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Abstract 
The reduction of Fe(OEP)(NO) in the presence of substituted phenols leads to a three‐electron reduction to form 

Fe(OEP)(NH2OH), which has been characterized by visible spectroscopy and electron stoichiometry. In this work, 

we have further characterized this species using infrared and 1H NMR spectroscopy, along with DFT calculations. 

The infrared bands in the 3400–3600 cm–1 region, due to hydroxylamine, were significantly downshifted to the 

2500–2700 cm–1 region when 4‐[D1]chlorophenol replaced the normal abundance acid. Using 1H NMR 

spectroscopy, the hydroxylamine and the meso‐protons were identified. From DFT calculations, the 1H NMR 

spectra were most consistent with a six‐coordinate complex, Fe(OEP)(NH2OH)(THF). 

https://doi.org/10.1002/ejic.201800040
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Abstract 
A ferrous porphyrin hydroxylamine complex can be generated using both chemical and electrochemical 

methods. This complex was characterized using visible, infrared, and 1H NMR spectroscopy techniques and DFT 

calculations. The complex was found to be low‐spin, and the spectroscopic and DFT data support the solvent, 

THF, as the most likely sixth ligand. 

 

Introduction 
Hydroxylamine is an important intermediate in many enzymatic systems in the nitrogen cycle. It is a presumed 

intermediate in the reduction of nitrite to ammonia by siroheme or cytochrome c nitrite reductases,1 and is a 

substrate for hydroxylamine oxidoreductases.2 In addition to hydroxylamine oxidoreductase, hydroxylamine has 

been found to bind to A. ramosusperoxidase.3 Recently hydroxylamine has been identified as the product of the 

electrochemical reduction of Fe(OEP)(NO) (OEP = octaethylporphyrin) in the presence of 2,6‐dichlorophenol 

(dcp) using visible spectroelectrochemistry.4 While the spectral identification was consistent with the 

voltammetric data, the spectroscopic characterization was limited. It is the aim of this report to provide a more 

detailed spectral characterization. Bis(hydroxylamine) complexes of ferrous porphyrins have been previously 

characterized at reduced temperatures.5 At room temperature, the bis(hydroxylamine) ferrous porphyrin 

complex will undergo reductive nitrosylation to form Fe(OEP)(NO).6 Stable ferrous porphyrin N‐alkyl 

hydroxylamine complexes have been reported.7 On the other hand, ferric “picket‐fence” porphyrins will react 

with O‐alkyl hydroxylamine to form a bis(ammonia) ferrous complex rather than a ferrous‐nitrosyl 

species.8 Hydroxylamine itself was found to disproportionate in the presence of water‐soluble ferric porphyrins 

to form NH3 and N2O.9 

The reduction of Fe(OEP)(NO) in THF occurs in two one‐electron steps with the formation of Fe(OEP)(NO)– and 

Fe(OEP)(NO)2–.10The spectroscopic properties of Fe(OEP)(NO)– have been obtained as well as an X‐ray 

structure.10, 11 In the presence of weak acids, such as substituted phenols, Fe(OEP)(NO)– can be protonated to 

form Fe(OEP)(HNO), and be further reduced to Fe(OEP)(NH2OH). The overall reaction can be written as: 

Fe(OEP)(NO) + e– + PhOH → Fe(OEP)(HNO) + PhO– 

Fe(OEP)(HNO) + 2 e– + 2PhOH → Fe(OEP)(H2NOH) + 2PhO– 

where PhOH is a substituted phenol. The initial identification of the hydroxylamine product was based on the 

observed current in pulse polarography and visible spectroscopy.4, 12 
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Results and Discussion 
The visible spectroelectrochemistry of Fe(OEP)(NO) in 50 mm 4‐chlorophenol is shown in Figure S1. As observed 

for the reduction of Fe(OEP)(NO) with 2,6‐dcp previously, further reduction of Fe(OEP)(NO)– occurred, rapidly 

forming a Fe(OEP)(NH2OH) complex,4 with a sharp Soret band typical of low‐spin ferrous porphyrins. Analysis of 

the reduction by evolving factor analysis showed that only two species were present during the reduction under 

these conditions (Figure S2). At this concentration of 4‐chlorophenol, the intermediate, Fe(OEP)(HNO), was not 

observed. If the potential was then step to 0.0 V vs. Ag/AgNO3, the complex was re‐oxidized to Fe(OEP)(NO) 

(Figure S3). As was previously observed,4 the rate of oxidation was considerably slower than the reduction. 

The infrared spectroelectrochemistry of Fe(OEP)(NO) in the presence of 4‐chlorophenol is shown in Figure 1. In 

the absence of 4‐chlorophenol, no bands were observed between 3450 and 3600 cm–1. In the presence of 4 

mm 4‐chlorophenol (Figure 1, red trace) and at potentials just negative of the E° for Fe(OEP)(NO), no bands were 

observed in that same region. Under these conditions, Fe(OEP)(NO) was reduced (Figure 1, 1671 cm–1 band) and 

Fe(OEP)(HNO) was formed.4 DFT calculations of Fe(OEP)(HNO) showed that the νHNO band was predicted to be 

2967 cm–1. This band would not be visible due to a series of C–H vibrations which were present in that region. At 

50 mm 4‐chlorophenol and more negative potentials, Fe(OEP)(H2NOH) was formed based on visible 

spectroelectrochemistry. When infrared spectroelectrochemistry was carried out at 100 mm 4‐chlorophenol, 

two new bands were observed at 3465 and 3540 cm–1. (Figure 1, brown, black, red traces with increasing time). 

The 3465 cm–1 was obscured at longer times due to the decrease in the 4‐chlorophenol band at 3263 cm–1. The 

results are summarized in Table 1. The DFT results are in reasonable agreement with the experimental values, 

though the third DFT band overlapped too much with the 4‐chlorophenol band to be observed. The question 

remains as to the actual structure of the complex. While Fe(OEP)(NO) is five‐coordinate, the ferrous complexes 

formed may be six‐coordinate with THF as the sixth ligand. The differences in Table 1 between the 5‐ and six‐

coordinate species were not large enough to make an unambiguous determination. 

 
Figure 1. FTIR spectroelectrochemistry of Fe(OEP)(NO). Reduction of Fe(OEP)(NO) in 4‐chlorophenol (initial: 

brown, intermediate: black, final: red). Reduction of Fe(OEP)(NO) in 4‐[D1]chlorophenol (blue). Fe(OEP)(HNO) 

generated electrochemically (green). 

Table 1. Experimental and DFT calculated infrared bands for metalloporphyrin hydroxylamine complexes. For 

DFT calculations, first number is for Fe(OEP)(NH2OH); second number is for Fe(OEP)(NH2OH)(THF). Solvent: THF 

with 0.10 m TBAP 

Solution ν exp ν DFT   
5‐coord./6‐coord. 

Fe(OEP)(NO)/ – 3387/3286 
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4‐chlorophenol 3465 3409/3386  
3540 3580/3667 

Fe(OEP)(NO)/ – 2390/2372 

4‐[D1]chlorophenol 2587 2502/2503  
2649 2600/2671 

Co(OEP)(NH2OH)2
+ 3621 –  

3683 – 

 

Figure 1 shows that Fe(OEP)(NO), in the presence of 4‐chlorophenol, was not regenerated by a 

disproportionation reaction between Fe(OEP)(HNO) to form Fe(OEP)(NO) and H2. This can occur at longer times 

but not on this time‐scale.10, 13 In addition, no bands were observed for N2O, another possible side reaction. 

In order to confirm the origin of the observed bands, the experiment was then repeated with 4‐

[D1]chlorophenol. The bands at 3465 and 3540 cm–1 disappeared (Figure 1, blue). The experiment was then 

repeated with 0.10 m 4‐[D1]chlorophenol. The results are shown in Figure S4. The spectrum in the 2500–2700 

cm–1 region was similar the spectrum for normal abundance 4‐chlorophenol except that the bands were shifts 

from the 3400–3600 cm–1 region to the 2500–2700 cm–1 region. Two bands were observed at 2587 and 2649 

cm–1, and a large negative band was observed at 2428 cm–1, due to the reduction of the phenolic group in 4‐

[D1]chlorophenol. The isotopic shifts were consistent with the replacement of 1H with 2H, and was confirmed by 

the shift in the phenol band for 4‐chlorophenol (3263 to 2428 cm–1). 

Further identification of the Fe(OEP)(NH2OH) complex was done using 1H NMR spectroscopy. The complex was 

synthesized by anthracenide reduction in the presence of 4‐[D4]chlorophenol. Because of the large excess of 4‐

chlorophenol, deuterated substrates were used to see the proton resonances for the iron complex. The 1H NMR 

spectrum is shown in Figure 2. Resonances for the hydroxylamine were observed at –2.90 and –9.70 ppm. These 

results were similar to Co(OEP)(NH2OH)2
+. These chemical shifts are consistent with low‐spin ferrous complexes. 

When 4‐[D4]chlorophenol was replaced with 4‐[D5]chlorophenol, these resonances disappeared (Figure 2). The 

results are summarized in Table 2. Further reduction of hydroxylamine to ammonia, as was observed by 

McQuarters et al.,8 was not consistent with the data. First, two resonances are observed for the ligand in the 

NMR spectrum, as was observed for the cobalt complex. Second, both H–O and H–N vibrations are present in 

the infrared. Finally, the complex can be oxidized back to Fe(OEP)(NO), which would be unlikely for the ammonia 

complex. 

 
Figure 2 1H NMR spectra for the chemically synthesized Fe(OEP)(NH2OH) complex. Black line corresponded to 

the use of 4‐[D4]chlorophenol; Red line 4‐[D5]chlorophenol. 

https://onlinelibrary.wiley.com/doi/full/10.1002/ejic.201800040#ejic201800040-fig-0001
https://onlinelibrary.wiley.com/doi/full/10.1002/ejic.201800040#ejic201800040-bib-0010
https://onlinelibrary.wiley.com/doi/full/10.1002/ejic.201800040#ejic201800040-bib-0013
https://onlinelibrary.wiley.com/doi/full/10.1002/ejic.201800040#ejic201800040-fig-0001
https://onlinelibrary.wiley.com/doi/full/10.1002/ejic.201800040#ejic201800040-fig-0002
https://onlinelibrary.wiley.com/doi/full/10.1002/ejic.201800040#ejic201800040-fig-0002
https://onlinelibrary.wiley.com/doi/full/10.1002/ejic.201800040#ejic201800040-tbl-0002
https://onlinelibrary.wiley.com/doi/full/10.1002/ejic.201800040#ejic201800040-bib-0008
https://wol-prod-cdn.literatumonline.com/cms/attachment/34f08f01-e34d-4067-a342-4caffad17f2d/ejic201800040-fig-0002-m.jpg


Table 2. Experimental and DFT calculated resonance for the hydroxylamine ligand in metalloporphyrin‐

hydroxylamine complexes. All DFT calculations are for S = 0 complexes 

Compound 
 

δ [ppm] δ [ppm] 

Fe(OEP)(NH2OH) Exp. –2.90 –9.70  
DFT –14.37 –42.24 

Fe(OEP)(NH2OH)(THF) DFT –3.92 –10.23 

CoIII(OEP)(NH2OH)2
+ Exp. 0.06 –2.22 

 

Because the iron was more displaced from the porphyrin plane for the Fe(OEP)(NH2OH) (0.095 Å) complex as 

compared to the Fe(OEP)(NH2OH)(THF) complex (0.016 Å), the six coordinate complex was most consistent with 

the experimental values. The DFT calculated structures for Fe(OEP)(NH2OH) and Fe(OEP)(NH2OH)(THF) are 

shown in Figure S5. 

Generally low‐spin ferrous porphyrin complexes are six‐coordinate rather than five‐coordinate, except when 

strong π‐ligands such as NO are present. In addition to the axial hydroxylamine ligand, the meso‐protons for 

Fe(OEP)(NH2OH)(THF) are also shifted from their normal positions. Using Fe(OEP)(NO) and Fe([D4]OEP)(NO), it 

was possible to identify the mesoresonances. For normal abundance Fe(OEP)(NO), the hydroxylamine complex 

had a resonance at δ = 15.15 ppm, which was missing when one started with Fe([D4]OEP)(NO). In this case, DFT 

calculations predict that the six‐coordinate complex would have meso resonance at δ = 11.38 ppm, while the 

five‐coordinate was predicted to have meso‐resonances at δ = 15.80 ppm. While the five‐coordinate species was 

closer to the observed value, the differences in this case are not large, as observed with the hydroxylamine 

resonances. Overall, the data supports a six‐coordinate ferrous porphyrin complex with ligation by 

hydroxylamine and THF. 

Mechanisms for the decomposition of the ferrous‐hydroxylamine complexes generally involve the presence of 

excess hydroxylamine with a bis(hydroxylamine) complex.8, 9 The excess hydroxylamine initiates a radical 

reaction on the complex, which is followed by an internal disproportionation to eventually lead to the ferrous 

nitrosyl.8 This mechanism cannot occur with the complex described in this report, as only a mono complex was 

formed and there was no excess hydroxylamine. 

Conclusions 
In summary, Fe(OEP)(NO) can be reduced to Fe(OEP)(NH2OH)(THF) in THF with a strong reductant and a weak 

acid such as chlorophenols. The structure was deduced using DFT calculations and UV/Visible, infrared and 1H 

NMR spectroscopy. 

Experimental Section 
Chemicals: Tetrabutylammonium perchlorate (TBAP), iron(III) octaethylporphyrin (FeOEPCl), sodium methoxide 

and hydroxylamine hydrochloride were purchased from Sigma–Aldrich Chemical Co. 4‐[D4]Chlorophenol and 4‐

[D5]chlorophenol purchased from CDN isotopes. TBAP was dried at 90 °C under a vacuum overnight before use. 

Anhydrous THF was refluxed in the presence of sodium metal and benzophenone until the solution was a 

persistent dark blue color. After purification, the solvent was collected under argon and stored in the glove box. 

4‐Chlorophenol was purified by sublimation. The iron‐porphyrin nitrosyl and nitroxyl complexes were 

synthesized by literature methods.6, [11] The generation of Fe(OEP)(NH2OH) was carried out by the reduction of 

Fe(OEP)(NO) with anthracene in the presence of 4‐chlorophenol (see Supporting Information for additional 

details). 
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Procedures: UV/Visible and FTIR spectroelectrochemical experiments were carried out using one of two 

methods depending upon the solution. For UV/Visible spectra, a slow cyclic scan of the potential was sufficient 

to insure complete electrolysis at each potential. For the FTIR (except as noted), potentials were chosen to be 

sufficiently negative to insure complete electrolysis. 

Instrumentation: Spectroelectrochemical (SEC) experiments used a low‐volume thin layer quartz glass cell 

purchased from BAS Inc. A platinum mesh was used as the working electrode and a platinum wire was used as 

the auxiliary electrode. Potentials were measured relative to the Ag/AgNO3 (in CH3CN) reference electrode. The 

UV/Visible spectra were recorded on a HP 8452A diode array spectrophotometer. The FTIR 

spectroelectrochemical cell was described previously.[11] The infrared spectra were obtained using 64 scans and 

2 cm–1 resolution, recorded with a Thermo Nicolet‐FTIR spectrophotometer (Model 670 Nexus) with a MCT 

detector. 1H‐NMR spectroscopy measurements were performed using a Bruker Avance IIIHD 600 MHz 

spectrometer (Medical College of Wisconsin). 

Computational Methods: Electronic structure calculations were carried out with the Gaussian 09 suite of 

programs14 using the m06 DFT functional and the TZVP basis set for all elements except for iron, and a scale 

factor of 0.94 was used for the infrared energies. The Wachters' basis set was used for iron.15 All calculations 

converged using the tight optimization criteria. Evolving factor analysis was carried out with MATLAB and 

PLS_TOOLBOX. 
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Synthesis of Fe(OEP)(NH2OH):  

Reducing agent. Fifty-five mg of cryptand and 27 mg of anthracene was place in 25 mL round bottle flask. To the 

flask, five mL of double distilled THF was added. A small piece of potassium metal (which was rinsed with hexane 

and dried) was then added to the solution. The solution was stirred 3-4 hours until the solution turns dark blue 

color.  

 

In a vial, 15-25 mg of very pure Fe(OEP)(NO) [ The Fe(OEP)(NO) was washed with methanol to remove extra 

NH2OH)] was added with a micro stirrer. One-two mL of reducing agent was added to the vial and stirred for 30 

minutes. The reduction was checked by UV-visible spectrum. Then 100-200 mM of 4- chlorophenol (for 2,3-dcp 

and 2,6-dcp 50 mM) was added to the Fe(OEP)(NO)- solution. The spectrum was taken within 2-3 minutes. For 

NMR spectra, the solution was inserted in the NMR tube and frozen in liquid nitrogen within 1-2 minutes. All 

operations were carried out in a glove box. Visible bands at 406, 526 and 556 nm were observed, which were 

consistent with the spectroelectrochemically obtained spectra.  

 

Figure S1. Visible spectroelectrochemistry of Fe(OEP)(NO) in the presence of 4-chlorophenol. Initial spectrum 

(black); intermediate spectra (green, E = -0.578, -0.608, -0.644, -0.686 and -0.734 V); final spectrum (blue, E = -

0.800 V). Solvent: THF. 0.10 M TBAP.  
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Figure S2. Evolving factor analysis for the reduction of Fe(OEP)(NO) in the presence of 4-chlorophenol. Einitial = -

0.500 V and Efinal = -0.800 V. Solvent: THF with 0.10 M TBAP. The appearance of the third factor at longer times 

is an artifact due to deviations from Beer’s Law for the strong Soret band and the low resolution (2 nm) of the 

diode array spectrophotometer.  

 
 

Figure S3. Re-oxidation of Fe(OEP)(NH2OH) at 0.00 V vs Ag/AgNO3. Time after potential stepped to 0.00 V: 451 s 

(black), 757 s, 938 s, 1118 s, 1418s, 2200 s and 2998 s (blue). Intermediate spectra are green. Solvent: THF with 

0.10 M TBAP.  

 
 



Figure S4. Infrared spectroelectrochemistry of Fe(OEP)(NO) in 100 mM 4-chlorophenol and 4- chlorophenol-d1. 

Formation of Fe(OEP)(NH2OH): 4-chlorophenol-d1 (green), 4-chlorophenol (black, brown, blue); Formation of 

Fe(OEP)(HNO) with 4-chlorophenol (red)  

 
 

Figure S5. A. DFT calculated structure for Fe(OEP)(NH2OH). B. DFT calculated structure for 

Fe(OEP)(NH2OH)(THF). A. B. 
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