distance significantly increased after resistance training (F2,9=10.04; P=.001). Post hoc tests 
indicated a significant increase from baseline to posttesting (increase, 30%; IQR, 4%–45%; P=.01) and from 
baseline to follow-up testing (increase, 35%; IQR, 6%–64%; P=.001). 
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Fig 3. Average of self-selected walking speed, fast walking speed, 6-minute walk distance pre and post 6 weeks 
of robotic treadmill training and 8 weeks after the end of treadmill training, that is, follow-up testing. (A) 
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Overground walking speed for participants from the resistance treadmill training group. (B) Overground walking 
speed for participants from the assistance treadmill training group. (C) Six-minute walk distance for participants 
from the resistance training group. (D) Six-minute walk distance for participants from the assistance training 
group. Three trials were conducted for walking speed and averaged across participants for each group. Error 
bars indicate SD of each gait parameter. ∗Significant difference, P<.05. 

In contrast, robotic assistance treadmill training induced modest changes in walking function in children with CP. 
Specifically, both fast and self-selected walking speeds had no significant changes after assistance training (mean 
increase, 0.4%, IQR, 0%–10%; F2,9=1.85; P=.19 and increase, 2%, IQR, −12% to 20%; F2,9=.51; P=.6 for fast and 
self-selected walking speeds, respectively) (see fig 3). In addition, 6-minute walk distance had no significant 
change after assistance training (increase, 4%; IQR, −6% to 16%; F2,9=.48; P=.63). 

Greater functional gains were observed for participants who underwent resistance training than for those who 
underwent assistance training. Specifically, changes in self-selected walking speed, fast walking speed, and 6-
minute walk distance after treadmill training were significantly greater for participants from the resistance 
group than for participants from the assistance group (F1,1=5.36, P=.03; F1,1=10; P=.003; and F1,1=12.23; P=.001 
for self-selected walking speed, fast walking speed, and 6-minute walk distance, respectively) (fig 4). We 
observed no significant differences in changes in walking function between posttesting and follow-up testing 
(P=.75 for self-selected walking speed, P=.33 for fast walking speed, and P=.73 for 6-minute walk distance). 
GMFM scores significantly changed after resistance training (F2,9=5.21; P=.02). Post hoc tests indicated 
significant differences between posttesting and follow-up testing scores (P=.02), although there was no 
significant difference between pretesting versus posttesting scores (P=.89) and between pretesting and follow-
up testing scores (P=.05). In contrast, GMFM scores had no significant changes after assistance training 
(F2,9=.49; P=.69) (table 3). In addition, step cadence during fast walking significantly increased after resistance 
training (F2,9=6.11; P=.01). Post hoc tests indicated significant differences in step cadence between pretraining 
and posttraining (P=.01), although there was no significant difference between pretesting and follow-up testing 
(P=.06) (table 4). Other spatial-temporal gait parameters had no significant changes for both groups (P>.05). 
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Fig 4. Changes in (A) self-selected walking speed, (B) fast walking speed, and (C) 6-minute walk distance after 
robotic resistance/assistance treadmill training and 8 weeks after the end of training, that is, follow-up testing. 
Data shown in the figure are the mean and SD of walking speeds and distance across participants. ∗Significant 
difference, P<.05. 

Table 3. Self-selected walking speed, fast walking speed, and 6-minute walk distance, GMFM scores, MAS scores, 
and PODCI scores after robotic resistance and assistance treadmill training 

Variable Resistance 
Training 

   Assistance 
Training 

   
 

Pre Post Follow-Up P Pre Post Follow-Up P 
Fast speed 
(m/s) 

0.98±0.39 1.13±0.38 1.09±0.35 .01∗ 0.84±0.34 0.84±0.37 0.77±0.36 .19 

Self-
selected 
speed 
(m/s) 

0.63±0.30 0.72±0.24 0.71±0.22 .22 0.54±0.22 0.52±0.18 0.50±0.19 .61 
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6minWD 
(m) 

272.7±113.
0 

336.3±104.
9 

353.9±125.
8 

.001∗ 216.3±116.
8 

230.1±119
.2 

224.7±118.
7 

.63 

GMFM 
score 

        

 Total 
score 

63.7±8.7 63.4±8.2 64.9±9.4 .02∗ 60.0±9.2 59.8±9.6 60.3±9.4 .69 

 Dimensio
n D 

25.1±8.6 26.0±6.9 27.3±7.1 .18 21.7±11.3 21.8±11.7 20.8±11.4 .62 

 Dimensio
n E 

31.4±19.5 30.5±19.2 32.5±19.8 .11 29.2±18.5 28.3±17.7 28.8±19.5 .35 

MAS score 0.65±0.57 0.83±0.66 0.63±0.39 .97 0.85±0.67 0.68±0.56 0.87±0.55 .20 
PODCI 
(self) 
score 

23.0±17.2 23.0±18.0 24.5±12.2 .84 23.0±23.6 19.5±12.1 24.0±16.0 .74 

PODCI 
(parent) 
score 

7.5±16.2 19.1±15.5 19.0±16.8 .002∗ 7.9±22.8 9.8±16.4 3.9±24.5 .83 

NOTE. Values are mean ± SD. ANOVAs and Friedman tests were used for within-group comparison. 

Abbreviations: 6minWD, 6-min walk distance; MAS, Modified Ashworth Scale; PODCI, Pediatric Outcomes Data 
Collection Instrument. 

∗Significant difference. 

Table 4. Spatial-temporal gait parameters pre and post robotic resistance and assistance treadmill training 

Variable Resistance 
Training 

   Assistance 
Training 

   
 

Pre Post Follow-Up P Pre Post Follow-Up P 
Fast walking 

        

 Step length 
(m) 

0.47±0.10 0.50±0.09 0.49±0.09 .26 0.42±0.10 0.42±0.09 0.40±0.10 .45 

 Stride 
length (m) 

0.94±0.20 1.00±0.18 0.98±0.18 .15 0.84±0.20 0.84±0.18 0.84±0.22 .99 

 Cadence 
(step/min) 

120.3±25.5 136.5±29.0 132.0±28.4 .01∗ 119.2±40.2 120.2±41.3 116.9±44.3 .86 

 Swing time 
(%) 

38.9±4.8 39.8±3.8 40.0±3.2 .61 40.1±5.6 41.6±4.9 40.6±7.2 .72 

Normal 
walking 

        

 Step length 
(m) 

0.39±0.11 0.43±0.09 0.42±0.08 .16 0.34±0.09 0.35±0.08 0.35±0.08 .83 

 Stride 
length (m) 

0.78±0.22 0.86±0.18 0.85±0.16 .16 0.71±0.19 0.71±0.16 0.70±0.16 .98 

 Cadence 
(step/min) 

93.2±26.3 100.6±21.8 100.7±20.8 .22 91.4±27.8 86.8±20.5 83.9±23.8 .21 

 Swing time 
(%) 

33.6±4.7 35.7±1.9 36.5±2.0 .11 36.1±4.8 37.4±8.7 38.2±7.7 .78 
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NOTE. Values are mean ± SD. ANOVAs were used for within-group comparison. 

∗Significant difference. 

Discussion 
Applying a controlled swing resistance force to the legs during robotic treadmill training induced significant 
improvements in walking function of children with CP. In contrast, applying an assistance force to legs during 
treadmill training induced only modest changes in walking function. Furthermore, greater functional gains in 
walking were obtained for participants from the resistance group than for those from the assistance group. 

In this study, greater improvements in walking function were observed for children who underwent resistance 
training than for those who underwent assistance training. One possible reason for the differences in functional 
gains may be that children who underwent resistance training were more actively engaged in the locomotor 
training session than were those who underwent assistance training. Specifically, for children who were assigned 
the resistance training group, the resistance load applied to both legs during the swing phase may force 
participants to generate additional joint torque to counteract the load and move the leg forward during 
treadmill training, which may require participants to increase voluntary activation through enhanced supraspinal 
input to the motoneuron pool and/or increase motoneuron excitability.32 

In contrast, for children who underwent assistance training, the central nervous system may adapt to the 
assistance force applied to the leg(s) during the swing phase of gait by reducing the motor output of the leg 
muscles,33 probably owing to optimization of the energy cost.34 Thus, a leg assistance force that is too large may 
encourage passive rather than active training. As a consequence, the training effect could be suboptimal. This is 
also consistent with a previous study, which indicated that only a modest increase in the gait speed of children 
with CP was observed after robotic training in which a passive guidance force was applied to both 
legs.35 However, the results of a previous study in adults with stroke indicated that assistance and resistance 
training induced comparable walking functional gains.18 One possible reason may be due to the age (or the 
motivation level) difference of participants between the 2 studies. 

In addition, the results of this study suggest that repeated exposure to force perturbations during walking may 
induce a prolonged retention of increased stride length in children with CP. The results of previous studies 
suggest that the neural system may adapt to the resistance force and show an aftereffect consisting of an 
increased stride length when the resistance force is removed (R. Tang et al, unpublished data, 2016), which is 
consistent with individuals poststroke15, 36 and humans with spinal cord injury.37, 38 Although the aftereffect 
after 1 session of swing resistance training is generally short-lived, the results of this study suggest that repeated 
exposure to a swing resistance force through long-term training, such as 18 sessions of training in this case, may 
induce an accumulation of increased stride length through a repeated adaptation and de-adaptation 
process,39 which is consistent with previous results of studies involving humans with spinal cord injury19 and 
individuals poststroke using a split-belt paradigm.20 In addition, repeated exposure to leg resistance force may 
enhance muscle activation of hip flexors, which may facilitate leg swing, but may have a modest effect on hip 
abductors, which are identified as key muscles in maintaining mediolateral balance of standing leg during 
walking.40 As a result, we observed a greater increase in cadence but a smaller increase in step length because of 
modest change in single leg support time after resistance training. 

To our knowledge, this is the first study to show the differences in walking functional gains in children with CP 
after robotic treadmill training with robotic resistance force versus assistance force. The functional gains 
obtained after robotic resistance treadmill training are comparable with, or even greater than, those obtained 
from previous studies using treadmill training. For instance, the functional gain in walking speed (ie, .15m/s, 
although <.17m/s, minimal clinically important difference)41 obtained after robotic resistance training was 
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comparable with, or greater than, that obtained after treadmill training with applied manual assistance force 
(.01–.07m/s)9, 42 or with robotic assistance force using the pediatric Lokomatd (ie, .02m/s),35 which is 
comparable with functional gains obtained after assistance training (ie, −.02m/s) and after robotic training using 
the GaitTrainere (ie, .12m/s).43 Similarly, the functional gain in 6-minute walk distance obtained after resistance 
training (i.e., 81.2m, which is greater than minimal clinically important difference, i.e., 61.5m) was greater than 
that obtained after treadmill training with manual assistance (ie, −25.0 to −19.8m),9, 42 which is comparable 
with functional gains obtained after assistance training (ie, 13.9m) and after robotic training using the 
GaitTrainer (ie, 69m).43 

The results of this study may have some clinical applications for improving locomotor function in children with 
CP. For instance, to improve the efficacy of locomotor training, physical therapists may consider applying a 
resistance force to the legs and refrain from applying a manual assistance force (that is too large) to legs during 
locomotor training to increase the intensity and/or active involvement of children with CP. 

Study limitations 
This study has several limitations. For instance, the sample size was small because of the challenges of 
participant recruitment. In addition, the assessing physical therapists were not blinded to the group assignment, 
which may have potentially biased the results. We do not know whether a robotic resistance treadmill training 
paradigm is more effective than a conventional treadmill training paradigm, and we also do not know whether 
the cognitive abilities of individuals had an effect on the results. In addition, the reliability of GAITRite data from 
some low functional children with CP was relatively low,25 which might affect the results. We also do not know 
whether the level of resistance/assistance load applied in this paradigm is optimized. Further studies are needed 
to optimize this resistance training paradigm. 

Conclusions 
Applying a resistance force to the legs during robotic treadmill training is more effective than applying an 
assistance force in improving walking function in children with CP. This suggests that active involvement of 
children with CP during locomotor training is crucial for improving the efficacy of treadmill training. In addition, 
repeated exposure to force perturbations induces a prolonged retention of improved stride length in children 
with CP. 

Suppliers 
a. Woodway treadmills; WOODWAY USA, Inc. 
b. LabVIEW; National Instruments. 
c. GAITRite; CIR Systems Inc. 
d. Lokomat; Hocoma Inc, USA. 
e. Gait Trainer GT I; Reha-Stim, Berlin, Germany. 
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