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Abstract 

 

A mixed quantum/classical theory (MQCT) for the inelastic collision of two asymmetric-top rotor molecules is 
developed. In this method, the quantum state-to-state transitions between the rotational states of molecules 
(internal) are treated quantum mechanically using the time-dependent Schrodinger equation, whereas their 
relative translational motion (responsible for scattering) is treated classically, using the average trajectory 
approach. Two versions of the formula for transition matrix elements are presented: a straightforward approach 
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that uses numerical multidimensional quadrature over all the internal degrees of freedom and a more standard 
analytic approach that uses the expansion of the PES over the basis set of spherical harmonics. Adaptation to the 
case of identical molecules scattering is presented and is applied to the rotational excitation of two water 
molecules, H2O + H2O, using the PES from recent literature. Calculations of collisional excitation from the ground 
state of the system into a number of low-lying excited rotational states are carried out in a broad range of energies. 
Analysis of computed opacity functions shows a rather unusual scattering regime, dominated by a strong 
anisotropic long-range interaction (dipole–dipole). The coupled-states (CS) approximation is tested and found to 
agree semiquantitatively (within a factor of 2) with the fully coupled version of the method. Differential cross 
sections for the elastic scattering indicate a very narrow forward scattering peak. 

I Introduction 
The standard full-quantum theory of molecular inelastic scattering, known as coupled channel (CC) formalism, 
leads to a large system of coupled differential equations.(1, 2) The size of this system depends not only on the 
number of internal (rotational, vibrational) states of the molecules but also on the number of molecule–molecule 
orbital angular momentum states (partial waves) taken into account for the description of the scattering process. 
Numerically efficient methods and computer codes(3, 4) have been developed to solve this problem, which 
enabled computational studies of many important scattering processes. Computationally affordable cases include 
atom + diatomic,(5-7) diatomic + diatomic,(8-11)and atom + triatomic(12) collisions. 

As molecules become larger and heavier, one has to deal with a higher density of the internal states (e.g., rotational 
levels in polyatomic molecules). The problem becomes severe at higher collision energies, when the number of 
accessible states becomes huge, simultaneously with a large number of partial waves required for the description 
of heavy-particle scattering. For example, full-quantum calculations for rotationally inelastic scattering of diatomic 
+ triatomic systems are very demanding.(13-15) Likewise, inelastic scattering calculations for polyatomic 
molecules appear to be affordable only at small scattering energies.(16-19) As the focus of the community shifts 
toward more diverse and complex gas-phase chemistry,(20) and as electronic structure calculations of potential 
energy surfaces (PES) become affordable for larger molecules, one starts begging for the development of an 
alternative and more practical approach to molecular scattering. 

In recent years, we developed a simplified mixed quantum/classical theory (MQCT) for inelastic scattering in 
which the relative motion of collision partners is treated approximately, classically, whereas their internal motion 
is still described rigorously using quantum mechanics. Since the scattering process is described by independent 
classical trajectories, there is no coupling between different values of orbital angular momentum, which reduces 
the sizes of matrices and systems of equations (now determined only by the number of internal states of the 
molecules). Further, speed up is achieved by intrinsic massive parallelism of the MQCT, where different 
trajectories are independent and can be propagated simultaneously using different processors, without any 
message passing. The resultant computational gain is very substantial, allowing inelastic scattering calculations for 
larger molecules and at higher collision energies, compared to the standard full-quantum approach. 

We thoroughly tested this approach vs rigorous full-quantum calculations for an atom collided not only with 
diatomic (CO + He,(21) H2 + He,(22) and N2 + Na(23)), triatomic H2O + He,(24, 25) tetratomic CH3 + He,(26) and 
polyatomic HCOOCH3 + He(27) molecules but also for diatomic + diatomic collisions (N2 + H2(28) and H2 + 
H2(29)). These systematic studies involved heavy and light collision partners, quenching and excitation at low and 
high collision energies, mostly rotational but also some vibrational transitions, including coherence effects for the 
elastic channel, scattering of identical partners, and computing both total and differential scattering cross sections. 
Typically, at intermediate and higher collision energies results of the MQCT are very close, often identical to the 
full-quantum results. But even at low collision energies, where classical approximation is not expected to be 
particularly accurate, the results of the MQCT are still reasonable (e.g., near excitation threshold). A proposal was 
made(26) to blend the full-quantum calculations at low collision energies, where they are indispensable and often 
affordable, with MQCT calculations at higher collision energies, where they are expected to be accurate, and where 
no other known method is practical. 
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This paper is a capstone for our previous work, since here we expand the MQCT onto the most general case, a 
collision of two asymmetric-top rotor molecules, and use it for calculations of H2O + H2O rotationally inelastic 
scattering. 

The water molecule was a subject of several relevant studies using the full-quantum approach,(12-15) but those 
included either an H atom or an H2 molecule as its collision partner, which is much simpler. The H2O + H2O system 
is so complicated that accurate scattering calculations have never been attempted for it, to our best knowledge. In 
fact, the two most popular scattering codes in use by the community today, MOLSCAT(3) and HIBRIDON,(4) do not 
even have capabilities of inelastic scattering calculations for the asymmetric-top + asymmetric-top systems. The 
only example of quantum H2O + H2O scattering calculations is found in the early work of Clary,(30) but a very 
approximate infinite order sudden (IOS) assumption for collision was employed there. One other relevant example 
is a work of Buffa et al.(31) who also followed the spirit of the mixed quantum-classical approach but employed the 
impact-parameter approximation (basically, a straight-line assumption for the trajectory of motion), along with 
several other simplifications. (Namely, the identical particles collision symmetry was not incorporated, and no 
truly state-to-state cross sections were computed but rather thermally averaged cross sections for transitions in 
one molecule only, averaged over states of the other water molecule.) 

Thus, this paper also breaks the grounds in the inelastic scattering calculations for the H2O + H2O system, which is 
important on its own, for example, as a probe of conditions in cometary comas(32-34) and other astrophysical 
environments.(35) 

II Theory 
II-A Classical Degrees of Freedom 
In the MQCT the relative position of two scattering partners is given by vector Q that connects their centers of 
mass, as shown in Figure 1. Time evolution of this vector relative to the space-fixed reference frame (laboratory 
frame) describes the process of scattering. Spherical coordinates are used for this: Q = (R, Θ, Φ). It is possible to 
demonstrate(22, 23) that the average Ehrenfest potential, which governs this scattering process, possesses 
cylindrical symmetry for rotation around the vector Q, which keeps the collision trajectory planar and permits to 
restrict consideration to one plane, e.g., the equatorial plane Θ = π/2 (horizontal plane in Figure 1), without loss of 
generality. The collision event can be thought of classically: At the initial moment of time two collision partners are 
in the asymptotic range, separated by a large distance R = |Q|, which shortens during the time of collision and 
increases again as collision partners leave the interaction region. The deflection process is determined by the 
change of the azimuthal angle Φ, which simply describes the rotation of Q in the equatorial plane, as collision 
partners approach each other, collide, and scatter. Thus, only two classical degrees of freedom are effectively used 
in this theory, R and Φ, together with their conjugate momenta PR and PΦ. Classical-like equations of motion for 
time evolution of these classical variables, R(t), Φ(t), PR(t), and PΦ(t), were derived and discussed in the recent 
literature.(22, 23, 27, 28) Here we also list them, for completeness, and in a slightly different form, found them to 
be more suitable for efficient numerical implementation: 
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In these equations, εnn′ = En′ – En is used to label energy differences between the initial (lower index) and the final 
(upper index) internal quantum states of the system, whereas amn(t) represents time-evolving probability 
amplitudes for these states: 
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The last term of eq 5 describes Coriolis coupling between states with Δm = ±1, driven by classical angular speed 
Φ̇(t). Neglecting this term leads to the coupled-states (CS) approximation within MQCT, while retaining this term 
corresponds to the fully coupled version of MQCT (or coupled-channel MQCT). Matrix Mn′n(R) in eqs 3–5 is a 
potential coupling matrix. Its R-dependent elements are real, are time independent, and are different for different 
values of m. The range of m is between −min(j,j′) and +min(j,j′). The meaning of quantum numbers m, j, and a 
composite label n are discussed next. 

 
Figure 1. Euler angle rotations of two water molecules relative to the body-fixed frame tied to the instantaneous 
molecule–molecule vector Q, treated classically. (a) Reference orientation with all angles set to zero. All axis labels 
are unprimed. The direction of first rotation is indicated for each molecule. (b) New orientations, after the first 
rotation of each molecule. New molecule-fixed axes, tied to the principal moments of inertia, are shown in blue and 
given primed labels. See text for further details. 

II-B Quantum Degrees of Freedom and the Reference Frame 
Here, for transparency, we will talk about two colliding water molecules (molecule one and molecule two), but 
since the water molecule is treated exactly as a general asymmetric top rotor, this theory is applicable to the 
collision of any two molecules. Adaptation of this theory to the scattering of two identical molecules is made 
further below. 

So, rotation of each scattering partner is treated quantum mechanically and is described by a set of usual Euler 
angles: Λ1 = (α1, β1, γ1) for molecule one and Λ2 = (α2, β2, γ2) for molecule two, as shown in Figure 1. Rotational 

states of each molecule are quantized, described by the corresponding wave functions: 
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A set of expansion coefficients for each molecule, bkj1k1Ak1C and ckj2k2Ak2C, is obtained by diagonalization of an 
asymmetric-top Hamiltonian matrix in a corresponding basis set of Wigner D-functions, Dm1kj1(α1,β1,γ1) 
and Dm2kj2(α2,β2,γ2), respectively.(36) According to standard notation, rotational states of an asymmetric top are 
labeled (in addition to j1 and m1for molecule one) by quantum numbers k1A and k1C that represent projections 
of j1 onto the principal axis of inertia with smallest and largest values of rotational constants, respectively (and 
similar for k2A and k2C for the angular momentum j2 of molecule two, in addition to j2and m2). Note that for water 
molecules this A-axis is also the axis of symmetry. It should be stressed that here we use the so-called body-fixed 
reference frame, where the z-axis is defined to pass through the centers of mass of two molecules (i.e., is tied to the 
classical molecule–molecule vector Q). As collision progresses, this axis turns together with collision partners 
relative to the space-fixed reference frame (same as vector Q), and this effect is incorporated into the equations of 
motion (eqs 1–5) as discussed in our earlier papers.(21, 27) Projection m1 of momentum j1 and projection m2 of 
momentum j2 are made onto this body-fixed z-axis, or equivalently on Q. The Euler angles Λ1 = (α1, β1, γ1) and Λ2 = 
(α2, β2, γ2) are also defined relative to this body-fixed frame, using the so-called intrinsic rotations, or according to 
a z–y′–z″ convention (note that these are different from extrinsic rotations discussed in Appendix A in 
the Supporting Information). Since the interaction between molecules is invariant under rotation around z-axes, 
one can set α1 = 0 and use only α2 = α. Figure 1a gives the “reference” orientation of the system, when Λ1 = (0, 0, 0) 
and Λ2 = (0, 0, 0), and the symmetry axis of each molecule is aligned with the z-axis (or equivalently with Q). The 
direction for rotation of molecule two around the z-axis by angle α and the direction for rotation of molecule one 
around the y1-axis by angle β1 are also indicated in Figure 1a. In Figure 1b, new positions of the molecule-fixed 
frames are shown, (x1′,z1′) for molecule one and (x2′,y2′) for molecule two, and the directions for the following 
rotations of each molecule are indicated: rotation around the z1′-axis by γ1 (which is the last rotation for molecule 
one) and rotation around the y2′-axis by β2 for molecule two. One remaining rotation of molecule two by angle γ2 is 
not shown in Figure 1, since it occurs around the new axis z2″. 

The total angular momentum of two molecules j = j1 + j2 is also quantized in the MQCT. The corresponding 
eigenfunctions can be formally expressed through states of two coupled rotors: 
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Coefficients of this expansion, (j1m1j2m2|jm), the so-called Clebsch–Gordan coefficients,(37)are nonzero only 
if m = m1 + m2 and |j1 – j2| ≤ j ≤ j1 + j2, where m is the projection of j on Q, so the sum in eq 8 should include all 
possible cases. A composite index n is used to label the total set of quantum numbers for the system, n = 
{jjk1Ak1Cj2k2Ak2C}. This is exactly the same index n used in eqs 3–5; thus eq 8 gives the expression for Φmn. It is also 
convenient to use n1 = {j1k1Ak1C} and n2 = {j2k2Ak2C} for the states of molecules one and two, respectively, so 
that n = {jn1n2}. 

II-C Potential Coupling Matrix Elements 
We have already demonstrated (and will confirm it one more time further below) that the potential coupling 
matrix M(R) is diagonal in m; i.e., its elements for transition nm ← n′m′ are nonzero only if m = m′. However, the 
actual values of nonzero matrix elements depend on m. So, for given fixed m consider the matrix element for 
transition  n ← n′: 

 

𝑀𝑀𝑛𝑛’
𝑛𝑛 (𝑅𝑅) = 〈φ𝑚𝑚𝑛𝑛(Λ1, Λ2)𝑉𝑉(𝑅𝑅, Λ1, Λ2)φ𝑚𝑚𝑛𝑛(Λ1, Λ2)〉 

(9) 

 

Here V(R,α1,β1,γ1,α2,β2,γ2) is the potential energy hypersurface for the molecule–molecule interaction, expressed 
through the same variables: the molecule–molecule distance R and two sets of Euler angles. From Figure 1, we can 
see that without the loss of generality one of these angles can be eliminated, since the potential energy remains 
unchanged if the system, as a whole, rotates around Q. So, V(R,α1,β1,γ1,α2,β2,γ2) = V(R,0,β1,γ1,α,β2,γ2), where we 
defined the difference of angles as the new variable α = α2 – α1. In recent literature, a new PES for a water–water 
interaction was computed and presented using similar variables.(38, 39) We adopted this surface for our 
calculations, as outlined in Appendix A. Other PESs for the water–water system of, perhaps, comparable accuracy 
are also available (e.g., Huang et al.(40)) 

One straightforward way of computing matrix elements is by the numerical five-dimensional quadrature (e.g., 
Gauss–Legendre method along each angular coordinate): 
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2𝜋𝜋

0
Φ𝑚𝑚𝑛𝑛′ (0, 𝛽𝛽1, 𝛾𝛾1, 𝛼𝛼, 𝛽𝛽2, 𝛾𝛾2)  

=  2𝜋𝜋 � d𝛼𝛼
2𝜋𝜋

0
  � sin 𝛽𝛽1d𝛽𝛽1

𝜋𝜋

0
 � d𝛾𝛾1

2𝜋𝜋

0
 � sin 𝛽𝛽2d𝛽𝛽2

𝜋𝜋

0
 � 𝑑𝑑𝛾𝛾2 𝑉𝑉(𝑅𝑅, 0, 𝛽𝛽1, 𝛾𝛾1, 𝛼𝛼, 𝛽𝛽2, 𝛾𝛾2) Φ𝑚𝑚𝑛𝑛

∗ (0, 𝛽𝛽1, 𝛾𝛾1, 𝛼𝛼, 𝛽𝛽2, 𝛾𝛾2)
2𝜋𝜋

0
Φ𝑚𝑚𝑛𝑛′  (0, 𝛽𝛽1, 𝛾𝛾1, 𝛼𝛼, 𝛽𝛽2, 𝛾𝛾2)  

(10) 

 

  



We not only implemented this method in our calculations but also followed an alternative approach 
described below, since that second method could be more efficient computationally and, possibly, 
would allow more straightforward comparison with standard full-quantum calculations (if they 
would appear in the future). 

Namely, in a method used normally in the typical full-quantum scattering calculations, the 
multidimensional potential is expanded over a basis set of suitable functions. Following 
Szalewicz,(38, 39) we used 

 

 

𝑉𝑉(𝑅𝑅 , Λ1, Λ2)  = � 𝑉𝑉𝑙𝑙1𝜂𝜂1𝑙𝑙2𝜂𝜂𝑙𝑙(𝑅𝑅) 𝐴𝐴𝑙𝑙1𝜂𝜂1𝑙𝑙2𝜂𝜂2𝑙𝑙(Λ1, Λ2)
 

𝑙𝑙1𝜂𝜂1𝑙𝑙2𝜂𝜂2𝑙𝑙

 

(11) 

where the real functions are employed, as follows: 

 

 

𝐴𝐴𝑙𝑙1𝜂𝜂1𝑙𝑙2𝜂𝜂2𝑙𝑙(Λ1, Λ2)

=  �
�(2𝑙𝑙1  +  1)(2𝑙𝑙2  +  1)

8𝜋𝜋2

 

𝑚𝑚𝑙𝑙

  (𝑙𝑙1𝑚𝑚𝑙𝑙 𝑙𝑙2

−  𝑚𝑚𝑙𝑙|𝑙𝑙0)𝐷𝐷𝑚𝑚𝑙𝑙𝜂𝜂1
𝑙𝑙1  (Λ1) 𝐷𝐷−𝑚𝑚𝑙𝑙𝜂𝜂2

𝑙𝑙2 (Λ2) 

(12) 

Here the labels l1, l2 and η1, η2 are analogues of the quantum numbers j and k of two molecules, 
respectively. The range of 𝑚𝑚𝑙𝑙 is between −min(l1,l2) and +min(l1,l2). Note that to use this method, 
one should still compute the multidimensional integrals to determine the values of expansion 
coefficients Vl1η1l2η2l(R) by projecting the PES V(R,Λ1,Λ2) onto the “basis 
functions” Al1η1l2η2l(Λ1,Λ2). But if the expansion coefficients are determined on a grid of points 
along R, then those can be splined and the values of all matrix elements are computed quickly at 
any point along R (using the formula derived below). This is different from the first method, eq 10, 
where each matrix element should be precomputed on the R-grid and then splined between those 
points. Depending on complexity of the PES, and the number of states of the system, the first or the 
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second method can be better (faster). In order to test our theory and new code, we implemented 
both methods and made sure they gave identical results. 

In order to use the expansion of eq 11 in eq 9, we have to be able to compute the following matrix 
elements: 

 

 

⟨𝛷𝛷𝑚𝑚𝑛𝑛(Λ1, Λ2)|𝐴𝐴𝑙𝑙1𝜂𝜂1𝑙𝑙2𝜂𝜂𝑙𝑙(Λ1, Λ2)|𝛷𝛷𝑚𝑚𝑛𝑛′(Λ1, Λ2)⟩ 
 

1 2 

(13) 

by expressing them analytically through the coefficients bk1j1k1Ak1C and ckj2k2Ak2Cof eqs 6 and 7. The 
derivations are relatively straightforward but somewhat lengthy and, for the sake of transparency, 
are presented separately in Appendix B. The formula used to calculate the matrix element’s mn′n(R) 
equation through the expansion coefficients Vl1η1l2η2l(R) is also derived in Appendix B. 

II-D Identical Particle Exchange Symmetry 
In addition to the wave function Φmn(Λ1,Λ2) defined by eq 8, consider another wave function 
Φ� mn(Λ1,Λ2) obtained from it by swapping the molecules one and two. Several arguments should be 
taken into account. First of all, since the identity of molecules is retained, this swap, obviously, 
inverts the direction of the classical vector Q in space, namely, (X, Y, Z) → (−X, −Y, −Z). Second, for 
an arbitrary orientation of molecule in space defined by some Λ = (α, β, γ), the inversion 
of Q changes the values of coordinates to new values:(35) Λ�  = (π + α, π – β, π – γ), and this 
concerns each molecule. Third, if we swap two molecules, each takes the quantum state of the 
partner and its corresponding wave function. The expansion coefficients used to give wave 
functions of the entire system in eq 8, Clebsch–Gordan coefficients, should be modified accordingly. 
All these features are incorporated into the new total wave function of the system, as follows: 

 

https://pubs.acs.org/doi/10.1021/acs.jpca.7b03554#eq11
https://pubs.acs.org/doi/10.1021/acs.jpca.7b03554#eq9
https://pubs.acs.org/doi/10.1021/acs.jpca.7b03554#eq6
https://pubs.acs.org/doi/10.1021/acs.jpca.7b03554#eq7
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.7b03554/suppl_file/jp7b03554_si_002.zip
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.7b03554/suppl_file/jp7b03554_si_002.zip
https://pubs.acs.org/doi/10.1021/acs.jpca.7b03554#eq8
javascript:void(0);
https://pubs.acs.org/doi/10.1021/acs.jpca.7b03554#eq8


Φ𝑚𝑚𝑛𝑛(Λ1, Λ2)  =  Φ𝑚𝑚𝑛𝑛(Λ�2 , �̃�𝛬1)

=  � (𝑗𝑗1𝑚𝑚1𝑗𝑗2 𝑚𝑚2|𝑗𝑗𝑚𝑚)
 

𝑚𝑚1𝑚𝑚2

 Ψ𝑚𝑚1𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶(Λ� 2 ) Ψ𝑚𝑚2𝑗𝑗2𝑘𝑘2
𝐴𝐴𝑘𝑘2

𝐶𝐶(Λ� 1)  

=  (−1)𝑗𝑗1 +𝑗𝑗2 +𝑗𝑗  � (𝑗𝑗2 𝑚𝑚2𝑗𝑗1𝑚𝑚1|𝑗𝑗𝑚𝑚)Ψ𝑚𝑚2𝑗𝑗2𝑘𝑘2
𝐴𝐴𝑘𝑘2

𝐶𝐶

 

𝑚𝑚1𝑚𝑚2

 (Λ�1) Ψ𝑚𝑚1𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶(Λ� 2)   

(14) 

The goal here is to make this expression look as the original formula of eq 8 multiplied by a phase 
factor (or, actually, to derive the expression for this phase factor). In the second part of eq 14, we 

have already inverted the order of states in the Clebsch–Gordan coefficient,(36)which gave a part of 
this factor, (−1)j1+j2+jThe remaining task is to transform individual asymmetric-top wave 

functions of each molecule. Using their definitions, eqs 6 and 7, we can write (e.g., for the molecule 
two, now in the original rotational state of the molecule one):

 

Ψ𝑚𝑚1𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶(𝜋𝜋 + 𝛼𝛼2, 𝜋𝜋 − 𝛽𝛽2 , 𝜋𝜋 − 𝛾𝛾2)

=  �2𝑗𝑗1 + 1
8𝜋𝜋2 � 𝑏𝑏𝑘𝑘1

𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶
 𝐷𝐷𝑚𝑚1𝑘𝑘1

𝑗𝑗1 (𝜋𝜋 + 𝛼𝛼2, 𝜋𝜋 − 𝛽𝛽2, 𝜋𝜋 − 𝛾𝛾2)
+𝑗𝑗1

𝑘𝑘1=−𝑗𝑗1

= �2𝑗𝑗1 + 1
8𝜋𝜋2 � 𝑏𝑏𝑘𝑘1

𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶
 (−1)𝑗𝑗1𝑘𝑘1𝐷𝐷𝑚𝑚1−𝑘𝑘1

𝑗𝑗1 (𝛼𝛼2, 𝛽𝛽2, 𝛾𝛾2)
+𝑗𝑗1

𝑘𝑘1=−𝑗𝑗1

=  (−1)𝑗𝑗1�2𝑗𝑗1 + 1
8𝜋𝜋2 � (−1)𝑘𝑘1𝑏𝑏𝑘𝑘1

𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶
 𝐷𝐷𝑚𝑚1−𝑘𝑘1

𝑗𝑗1 (𝛼𝛼2, 𝛽𝛽2, 𝛾𝛾2)
+𝑗𝑗1

𝑘𝑘1=−𝑗𝑗1

 

(15) 

Here we not only used a property of the Wigner D-function,(36) which gave the factor of 
(−1)j1+k1 but also swapped D-functions with positive and negative values of Λ = (α, β, γ). The same 
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considerations were applied to the wave function of molecule one (in the original state of molecule 
two), which gave the factor (−1)j2+k2. 

Note that a product of (−1)j1 and (−1)j2 obtained in eq 15 multiplied by the factor 
(−1)j1+j2+jobtained in eq 14 gives simply (−1)j, just as in our previous work on diatomic–diatomic 
scattering.(29) The factors (−1)k1 and (−1)k2 disappear if we split the total sum over k into two, 
one of which includes only the terms with even values of k (both positive and negative) including 
zero, while the other includes only the terms with odd values of k, namely, from eq 15: 

 

 
Ψ𝑚𝑚1𝑗𝑗1𝑘𝑘1

𝐴𝐴𝑘𝑘1
𝐶𝐶(Λ2)

= �2𝑗𝑗1 + 1
8𝜋𝜋2 ( �  

 

even 𝑘𝑘1

𝑏𝑏𝑘𝑘1

𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶
 𝐷𝐷𝑚𝑚1−𝑘𝑘1

𝑗𝑗1 (Λ2)  

−  �  
 

odd 𝑘𝑘1

𝑏𝑏𝑘𝑘1

𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶
 𝐷𝐷𝑚𝑚1−𝑘𝑘1

𝑗𝑗1 (Λ2) 

(16) 

The overall range of k1-values is still −j1 ≤ k1 ≤ +j1 and is similar for the other molecule. 
Importantly, as it is shown in Appendix C, no rotational states of the asymmetric-top rotor include 
both even and odd k1-values in the expansion (i.e., even and odd k1-values do not mix). Some states, 
called para-states, are described by the first sum in eq 16, while other states, called ortho-states, are 
described by the second sum in eq 16, which permits us to simplify it as follows: 

 

Ψ
𝑚𝑚1𝑗𝑗1𝑘𝑘1

𝐴𝐴𝑘𝑘1
𝐶𝐶

𝑝𝑝
𝑜𝑜� (Λ2) =  (−1)𝜅𝜅1�

2𝑗𝑗1 + 1
8𝜋𝜋2 � 𝑏𝑏𝑘𝑘1

𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶

 𝐷𝐷𝑚𝑚1−𝑘𝑘1

𝑗𝑗1 (Λ2)

 

𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛/𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘1

 

 

(17) 

The value of κ1 = 0 is taken simultaneously with even k1-values for para-states, while κ1 = 1 is 
taken with odd k1-values for ortho-states and is similar for the other molecule. 

Moreover, as it is also shown in Appendix C, the coefficients of expansion obey the following 
property: bk1j1k1Ak1C = p1b–k1j1k1Ak1C (for all values of k1 in the range −j1 ≤ k1 ≤ +j1), where p1 = ±1 
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determines the inversion parity of the rotational states of the molecule. This is equivalent to 
paring D-functions with different signs of k1 into new basis functions of positive and negative 
parity: 

 

Ψ
𝑚𝑚1𝑗𝑗1𝑘𝑘1

𝐴𝐴𝑘𝑘1
𝐶𝐶

𝑝𝑝
𝑜𝑜� (Λ2)

=  (−1)𝜅𝜅1�
2𝑗𝑗1 + 1

8𝜋𝜋2 � 𝑏𝑏𝑘𝑘1

𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶

  (𝐷𝐷𝑚𝑚1−𝑘𝑘1

𝑗𝑗1 (Λ2)
 

𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛/𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘1≥0

± 𝐷𝐷𝑚𝑚1,𝑘𝑘1

𝑗𝑗1 (Λ2))

=  (−1)𝜅𝜅1𝑃𝑃1�
2𝑗𝑗1 + 1

8𝜋𝜋2 � 𝑏𝑏𝑘𝑘1

𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶

 (𝐷𝐷𝑚𝑚1−1

𝑗𝑗1 (Λ2)
 

𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛/𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘1≥0

± 𝐷𝐷𝑚𝑚1,−𝑘𝑘1

𝑗𝑗1 (Λ2)) =  (−1)𝜅𝜅1𝑝𝑝1 Ψ
𝑚𝑚1𝑗𝑗1𝑘𝑘1

𝐴𝐴𝑘𝑘1
𝐶𝐶

𝑝𝑝
𝑜𝑜� (Λ2)  

(18) 

Note that here the range of k1-values is reduced to non-negative values only, just 0 ≤ k1 ≤ j1, and is 
similar for the other molecule. 

Overall, we can write for the wave function of two swapped molecules: 

 

Φ𝑚𝑚𝑛𝑛(Λ1, Λ2) =  (−1)𝑗𝑗(−1)𝜅𝜅1+𝜅𝜅2  𝑝𝑝1𝑝𝑝2  

  



� (𝑗𝑗1𝑚𝑚1𝑗𝑗2𝑚𝑚2|𝑗𝑗𝑚𝑚)
 

𝑚𝑚1𝑚𝑚2

 Ψ𝑚𝑚2𝑗𝑗2𝑘𝑘2
𝐴𝐴𝑘𝑘2

𝐶𝐶
±𝑝𝑝/𝑜𝑜  (Λ1) Ψ𝑚𝑚1𝑗𝑗1𝑘𝑘1

𝐴𝐴𝑘𝑘1
𝐶𝐶

±𝑝𝑝/𝑜𝑜  (Λ2)    

(19) 

Note that in eqs 18 and 19, we introduced new notation to label the molecular eigenstates of the 
given parity, Ψ±(Λ). These can also be used for the original wave functions (before the swap), since 
the property bk1j1k1Ak1C = p1b–k1j1k1Ak1C is valid in either case: 

 

Ψ𝑚𝑚1𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶
±𝑝𝑝/𝑜𝑜 (Λ1)

= �
2𝑗𝑗1 + 1

8𝜋𝜋2 � 𝑏𝑏𝑘𝑘1

𝑗𝑗1𝑘𝑘1
𝐴𝐴𝑘𝑘1

𝐶𝐶

  (𝐷𝐷𝑚𝑚1𝑘𝑘1

𝑗𝑗1 (Λ1)
 

𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛/𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘1≥0

± 𝐷𝐷𝑚𝑚1,−𝑘𝑘1

𝑗𝑗1 (Λ1)) 

 

(20) 

A similar expression is shown for molecule two. It should be stressed that the para-/ortho-states 
(with respect to the values of k in the basis) and the states of two parities (with respect to 
inversion) occur in any asymmetric-top molecule, not just in water, and irrespective of the process 
of collision with any given partner (e.g., in the absence of any collision partner). 

Finally, the symmetrized overall wave function of the system of two molecules can be written as 
positive or negative superposition of the original and swapped wave functions: 
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Φ𝑚𝑚𝑛𝑛
±   (Λ1, Λ2)  =

Φ𝑚𝑚𝑛𝑛(Λ1, Λ2)  ± Φ� 𝑚𝑚𝑛𝑛(Λ1, Λ2)
�2(1 +  δ12)

=
Φ𝑚𝑚𝑛𝑛(Λ1, Λ2)  ± (−1)𝑗𝑗(−1)𝜅𝜅1 + 𝜅𝜅2 𝑝𝑝1𝑝𝑝2 Φ𝑚𝑚𝑛𝑛𝑚(Λ1, Λ2)

�2(1 +  δ12)
 

=  
1

�2(1 + δ12)
 (Φ𝑚𝑚𝑛𝑛(Λ1, Λ2) ± 𝑝𝑝Φ𝑚𝑚𝑛𝑛𝑚(Λ1, Λ2)) 

(21) 

Here ñ = {jn2n1}, where particles one and two have been swapped. We also introduced the total 
inversion parity of the overall wave function of two molecules as p = ±(−1)j(−1)κ1+κ2p1p2. The 
normalization coefficient includes the Kronecker symbol for the states of two molecules: δ12 = 
δj1k1Ak1C,j2k2Ak2C. One can see that many combinations of the para- and ortho-states of both parities 
of the two molecules are possible. The next section discusses which state-to-state transitions are 
allowed/forbidden and what are the corresponding matrix elements. 

II-E Transitions in the Case of Identical Particles 
The exchange parity of the overall wave function of the two-molecule system is very handy because 
it appears that state-to-state transitions n → n′ are allowed only between states of the same parity, 
which restricts the values of the final quantum numbers n = {jn1n2} for a chosen initial state n′ = 
{j′n1′n2′}, for every value of m. Let us demonstrate this. Consider the matrix element where 
exchange parities are the same (both are positive, or both are negative): 

 



𝑀𝑀𝑛𝑛
𝑛𝑛(±)(𝑅𝑅) =  ⟨Φ𝑚𝑚𝑛𝑛

±  (Λ1, Λ2)|𝑉𝑉(𝑅𝑅 , Λ1, Λ2)|Φ𝑚𝑚𝑛𝑛;
±  (Λ1, Λ2)⟩

=  ⟨
Φ𝑚𝑚𝑛𝑛(Λ1, Λ2)  ± Φ𝑚𝑚𝑛𝑛(Λ1, Λ2)

�2(1 +  δ12)
  |𝑉𝑉 (𝑅𝑅 , Λ1, Λ2)|

Φ𝑚𝑚𝑚𝑚′(Λ1, Λ2)  ±  Φ𝑚𝑚𝑚𝑚′(Λ1, Λ2)
�2(1 + δ′

12)
 ⟩

=   
1 

2�(1 + δ′
12)(1 + δ12)

 (Φ𝑚𝑚𝑛𝑛(Λ1, Λ2) |𝑉𝑉 (𝑅𝑅 , Λ1, Λ2)||Φ𝑚𝑚𝑛𝑛′(Λ1, Λ2)⟩

+ ⟨Φ� 𝑚𝑚𝑛𝑛
  (Λ1, Λ2)|𝑉𝑉(𝑅𝑅 , Λ1, Λ2)|Φ� 𝑚𝑚𝑛𝑛;

  (Λ1, Λ2)⟩
± ⟨Φ𝑚𝑚𝑛𝑛

  (Λ1, Λ2)|𝑉𝑉(𝑅𝑅 , Λ1, Λ2)|Φ𝑚𝑚𝑛𝑛;
  (Λ1, Λ2)⟩

± ⟨Φ� 𝑚𝑚𝑛𝑛
  (Λ1, Λ2)|𝑉𝑉(𝑅𝑅 , Λ1, Λ2)|Φ𝑚𝑚𝑛𝑛;

  (Λ1, Λ2)⟩) 

(22) 

The next step is to take into account that with our choice of coordinates the value of the potential 
does not change under the swap of two molecules. (Note that this is not necessarily the case with 
other choices of coordinates, see Appendix A.) So, using V(R,Λ1,Λ2) = V(R,Λ� 2,Λ� 1) and Φ� mn(Λ1,Λ2) = 
Φmn(Λ� 2,Λ� 1) = pΦmñ(Λ1,Λ2), eq 19, we can group terms in the previous expression as follows: 

 

𝑀𝑀𝑛𝑛′
𝑛𝑛(±)(𝑅𝑅)

=  
1

2�(1 + δ′
12)(1 +  δ12)

 (⟨Φ𝑚𝑚𝑛𝑛(Λ1, Λ2))|𝑉𝑉(𝑅𝑅 , Λ1, Λ2)|Φ𝑚𝑚𝑚𝑚′(Λ1, Λ2)⟩2

+ ⟨Φ𝑚𝑚𝑛𝑛(Λ� 2 , Λ� 1)|𝑉𝑉(𝑅𝑅 , Λ� 2 , Λ� 1)|Φ𝑚𝑚𝑛𝑛′(Λ� 2 , Λ� 1)⟩
±  𝑝𝑝′⟨Φ𝑚𝑚𝑛𝑛(Λ1, Λ2)|𝑉𝑉(𝑅𝑅 , Λ1, Λ2)|Φ𝑚𝑚𝑛𝑛�′(Λ1, Λ2)⟩
±   𝑝𝑝′⟨Φ𝑚𝑚𝑛𝑛(Λ� 2 , Λ� 1)|𝑉𝑉(𝑅𝑅 , Λ� 2 , Λ� 1)|Φ𝑚𝑚𝑛𝑛�′(Λ� 2 , Λ� 1)⟩)

=  
1

2�(1 + δ′
12)(1 +  δ12)

 (⟨Φ𝑚𝑚𝑛𝑛(Λ1, Λ2))|𝑉𝑉(𝑅𝑅 , Λ1, Λ2)|Φ𝑚𝑚𝑛𝑛′(Λ1, Λ2)⟩

±  𝑝𝑝′⟨Φ𝑚𝑚𝑛𝑛(Λ1, Λ2)|𝑉𝑉(𝑅𝑅 , Λ1, Λ2)|Φ𝑚𝑚𝑛𝑛�′(Λ1, Λ2)⟩) 
(23) 
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where state ñ′ = {j′n2′n1′} is obtained from n′ = {j′n1′n2′} by swapping particles one and two. 

Note that in eq 23, we employed the following properties: 

 

⟨Φ𝑚𝑚𝑛𝑛(Λ1, Λ2)|𝑉𝑉(𝑅𝑅 , Λ1, Λ2)|𝛷𝛷𝑚𝑚𝑚𝑚′(Λ1, Λ2)⟩
=  ⟨Φ𝑚𝑚𝑛𝑛(Λ� 2 , Λ� 1)|𝑉𝑉(𝑅𝑅 , Λ� 2 , Λ� 1)|Φ𝑚𝑚𝑛𝑛′(Λ� 2 , Λ� 1)⟩ 

⟨Φ𝑚𝑚𝑛𝑛(Λ1, Λ2)|𝑉𝑉(𝑅𝑅 , Λ1, Λ2)|Φ𝑚𝑚𝑛𝑛�′(Λ1, Λ2)⟩
=  ⟨Φ𝑚𝑚𝑛𝑛(Λ� 2 , Λ� 1)|𝑉𝑉(𝑅𝑅 , Λ� 2 , Λ� 1)|Φ𝑚𝑚𝑛𝑛�′(𝛬𝛬𝑚 2, 𝛬𝛬𝑚1)⟩ 

(24) 

One can compute nonzero matrix elements using eq 23 directly, building the basis of symmetrized 
functions. Alternatively, if the total state-to-state transition matrix (without taking into account the 
exchange symmetry) is computed as outlined in section II-C and Appendix B, then the symmetrized 
matrix element for states of given parity can be easily constructed by superposition: 

 

𝑀𝑀𝑛𝑛′
𝑛𝑛(±) = �𝑀𝑀𝑛𝑛′

𝑛𝑛 ± 𝑝𝑝′𝑀𝑀𝑛𝑛�′
𝑛𝑛 ��(1 + δ12)(1 +  δ′

12) 

(25) 

It is possible to show that when the parities are different for the initial and the final states of the 
system, the matrix element is zero: 
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𝑀𝑀𝑛𝑛′
𝑛𝑛(±)   =  ⟨Φ𝑚𝑚𝑛𝑛

±  (Λ1 , Λ2 )|𝑉𝑉(𝑅𝑅, Λ1 , Λ2 )|Φ𝑚𝑚𝑛𝑛′
∓  (Λ1 , Λ2)⟩

=
1

2�(1 + δ′
12)(1 + δ12)

  (⟨Φ𝑚𝑚𝑛𝑛(Λ1 , Λ2)|𝑉𝑉(𝑅𝑅, )|Φ𝑚𝑚𝑛𝑛′(Λ1 , Λ2)⟩

−  ⟨Φ𝑚𝑚𝑛𝑛(�̃�𝛬2 , �̃�𝛬1)|𝑉𝑉(𝑅𝑅 , �̃�𝛬2 , �̃�𝛬1)|Φ𝑚𝑚𝑛𝑛′(�̃�𝛬2 , �̃�𝛬1)⟩
±  𝑝𝑝′⟨Φ𝑚𝑚𝑛𝑛(𝛬𝛬1, 𝛬𝛬2)|𝑉𝑉(𝑅𝑅 , 𝛬𝛬1, 𝛬𝛬2)|Φ𝑚𝑚𝑛𝑛�′(𝛬𝛬1, 𝛬𝛬2)⟩
∓   𝑝𝑝′⟨Φ𝑚𝑚𝑛𝑛(�̃�𝛬2 , �̃�𝛬1)|𝑉𝑉(𝑅𝑅 , �̃�𝛬2 , �̃�𝛬1)|Φ𝑚𝑚𝑛𝑛�′(�̃�𝛬2 , �̃�𝛬1)⟩)  =   0 

(26) 

II-F Effect of Potential Symmetry for H2O Molecules 
Several properties of the potential energy surface expansion coefficients in eq 11 are worth 
mentioning:(37, 38) 

 

𝑉𝑉𝑙𝑙1𝜂𝜂1𝑙𝑙2𝜂𝜂2𝑙𝑙  =  (−1)𝑙𝑙1+𝑙𝑙2  𝑉𝑉𝑙𝑙2𝜂𝜂2𝑙𝑙1𝜂𝜂1𝑙𝑙 
(27) 

 

𝑉𝑉𝑙𝑙1𝜂𝜂1𝑙𝑙2𝜂𝜂2𝑙𝑙  =  (−1)𝑙𝑙1+𝑛𝑛1+𝑙𝑙2+𝑛𝑛2+𝑙𝑙  𝑉𝑉𝑙𝑙1−𝜂𝜂2𝑙𝑙2−𝜂𝜂2𝑙𝑙  

(28) 

 

 

𝑉𝑉𝑙𝑙1𝜂𝜂1𝑙𝑙2𝜂𝜂2𝑙𝑙  =  0 for odd 𝜂𝜂1,2 
 

(29) 

The first of these is related to the fact that two collision partners are identical and swapping them 
does not change the potential energy. The meaning of the second is that the potential should remain 
the same under simultaneous inversion of both molecules. The third reflects the C2v symmetry of 
each water molecule. 

In our calculations reported in the next section, we included in the expansion of eq 11 all terms 
with l ≤ 6.(37, 38) This is, roughly, 2000 terms total in the PES expansion. Using the properties 
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of eqs 25 and 26, this number is reduced to just 254 nonzero and unique terms, with l1,2 ≤ 6 and 
even values of η1,2. 

III Results 
III-A Properties of Potential and Matrix Elements 
It is expected that a system of two polar water molecules would exhibit a rather strong long-range 
dipole–dipole interaction. This property of the potential energy surface becomes clear if we analyze 
the behavior of the expansion coefficients Vl1η1l2η2l(R) in eq 11, as a function of molecule–molecule 
distance R. The expansion coefficients have been computed numerically by projecting the original 
potential on the set of real functions from eq 12. The integration has been performed on a five-
dimensional Gauss–Legendre quadrature point grid, where the size of the grid has been defined by 
convergence studies and set to 20 for integration along each Euler angle. Several most important 
coefficients are presented in Figure 2, labeled by five numbers: l1η1l2η2l. Recall that η1 and η2 are 
even, while l1 and l2 are such that |l1 – l2| ≤ l ≤ l1 + l2. The dipole–dipole interaction term 
corresponds to l1 = l2 = 1 (l = 2 and η1 = η2 = 0); so, it is labeled by 10102. From Figure 2 we see 
that this term is negative and large. At a distance of R = 20 a0 (about 10 Å), its value is about −2.7 
kcal/mol. At a distance of R = 40 a0, its value is still non-negligible, about −0.34 kcal/mol. We 
checked and found that in the asymptotic range the expected dipole–dipole behavior, V10102 ∼ 1/R3, 
is well satisfied. Interestingly, from Figure 2 we see that the magnitude of V10102 is larger than that 
of the isotropic (elastic scattering) term V00000, through the entire relevant range of distances R. The 
well depth of V00000 is about 30 kcal/mol, with a minimum energy point located near R ∼ 6.5 a0. 

 

Figure 2. Expansion coefficients, as a function of molecule–molecule distance, for the potential 
energy surface of the water–water system represented by eq 11. The six most important terms are 
shown. Labels include five indices: l1η1l2η2l. The curves are color-coded, accordingly. Note that the 
dipole–dipole interaction term (black) exceeds the elastic scattering term (green), at all relevant 
distances. 

Several other most important dipole-like (l1 = 1) and quadrupole-like (l1 = 2) terms are also 
presented in Figure 2. They all are smaller than the dipole–dipole term V10102 and vanish faster as 
the molecule–molecule separation increases. Still, some of them are comparable in magnitude to 
the elastic term V00000. This means that the PES is highly anisotropic, even at large distances. The 
data file with R-dependence of 254 expansion coefficients we used in this work is included in 
the Supporting Information. 
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As we are going to demonstrate below, one important consequence of the long-range anisotropy of 
the PES is that scattering calculations for the water–water system must start from very large initial 
molecule–molecule distances and must include very large values of the impact parameter. Of 
course, these numbers depend somewhat on collision energy, but in any case are unusually large. 
For example, for a collision energy of E = 1500 cm–1 we had to take Rmax ∼ 100 a0 and bmax ∼ 30 a0 in 
order to guarantee convergence of integral inelastic scattering cross sections (for excitation of 
several lower lying states, starting from the ground state of the system) within 0.5%. The situation 
is even worse for the elastic scattering channels (see below), where accurate treatment of the 
scattering phase in the asymptotic range is essential for convergence. 

Dominance of the dipole–dipole interaction is further reflected by state-to-state transition matrix 
elements Mn′n(±), computed as outlined in section II and Appendix B. Here it becomes convenient to 
switch from state labeling employed above (n1 = {j1k1Ak1C}, n2 = {j2k2Ak2C}, and n = {jn1n2}) to the 
standard labeling that uses subscripts: j1k1Ak1Cj2k2Ak2C(jm). For example, the ground states of two 
molecules are labeled as 000 and 000, which gives total j = 0 and m = 0 or if we combine everything, 
000000(00). 

Now consider the excitation of the state 111 in one of two (identical) molecules. Since |j1 – j2| 
≤ j ≤ j1 + j2 we have to include, into the basis set expansion of eq 8, the excited total j = 1 with its 
associated states m = 0, ±1. Since the initial state 000000(00) has m = 0 and since matrix Mn′n(±) is 
diagonal in m, we obtain a nonzero transition element only for the final state 111000(10). However, 
the final states with m = ±1 will receive population from the state with m= 0 due to the Coriolis 
coupling effect, Δm = ±1; see eq 4. Thus, we have to include the elastic (diagonal) matrix 
elements Mn′n(±) for these states as well, namely, 111000(11). Note that the value of the matrix 
element is the same for positive and negative values of projection m of the total j. 

Similarly, for excitation of the state 111 in both molecules, we include total j = 0, 1, and 2. If the 
initial state is the ground state with m = 0, then nonzero transition matrix elements Mn′n(±), due to 
potential coupling, should be included just for the following states (all with final m = 0): 111111(00), 
111111(10), and 111111(20). Coriolis coupling then would populate 111111(11), 111111(21), and finally 
111111(22). 

Next, for the excitation of state 202 in one molecule only, the state 202000(20) will have nonzero 
transition matrix elements Mn′n(±) due to potential coupling. State 202000(21) and eventually 
202000(22) would be populated by Coriolis coupling and so on. In Figure 3 we not only present 
matrix elements, as a function of R, for state-to-state transitions from the ground state of the system 
000000(00) to several most important excited states of positive exchange parity but also the diagonal 
matrix elements for those excited states, important for the elastic scattering processes. The dipole–
dipole interaction manifests here, first of all, through the largest matrix element for excitation of the 
state 111111(20), starting from the ground state 000000(00). The value of this matrix element decays 
slowly at large distances (lower black curve in Figure 3). For example, at R = 20 a0 its value is still 
significant, about −12 cm–1. Even a distance of R = 40 a0 it is still non-negligible, about −1.5 cm–1. 
Another consequence of a large dipole–dipole interaction term is that the values of diagonal matrix 
elements for the elastic scattering of the states 111000(10) and 111000(11) are also large and decay 
slowly (two red curves in Figure 3). Indeed, the direct effect of the dipole–dipole potential 
term V10102 on the states 111000 can be explicitly demonstrated analytically using eqs 11 and 25. 
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Figure 3. State-to-state transition matrix elements as a function of water–water distance R. Black 
curves correspond to transitions from the ground state 000000(00) to the following final states 
(including the elastic channel): 000000(00), 111000(10), 111111(20), and 202000(20). Orange curves, 
upper and lower, correspond to elastic scattering for 111000(10) and 111000(11) states, respectively. 
The blue curve is for the elastic scattering off the state 202000(20). Dashed green and magenta 
curves are for the elastic scattering off states 111111(20) and 111111(21), respectively (note that they 
nearly coincide with the elastic 000000term). 

Thus, in the following sections the focus is on the inelastic transition to the 111111 state (from the 
ground state 000000) and on elastic scattering off 111000, since both processes are driven by strong 
dipole–dipole components of the interaction potential. 

III-B Inelastic Scattering Off the Ground State 
Within the MQCT framework and using the potential expansion outlined above, we carried out 
inelastic scattering calculations for the water–water system. Sampling of the initial conditions for 
collision, propagation of the mixed quantum/classical trajectories, calculations of the final 
transition probabilities, state-to-state cross sections, and channel-to-channel cross sections 
(summed over the final and averaged over the initial degenerate states) follow the procedures 
outlined in our earlier papers(27-29) and will not be reviewed again for the purpose of brevity. 

Here we only consider excitation of the ground state 000000. Since initially the internal rotational 
angular momentum is null (j = 0 and m = 0), the value of orbital angular momentum l (treated 
classically within the MQCT) is equal to the grand angular momentum J of the system. Its maximum 
value Jmax is a convergence parameter in the MQCT calculations, just as in the full-quantum 
scattering calculations. The value of Jmax (and 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚) depends somewhat on collision energy. For 
example, at E = 500, 1500, and 5000 cm–1 we used Jmax= 380, 660, and 1100, respectively. These 
numbers are rather large, by quantum mechanical standards. They reflect a rather heavy reduced 
mass of the system, and a long-range nature of the dipole–dipole interaction. In practice, instead of 
energy-dependent Jmax, it is more convenient to specify the maximum value of the impact 
parameter bmax, since it is basically independent of collision energy (just weakly dependent in the 
considered energy range). As mentioned in the previous section, the value bmax ∼ 30 a0 was used 
(together with Rmax ∼ 100 a0). 

Another convergence parameter of the MQCT calculations is the number of trajectories used to 
sample orbital angular momentum in the range from 𝑙𝑙 =  0 (head-on collision, back scattering) 
to 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 (forward scattering in the asymptotic range with vanishing transition probability). Here the 
relevant range of 𝑙𝑙 as sampled continuously (noninteger values) and uniformly (using an 
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equidistant grid of points in the range 0 ≤  𝑙𝑙 ≤  𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚). These values of 𝑙𝑙 define initial conditions for 
a batch of independent MQCT trajectories. We found that 60 trajectories were typically sufficient to 
represent relatively smooth opacity functions in the considered energy range. Figure 4 gives an 
example of opacity functions (transition cross section vs impact parameter) for the dipole-driven 
transition 000000 → 111111 at collision energy of E = 1500 cm–1. Note that our opacity functions 
include a factor of (2J + 1) for each trajectory, to properly reflect the importance of the process in 
the overall cross section. The results of two calculations are presented in Figure 4, one obtained 
with Rmax = 50 a0 and the other with Rmax= 100 a0. This emphasizes that due to the long-range 
dipole–dipole interaction the initial value of the molecule–molecule distance in scattering 
calculations must be rather large in order to obtain well converged results. A seemingly large value 
of Rmax = 50 a0 appears to be insufficient, since it not only leads to nonzero transition probability at 
large impact parameters but also to some deviations of the transition probability in the entire range 
of impact parameters. The value of Rmax = 100 a0 is large enough. The difference of integral inelastic 
cross sections in these two cases is close to 5%. 

 

Figure 4. Demonstration of the effect of long-range dipole–dipole interaction onto the opacity 
function for excitation of 111111 (starting from the ground state 000000) through the choice of the 
initial value of the molecule–molecule distance Rmax for scattering calculations. A seemingly large 
value of Rmax = 50 a0 appears to be insufficient, since it not only leads to nonzero transition 
probability at large impact parameters but also to some deviations of the transition probability in 
the entire range of impact parameters. The value of Rmax = 100 a0 is large enough for the 
description of H2O + H2O. 

Figure 5 represents examples of the opacity functions for three important transitions at various 
collision energies. The upper frame corresponds to the dipole-driven transition 000000→ 111111. The 
second frame corresponds to the excitation of 202000, which (mostly) receives its population 
indirectly through the state 111111. The lower frame corresponds to the excitation of 111000, which 
can be characterized as a nondipole driven and thus is much weaker. Different curves in each frame 
show how the opacity function evolves as collision energy is changed. Here one can identify, very 
clearly, a presence of two scattering regimes. One corresponds to lower collision energies and 
lower impact parameters (e.g., E ∼ 1000 cm–1 and 4 ≤ b ≤ 7 a0). This is a typical behavior seen in 
many inelastic scattering calculations in the past, on many molecules, but in addition to this, the 
dipole-driven transition to 111111 demonstrates very large probabilities at high collision energies 
and large impact parameters, simultaneously (e.g., E ∼ 10 000 cm–1 and b ∼ 13 a0). The same effect 
translates into a consecutive excitation of 202000 (from 111111). This interesting feature is not typical 
and is the result of a long-range rather strong dipole–dipole interaction. 

https://pubs.acs.org/doi/10.1021/acs.jpca.7b03554#fig4
https://pubs.acs.org/doi/10.1021/acs.jpca.7b03554#fig4
https://pubs.acs.org/doi/10.1021/acs.jpca.7b03554#fig5


 

Figure 5. Opacity functions for three inelastic scattering processes, starting from the ground state 
000000. Collision energies are indicated in the figure. Three frames correspond to the following final 
states of H2O + H2O: (a) 111111, (b) 202000, and (c) 111000. See text for discussion. 

The last convergence parameter in the MQCT calculations is the number of internal rotational states 
in the basis set. Here we included all states with j1 ≤ 6, j2 ≤ 6, and j ≤ 8 such that |j1 – j2| ≤ j ≤ j1 + j2. 
All nondegenerate components {k1Ak1C} and {k2Ak2C} of these j1 and j2 states were included, which 
resulted in 132 nondegenerate levels, or scattering channels, all listed in the Supporting 
Information. Energies of these levels cover confidently the range up to 700 cm–1, and some of them 
reach 990 cm–1. With this basis set, cross sections for excitations of 15 lower energy channels are 
converged within 5%, for collision energy E = 1500 cm–1. For lower scattering energies, this basis 
set is certainly sufficient, but even for higher scattering energies (here we considered up to 10 000 
cm–1), the upper states of the basis receive very little populations, which means that results remain 
reasonably accurate (conservative estimate is within 10–15%). Note that we carried out the fully 
coupled version of the MQCT calculations, without the CS approximation (see eq 5 and the 
discussion just below it), including explicitly all degenerate components m of considered j ≤ 8 
states, which resulted in 5932 states total in our calculations. 
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In Figure 6 we plotted inelastic scattering cross sections as a function of collisional energy in the 
range from 100 to 10 000 cm–1 for the 15 most important excited states. Figure 6a shows data for 
the excitation of five lower lying rotational states: 111000, 111111, 202000, 211000, and 220000, 
whereas Figure 6b shows the data for the remaining 10 states (all of them are labeled; all data are 
available in the Supporting Information). The range of confident prediction is to the right of the 
dashed line. For collision energies 500 ≤ E ≤ 1500 cm–1, cross sections are converged within 5% 
and within 10–15% in the range 1500 ≤ E ≤ 10 000 cm–1. 

 

Figure 6. Inelastic scattering cross section as a function of collisional energy for H2O + H2O. All 
curves correspond to the excitation from the ground state 000000. The region to the left of the 
dashed line is found to contain scattering resonances, not treated here. The effect of orbiting 
trajectories is shown by dashed lines (see text for details). Frame a shows the excitation of five 
lower energy states. Frame b shows the excitation of the other 10 most important states. 
Convergence is within 5% for energies up to 1500 cm–1 and is within 10–15% at higher energies. 

At collision energies E < 500 cm–1, to the left from the dashed line, we observed many orbiting 
trajectories, which is a vestige of quantum scattering resonances. It is not yet clear how to treat 
these cases. We removed orbiting trajectories if they make more than three loops to obtain 
nonresonant contribution to inelastic cross section. In the energy range where resonances are 
present, such data give nonresonant background of the overall energy dependence of a cross 
section. In Figure 6 these data are plotted by solid curves. They drop fast as the collision energy is 
decreased below 500 cm–1 because the number of orbiting trajectories in the batch also increases as 
the collision energy is reduced. For example, at energies E ∼ 200 cm–1 close to 30% of trajectories in 
the batch describe orbiting. As an experiment, we tried to stop orbiting trajectories after one period 
of rotation (roughly) and include them in the analysis. The resultant cross sections were 
significantly larger, compared to the nonresonant background, as shown in Figure 6 by dashed 
lines. A good recipe for analysis or resonant/orbiting trajectories within MQCT is yet to be found. At 
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the present time, the range of confident MQCT predictions is restricted to higher collision 
energies, E > 500 cm–1. Hopefully, the full-quantum scattering calculations are affordable at lower 
energies and could be done 1 day for E < 500 cm–1. It would be interesting to compare those with 
our MQCT predictions at the matching point, somewhere near E ∼ 500 cm–1. It is likely that better 
understanding of orbiting trajectories, and their ties to scattering resonances, should be explored 
using simpler systems, such as H2O + He,(25) where broad isolated scattering resonances have 
been identified by the full-quantum calculations at low scattering energies. 

High-energy behavior of the dipole–dipole driven excitation of the state 111111, seen in Figure 6a, is 
quite surprising. One could expect that at higher collision energies the process of scattering is 
dominated by the repulsive short-range interaction and is limited to relatively small impact 
parameters. Normally, the long-range (usually weak and attractive) interaction dominates at low 
collision energies and large impact parameters. What we see here is neither case: the dipole-driven 
transition to 111111 is more intense at higher collision energies (see Figure 6a) and occurs mostly at 
large impact parameters (see Figure 5a). An explanation is found in Figures 2 and 3, where we see 
that although the dipole–dipole term is indeed a long-range, it is not weak at all and, of course, is 
not purely attractive (it is anisotropic). This term contributes to the repulsive part of potential too 
and dominates scattering for all collision energies, and all impact parameters, in a somewhat 
unexpected way. As collision energy is increased from E = 1000 to 10 000 cm–1, the cross section 
for the excitation of 111111increases by an order of magnitude and still keeps growing. The 
excitation of state 202000follows a similar trend, since it is populated through 111111. This is one 
interesting finding of this work, which may have important implications for the analysis of the 
nonequilibrium population of the rotational states of water (end emission of those) in astrophysical 
environments, such as star-forming regions,(41, 42) protostellar discs,(43-45) or cometary 
comas.(32, 33) This aspect is also interesting mechanistically, since very few quantum scattering 
calculations of the dipole–dipole driven transitions are available at this point and are typically at 
lower collision energies.(46-48) 

It is probably true to say that the full quantum scattering calculations for the H2O + H2O system will 
be very expensive. One way to make those more affordable is to use the coupled-states (CS) 
approximation, which neglects the Coriolis coupling effect, but the accuracy of this approach is 
often hard to guarantee. Thus, we decided to test the accuracy of the CS-approach for H2O + H2O, 
relative to the fully coupled CC-approach, all within the MQCT framework. Figure 7 gives a 
comparison of the results obtained using the CC and CS methods. Typically, results of the 
approximate CS method deviate from the accurate CC method at low collision energies but converge 
to them at higher collision energies. The reason for this is that at low scattering energies the long-
range interaction dominates (large impact parameter) and the Coriolis coupling is important, while 
at higher energies, the short-range interaction dominates (small impact parameters) and the 
Coriolis coupling is minor. What we see in Figure 7 is different. The results of two methods are in 
reasonable qualitative agreement within an order of magnitude, but there is no monotonic 
convergence of CS (dashed lines) toward CC (solid lines of the same color). Agreement is the best 
for excitation of states 111111, 202000, and 211000, particularly at collision energies below 1000 cm–1, 
where the differences are on the order of 30–50%. However, at higher collision energies the 
difference increases, reaching 200% (a factor of 2). This can be explained by the fact that for the 
H2O + H2O system large impact parameters remain important even at higher collision energies (due 
to dipole–dipole interaction, see Figure 5); thus, the Coriolis coupling is never minor. Larger 
differences seen for excitation of the state 211000 have a different nature (specific to the MQCT 
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method itself rather than to the CS-approximation). Overall, our conclusion here is that the CS 
approximation can be used only for a semiquantitative estimate of scattering cross sections, if the 
accuracy in the range of the factor of 2 is sufficient. 

 

Figure 7. Test of the CS-approximation (dashed lines) relative to the fully coupled CC results (solid 
lines of the same color), all within the MQCT framework. Cross sections are shown for excitation of 
the same five states as in Figure 6a, starting from the ground state 000000. The same colors are used 
as in Figure 6a, but the collision energy (horizontal) is plotted using the log scale. 

III-C Most Important Elastic Scattering Channels 
As it was emphasized in the past publications,(22, 23, 28) it is possible to restore the scattering 
phase within the MQCT approach, which enables rigorous calculations of differential cross sections, 
including that for the elastic scattering channel (impossible within the classical trajectory method). 
In Figure 8, we report the differential cross section for the elastic scattering off the ground state 
000000 of the H2O + H2O system for three values of scattering energies: 800, 2500, and 9500 cm–1. 
We found that in all cases the forward scattering dominates. For scattering at 800 cm–1, the 
amplitude is significant only within the range of +0.6°. It shrinks to only +0.3° when the energy is 
raised to 9500 cm–1. 

 

Figure 8. Differential (over scattering angle) cross section for the elastic channel of the H2O + H2O 
system in the ground state 000000. Three values of collision energies are considered, as indicated in 
the picture: 800, 2500, and 9500 cm–1. 

In Figure 9, we plotted the value of the integral cross section for the elastic scattering off the ground 
state 000000 as a function of collision energy and the same moiety for the exited level 111000, which, 
as explained above, is easily populated by the intense dipole–dipole driven transitions. Recall that 
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this level contains three degenerate states of the total j = 1, those with m = 0, ±1 (see section III-A). 
Thus, we had to run two calculations: one with the initial state 111000(10) and the other with the 
initial state 111000(11). A separate calculation with m = −1 is not needed, since the results would be 
identical to that of m = +1, due to the symmetry property of the transition matrix elements. The 
total cross section is computed as a sum over the final and average over the initial degenerate 
states, as usual. 

 

Figure 9. Integral cross section as a function of collision energy for the elastic scattering of the H2O 
+ H2O system in the ground state 000000 (black) and in the excited state 111000(blue). 

Both dependencies in Figure 9 are smooth and exhibit similar behavior: the cross section 
progressively decreases as the collision energy is raised. At higher energies, the absolute value of 
the elastic cross section for the excited state 111000 is about 2 times smaller compared to that of the 
ground state 000000. This can be viewed as a symmetry effect. Namely, in contrast to the ground 
state of the system, 000000, that has only one component of positive exchange parity, the total wave 
function for the excited state 111000 contains two components according to eq 21. Since transitions 
between states of opposite exchange parities are forbidden (see eq 26, section II-E), only the states 
of one parity need to be included in the basis set and treated separately from states of opposite 
parity. The results presented here were carried out for the positive parity component only (as the 
initial state). Since for the elastic channel the final state is the same positive parity component of 
111000, such calculations account only for one-half of the (all hypothetically possible) transitions 
and predict the elastic cross section close to one-half of the total value. Calculations for the negative 
parity component of the excited state as the initial state would recover another half of the cross-
section value. 

IV Conclusions 
In this paper, we worked out the mixed quantum/classical theory for the inelastic collision of two 
asymmetric-top rotors, which is the most general case of two-body scattering. In this method, the 
state-to-state transitions between the internal rotational (or ro-vibrational) states of molecules are 
treated quantum mechanically using the time-dependent Schrodinger equation, whereas their 
relative translational motion (responsible for scattering) is treated classically using the average 
trajectory (Ehrenfest) approach. Two versions of the formula for transition matrix elements were 
presented: a straightforward approach that uses numerical multidimensional quadrature over all 
internal degrees of freedom and a (more standard) analytic approach that uses an expansion of the 
PES over the basis set of spherical harmonics. Adaptation to the case of identical-molecule 
scattering was also presented. 
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This theory was then applied to the rotational excitation of two water molecules, H2O + H2O, using 
the PES from recent literature. Properties of the expansion coefficients of the PES, and of the state-
to-state transition matrix elements, were analyzed to reveal the major features of this system, such 
as a long-range dipole–dipole interaction. Calculations of collisional excitation from the ground 
state of the system, 000000, into a number of low-lying excited rotational states were carried out in a 
broad range of energies, up to 10 000 cm–1. Analysis of computed opacity functions showed a rather 
unusual scattering regime, dominated by a strong anisotropic long-range interaction (dipole–
dipole). Several most important dipole-driven transitions were identified and discussed in detail. 
The coupled-states approximation was tested and found to agree semiquantitatively (within a 
factor of 2) with the fully coupled version of the method. Differential cross sections for the elastic 
scattering were computed for several collision energies and found to have a very narrow forward 
scattering peak. 

The computer program written for this work is now being packaged into a user-friendly suite and 
will be made available for the community as a part of a forthcoming publication: Semenov, A.; 
Babikov, D. “MQCT. II. User-Ready Program for Calculations of Inelastic Scattering of Two 
Molecules”, which we announce here. It is being designed to have an interface similar to that of 
MOLSCAT, such as simple input files and the same way of feeding into the PES. 

Supporting Information 
The Supporting Information is available free of charge on the ACS Publications website at 
DOI: 10.1021/acs.jpca.7b03554. 

• Level and quantum numbers, rotational energies, cross section data, PES expansion 
terms(ZIP) 

o Zip jp7b03554_si_002.zip (1.26 MB) 
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