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Abstract 
Background 
Children with coarctation of the aorta (CoA) can have a hyperdynamic and remodeled left ventricle (LV) from 
increased afterload. Literature from an experimental model suggests the putative 20 mm Hg blood pressure 
gradient (BPG) treatment guideline frequently implemented in CoA studies may permit irreversible vascular 
changes. LV remodeling from pressure overload has been studied, but data are limited following correction and 
using a clinically representative BPG. 

Materials and methods 
Rabbits underwent CoA at 10 weeks to induce a 20 mm Hg BPG using permanent or dissolvable suturethereby 
replicating untreated and corrected CoA, respectively. Cardiac function was evaluated at 32 weeks by magnetic 
resonance imaging using a spoiled cine GRE sequence (TR/TE/FA 8/2.9/20), 14 × 14-cm FOV, and 3-mm slice 
thickness. Images (20 frames/cycle) were acquired in 6-8 short axis views from the apex to the mitral 
valve annulus. LV volume, ejection fraction (EF), and mass were quantified. 

Results 
LV mass was elevated for CoA (5.2 ± 0.55 g) versus control (3.6 ± 0.16 g) and corrected (4.0 ± 0.44 g) rabbits, 
resulting in increased LV mass/volume ratio for CoA rabbits. A trend toward increased EF and stroke volume was 
observed but did not reach significance. Elevated EF by volumetric analysis in CoA rabbits was supported by 
concomitant increases in total aortic flow by phase-contrast magnetic resonance imaging. 

Conclusions 
The indices quantified trended toward a persistent hyperdynamic LV despite correction, but differences were 
not statistically significant versus control rabbits. These findings suggest the current putative 20 mm Hg BPG for 
treatment may be reasonable from the LV's perspective. 

Keywords 
Congenital heart disease, Cardiac function, Animal model 

Introduction 
Coarctation of the aorta (CoA) is a congenital cardiovascular disease characterized by severe narrowing of the 
proximal descending thoracic aorta. Although simple surgical correction has saved the lives of thousands of 
neonates and infants, and aided thousands of children, many of these individuals still have a reduced average 
lifespan from increased CV morbidity, including hypertension and left ventricular hypertrophy.1, 2 Many of the 
long-term problems observed after treatments for CoA can be explained on the basis of abnormal cardiac and 
vascular biomechanics.3 For example, patients with primary or residual CoA may have a hyperdynamic and 
remodeled left ventricle (LV), if exposed to a prolonged increase in afterload.4, 5 
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The mechanisms mediating persistent morbidity from CoA are difficult to study in a clinical setting due to the 
limited number and heterogeneity of patients at any one center; therefore, we developed a rabbit model that 
mimics the vascular pathology observed in humans with CoA.6 In contrast to other aortic banding animal 
models, this model was designed to produce a blood pressure (BP) gradient (BPG) of 20 mm Hg across the 
coarctation, which is the putative treatment threshold most often found in the literature. 
Unfortunately, myography, histology, immunohistochemistry, and microarray analysis from aortas harvested 
using this model have shown a 20 mm Hg BPG causes irreversible structural and functional 
changes.7, 8 Although these results suggest 20 mm Hg should not be used to guide treatment from 
the vasculature's perspective, a controlled study of LV remodeling and plasticity resulting from the putative 
treatment guideline is lacking. Therefore, this rabbit model was used with magnetic resonance imaging (MRI) to 
quantify alterations in LV morphology and systolic functionfrom CoA and its correction to specifically test the 
hypothesis that a 20 mm Hg gradient will cause changes in the myocardium that can be reversed with 
appropriate relief of the associated obstruction. 

Material and methods 
Experimental protocol 
After IACUC approval, male New Zealand white rabbits ∼10-week old and weighing ∼1.0 kg (n = 7/group) were 
randomly designated to undergo CoA of the proximal descending thoracic aorta as discussed in detail 
elsewhere.6 Briefly, a 1.6-mm diameter stainless steel wire was used with silk (permanent) 
or Vicryl (degradable) suture as previously described to mimic untreated CoA and surgically corrected CoA, 
respectively.6 This diameter wire resulted in a 20 mm Hg BPG—the putative value for intervention in patients 
diagnosed with CoA9—at the experimental end point of 32 weeks. It is worth noting that BP is similar across 
species.10 Application of LaPlace's law shows that increases in BP from the coarctation act along with local vessel 
or LV myocardial wall dimensions, to increase vascular or myocardial tension, respectively. This serves as the 
stimulus for remodeling because vascular and myocardial tissues prefer specific ranges of stress.10, 11 

Within 1 week of CoA induction using the current model, rabbits develop a pronounced vascular stenosis, 
accompanying elevated BP in the upper body half, and the subsequent stimulus for myocardial remodeling 
when silk suture is used to create the CoA. Rabbits undergoing creation of the CoA with degradable suture 
(Vicryl) also develop an initial stenosis similar to CoA rabbits. However, degradation of Vicryl suture restores 
aortic diameter close to normal but with modest residual narrowing mimicking the aortic morphology often 
observed after surgical resection with end-to-end anastomosis in humans. Nonexperimental rabbits were also 
used here as a control group (Fig. 1). 

 
Fig. 1. Experimental protocol. Male New Zealand white rabbits aging ∼10 weeks and weighing ∼1.0 kg 
(n = 7/group) undergo CoA of the proximal descending thoracic aorta using a 1.6 diameter wire with silk (control 
group) or Vicryl(corrected group) suture to mimic untreated CoA and surgically corrected CoA, respectively. 
Nonexperimental rabbits were also designated for a control group. Inducing CoA with dissolvable Vicryl suture 
provides the stimulus of altered hemodynamics from CoA for ∼5 weeks before restoring blood pressure to 
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normal for >4 months (i.e., ∼6 human years) before the end of the experimental duration (32 weeks) 
when MRI and intravascular blood pressure measurements are performed. 

Confirming correction of CoA by ultrasound 
According to the manufacturer, Vicryl suture is completely absorbed after ∼9 weeks with an initial strength of 
∼15 lbf and a known strength retention curve based on the number of days since suture use. An analysis using 
this retention curve, with knowledge of rabbit aortic diameters and integrating the distribution 
of tractions within this region,12 indicates that the force exerted on the suture used to create the coarctation 
exceeds the strength indicated by the manufacturer after ∼21 days. We sought to confirm these calculations 
empirically. Ultrasound studies were therefore performed by a trained sonographer to track evolution of the 
BPG and confirm absorption of dissolvable Vicryl sutures used in creating CoA for the corrected group of rabbits 
(n = 3). Rabbits were placed in a dedicated veterinary anesthesia Plexiglas-sealed induction container, and a gas 
mixture of isoflurane 2% mixed with 100% oxygen was passed through the chamber. Once anesthetized, rabbits 
were carefully removed from the chamber and the gas mixture of isoflurane/oxygen continued to be delivered 
via nose cone. Transthoracic ultrasound of the descending thoracic aorta was performed with an 11-MHz M12L 
linear array transducer interfaced to a Vivid 7 ultrasound system (GE Healthcare, Waukesha, WI). Closed chest 
imaging took place after the chest was carefully shaved to remove hair allowing for a gel interface between the 
skin and the ultrasound transducer. Long axis 2-D, color Doppler and pulsed spectral Doppler images were 
obtained from the area above, through, and below the coarctation region. The degree of angle correction was 
recorded for each animal, and this angle was repeated for all subsequent exams. Rabbits were imaged weekly 
until BPG equilibrated for a given rabbit. Each examination took less than 10 minutes, and rabbits were 
monitored continuously until ambulatory and sternal after each ultrasound examination. 

Peak velocity (V) was also measured using electronic calipers available on the ultrasound system. Three cardiac 
cycles were measured and the average used for reporting. Peak instantaneous BPG was estimated using the 
modified Bernoulli equation (4 × V2). Peak instantaneous BPG values by ultrasound were only used in the 
present study to determine when absorption of the dissolvable Vicryl sutures used in creating CoA for the 
corrected group of rabbits had occurred, since BPG by catheterization obtained as discussed below in the 
measurement of blood pressure section represents the gold standard and preferred method, when 
available.13, 14 Weekly ultrasound imaging revealed that the BPG remains elevated in corrected rabbits for 
34 ± 2 days after surgical induction of the coarctation (range: 32-37 days; Fig. 2). Importantly, this information 
suggests that our approach of inducing CoA with dissolvable Vicryl suture provides the stimulus of 
altered hemodynamics from CoA for 5 weeks, before restoring BP to normal for >4 months (i.e., ∼6 human 
years) prior to the experimental end point of 32 weeks of age used in this study. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/magnetic-resonance-imaging
https://www.sciencedirect.com/topics/medicine-and-dentistry/blood-pressure-measurement
https://www.sciencedirect.com/topics/medicine-and-dentistry/traction-therapy
https://www.sciencedirect.com/science/article/pii/S0022480417303086?via%3Dihub#bib12
https://www.sciencedirect.com/topics/medicine-and-dentistry/sonographer
https://www.sciencedirect.com/topics/medicine-and-dentistry/anesthesia
https://www.sciencedirect.com/topics/medicine-and-dentistry/isoflurane
https://www.sciencedirect.com/topics/medicine-and-dentistry/chest-imaging
https://www.sciencedirect.com/topics/medicine-and-dentistry/chest-imaging
https://www.sciencedirect.com/topics/medicine-and-dentistry/color-doppler-flowmetry
https://www.sciencedirect.com/topics/medicine-and-dentistry/catheterization
https://www.sciencedirect.com/science/article/pii/S0022480417303086?via%3Dihub#bib13
https://www.sciencedirect.com/science/article/pii/S0022480417303086?via%3Dihub#bib14
https://www.sciencedirect.com/topics/medicine-and-dentistry/ultrasonography
https://www.sciencedirect.com/science/article/pii/S0022480417303086?via%3Dihub#fig2
https://www.sciencedirect.com/topics/medicine-and-dentistry/hemodynamics


 
Fig. 2. Ultrasound studies were performed weekly to track evolution of the BPG and confirm absorption of 
dissolvable Vicryl sutures used in creating the coarctation for the corrected group of rabbits. This is illustrated in 
the figure. CoA rabbits (top two rows) have persistent narrowing and elevated blood flow through the 
coarctation region for the full experimental duration. Conversely, the BPG remains elevated in corrected rabbits 
(bottom two rows) only for 34 ± 2 days (∼5 weeks) after surgical induction of the coarctation. The two images 
on the lower right show how diameter in the coarctation region is largely restored after 5 weeks, resulting in a 
decrease in blood flow and velocity through the coarctation region. (Color version of figure is available online.) 

Magnetic resonance imaging 
Rabbits were anesthetized using ketamine (22 mg/kg) and xylazine (2.5 mg/kg) to undergo cardiovascular 
MRI using a 3T GE Signa Excite scanner (GE Healthcare, Waukesha, WI) in the supine, head first position using a 
quadrature knee coil. Monitoring equipment used to ensure an adequate level of anesthesia included an 
external pulse oximeter (Nonin Medical Inc, Plymouth, MN) and core temperature sensor approved for use in 
the MR environment. Cardiac triggering was obtained using a peripheral pulse oximeter attached to the right ear 
that also provided heart rate (HR). Animals were allowed to breath freely during the entire imaging session. 

Time-resolved 2D anatomic and through-plane phase contrast-MRI (PC-MRI) was performed orthogonal to 
the ascending aorta (AscAo) just distal to the aortic valve to calculate cardiac output and total aortic flow. 
Velocity encoding was optimized to maximize the dynamic range when calculating blood flow velocity at this 
location (Table 1). Average rabbit HRs ranged from ∼100 to 200 beats per minute. Twenty 2D velocity-encoded 
magnitude and phase images were acquired per cardiac cycle resulting in a temporal resolution between 15 and 
30 ms. Other imaging parameters included 12 × 12-cm field of view, a 256 × 224 acquisition matrix, TR of 8.5 ms, 
TE of 1.7 ms, flip angle of 20°, and a slice thickness of 3 mm. Time-resolved volumetric blood flow was 
determined from this PC-MRI data as previously described.15 Total flow was determined by integrating the area 
under each AscAo blood flow waveform. The time points of maximum blood flow were aligned for 
measurements made from rabbits in each group, and the waveforms were then ensemble averaged to generate 
representative plots. 

Table 1. Imaging parameters. 
Purpose Blood flow Cardiac function 
Sequence 2D fastcard PC Fastcard spoiled GRE 
TR/TE/flip angle 8.5 ms/1.7 ms/20° 7.5 ms/2.7 ms/20° 
Slice thickness 3.0 mm 3.0 mm 
Acquisition matrix 256 × 224 256 × 256 (6-8 slices to cover the LV) 
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Field of view 12 × 12 cm 14 × 14 cm 
VENC 120 cm/sec N/A 
Cardiac frames 20 20 

 

Morphologic and functional changes in the LV due to CoA and its correction were quantified using a 
prospectively gated cine-spoiled GRE (i.e., cine SPGR) sequence. Using standard cine imaging techniques, 6-8 
contiguous short axis planes were imaged, covering the LV from the apex to base of the heart.16 During the 
cardiac cycle, 20 images were acquired at each slice location, which again yielded a temporal resolution of 15 to 
30 ms. Short axis cine imaging used a field of view of 14 × 14 cm, a 256 × 256 acquisition matrix, TR of 7.5 ms, TE 
of 2.7 ms, flip angle of 20°, and a slice thickness of 3 mm. 

Cardiac function data were analyzed by standard methods with planimetry of 
the epicardium and endocardium at peak systole and end diastole for each short axis slice using QMass (Medis 
Corp, Leiden, The Netherlands). The papillary muscles were excluded from the ventricular lumen and included 
with myocardial mass calculations. This allowed determination of LV mass, end-systolic and end-diastolic LV 
volumes, LV stroke volume, and LV ejection fraction. LV thickness was also quantified along the anteroseptal and 
inferolateral wall locations to determine whether remodeling was concentric, as would be expected for 
remodeling due to increased afterload. 

Measurement of blood pressure 
After detailed offline analysis of MRI data, rabbits were again anesthetized for measurement of BP prior to 
tissue harvest. Proximal and distal BP waveforms were measured simultaneously with the same model 
transducer (Harvard Apparatus, Holliston, MA) from which waveforms were digitally recorded at 720 Hz using a 
computer interfaced with an analog-to-digital converter. Transducers were attached to 5 inch noncompliant 
fluid-filled catheters. The proximal fluid-filled catheter was inserted into the common carotid artery and 
advanced retrograde into the aortic arch. The distal fluid-filled catheter was inserted into the femoral artery and 
advanced retrograde into the aortoiliac bifurcation. Rabbits were euthanized after BP measurement by an 
intravenous overdose of pentobarbital sodium(100 mg/kg). 

Statistical analysis 
All data shown are presented as mean ± standard error of the mean. Statistical evaluations were performed 
using one-way analysis of variance, followed by Tukey post hoc analysis. A P-value < 0.05 was considered 
statistically significant. 

Results 
The current model of CoA revealed a statistically significant increase in systolic and mean BP while 
under isoflurane when measured proximal to the coarctation for CoA as compared to both control and corrected 
rabbits (Table 2). Importantly, a mean BPG of 20 ± 2 mm Hg (P < 0.05) was measured across the coarctation 
region compared to control (3 ± 2 mm Hg; Fig. 3A), and this BPG was restored to control levels in corrected 
rabbits (3 ± 1 mm Hg) at the end of the experimental protocol. When assessed by catheter at the time of 
peak systole, the peak BPG was 31 ± 3 mm Hg (P < 0.05) across the CoA, which was significantly greater than 
that observed for control (11 ± 3 mm Hg; Fig. 3A) or corrected rabbits (17 ± 2 mm Hg; Fig. 3B). 

Table 2. Hemodynamic and cardiac function indices (n = 7/group; mean ± standard error of the mean). 

Index Control CoA Corrected 
Blood pressure (mm Hg) 

   

 Systolic 67 ± 2.9 99 ± 6.8∗† 69 ± 3.3 
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 Mean 60 ± 3.4 87 ± 8.1∗† 61 ± 3.9 
 Diastolic 56 ± 3.7 74 ± 9.8 54 ± 3.8 
Heart rate (bpm) 163 ± 12 147 ± 9 150 ± 13 
LV ejection fraction (%) 60.6 ± 1.82 66.4 ± 2.36 65.0 ± 2.98 
LV stroke volume (mL) 1.87 ± 0.20 1.99 ± 0.21 1.93 ± 0.10 
LV mass/volume ratio (g/mL) 1.24 ± 0.15 1.81 ± 0.26∗ 1.35 ± 0.15 
∗CoA rabbits significantly different from control rabbits (P < 0.05). 
†CoA rabbits significantly different from correct rabbits (P < 0.05). 
 

 
Fig. 3. Mean (A, left) and peak (B, right) blood pressure gradients across the coarctation region as measured with 
fluid-filled catheters at the conclusion of the experiment (i.e., 32 weeks of age). Data = means ± standard error 
of the mean. *CoA rabbits significantly different from control rabbits (P < 0.05). 

There were several time points during which cardiac output as assessed by PC-MRI was statistically different in 
CoA and/or corrected versus control rabbits (Fig. 4A). Total flow was increased in CoA relative to control and 
corrected rabbits (Fig. 4B). 

 

Fig. 4. Cardiac output from the collection of rabbits in each experimental group, as assessed by PC-MRI in 
the ascending aorta (A). The time points of maximum blood flow were aligned for measurements made from 
rabbits in each group, and the waveforms were then ensemble averaged to generate the representative plots 
shown. Total flow is also shown (B) and was determined by integrating the area under each AscAo blood flow 
waveform. Data = means ± standard error of the mean. *CoA rabbits significantly different from control rabbits 
(P < 0.05); †corrected rabbits significantly different from control rabbits (P < 0.05); and §CoA rabbits significantly 
different from correct rabbits (P < 0.05). 

There were no differences in HR between experimental groups (Table 2). There was a trend toward increasing 
stroke volume and ejection fraction for CoA and corrected versus control rabbits, but this difference did not 
reach significance. Representative LV morphologic images from rabbits in each group are shown in Figure 5. 
There was a significant increase in LV mass for CoA versus control and corrected rabbits. Local thickness was 
increased along the anteroseptal and inferolateral locations of the LV wall in CoA rabbits (Table 3), but no 
differences in thickness were noted between values at these locations within groups. LV mass/volume ratios 
increased significantly for CoA rabbits, consistent with this compensated state of the LV (Table 2). 
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Fig. 5. Representative magnetic resonance images obtained at the center of hearts from rabbits in each 
experimental group (top), and LV mass measurements from the collection of rabbits (n = 7) in each group 
(bottom). The images selected for presentation in each group (top) represent those with an LV mass near the 
mean for the group (bottom). Data = means ± standard error of the mean. *CoA rabbits significantly different 
from control rabbits (P < 0.05). 

Table 3. LV thickness quantified along the anteroseptal and inferolateral walls (n = 7/group; mean ± standard 
error of the mean). 

Thickness (mm) Control CoA Corrected 
Anteroseptal wall 2.44 ± 0.12 4.42 ± 0.57∗ 3.70 ± 0.30 
Inferolateral wall 2.94 ± 0.27 4.65 ± 0.43∗ 3.91 ± 0.26 
∗ CoA rabbits significantly different from control rabbits (P < 0.05). 

Discussion 
The study of persistent morbidity in patients with CoA after correction is difficult in a clinical setting due to the 
limited number and heterogeneity of CoA patients. Although remodeling of the LV in response to pressure 
overload has been studied in numerous animal models, there is a paucity of data using a clinically representative 
BPG that also includes data after correction of the coarctation. We therefore conducted this MRI-based 
investigation with a novel animal model of CoA and correction focusing on the putative clinical treatment 
guideline of 20 mm Hg to better assess alterations in LV morphology and function at this level of obstruction. 

The statistically significant increases in LV mass observed for the CoA rabbits in the present study was ∼46% 
above control levels, which is similar to values seen previously during the compensation phase of LV 
remodeling.17, 18 The increase in total AscAo flow, as well as trends toward increases in LV ejection fraction, LV 
stroke volume and LV mass/volume ratio further supports the presence of LV remodeling before the transition 
to decompensated pressure-overload LV hypertrophy. Increased thickness from anteroseptal and inferolateral 
measurements between CoA versus control and corrected groups, but not for individual animals within groups, 
indicates concentric remodeling exists (as would be expected in this model of increased afterload). 

Clinically, systolic BPG measured by appropriately sized cuffs is the first method used to assess patients with 
CoA. In this approach, clinicians measure the difference in systolic BP for a site above the narrowed site of CoA 
(arm BP), comparing this value with systolic BP for the descending thoracic aortabelow the narrowing (leg BP). 
When the results from these clinical examination suggest CoA, the next step is ultrasound (i.e., echo) imaging of 
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the heart with attention to the arch. Just as was conducted in the present study, the severity of CoA is most 
often assessed by two-dimensional echo and spectral Doppler analysis. The Doppler peak instantaneous BPG 
across the narrowing is then estimated by the modified Bernoulli equation. However, invasive cardiac 
catheterization measuring the peak-to-peak gradient across the CoA represents the gold standard in the 
pediatric population.13, 14 Although Doppler-measured BPG tends to overestimate catheter-measured BPG in 
many cases, Doppler peak instantaneous BPG correlates reasonably well with catheter peak-to-peak BPG in 
patients with native or recurrent CoA that do not have collateral vessels or retrograde flow during diastole. 
Nevertheless, we also chose to report mean BPG in the present study because this value has importance in 
terms of understanding blood flow, cardiac output, aortic remodeling, and residual resistance. The peak systolic 
BPG reported here in corrected rabbits (17 ± 2 mm Hg) is likely due to increased flow at the peak systolic time 
point as measured by PC-MRI. Flow at this time may reflect the presence of some residual arch narrowing 
and/or stiffening limiting BP-induced dilation upstream as a result of aortic remodeling proximal to the 
coarctation, which has previously been reported with the current experimental model.7, 8 Modest residual 
narrowing also seems to be present from Figure 2 of the present study. Differences in mean BP are responsible 
for blood flow from one location to another in the circulation, and we recall that flow (i.e., cardiac output) 
equals BP divided by resistance. The mean BPG for corrected rabbits (3 ± 1 mm Hg) was similar to control rabbits 
(3 ± 2 mm Hg), suggesting that with similar cardiac outputs (as reported here), total systemic resistances should 
also be similar and any residual narrowing is likely minimal for most of the cardiac cycle. 

Not unexpectedly, those rabbits with CoA at study conclusion were hypertensive compared with control rabbits 
and compared with the corrected group (Table 2). Hypertension (HTN) is a known long-term complication of CoA 
with implications for long-term cardiovascular health, leading to LV hypertrophy and being a “risk factor” for the 
development of atherosclerosis. Clinical experience notes a 10%-20% risk for residual HTN, even if the CoA was 
repaired in infancy.19 It has been shown that 24-hour BP assessment may unmask the presence of HTN, which is 
missed with simple BP spot assessments in the clinic. Those patients with “masked HTN” have increased LV mass 
index and diastolic dysfunction when compared with subjects having normal BP on 24-hour assessment.20 The 
similarity of LV results for corrected versus control rabbits represents the most interesting portions of this study, 
suggesting correction of a 20 mm Hg BPG may preserve cardiac function and LV dimensions. However, it is 
worth noting that corrected rabbits collectively had almost the same LV EF as CoA rabbits, with an LV mass 
similar to those in control rabbits. These differences did not reach significance with the sample size of the 
current investigation but may be hypothesis generating in terms of an acceptable BPG for the LV given other 
research from corrected CoA in a persistent hyperdynamic state.4, 5 

Methods for ventriculoarterial coupling allow researchers to relate ventricular elastance to the vasculature using 
the effective arterial elastance function.21 However, such methods are not trivial to employ clinically or 
experimentally and there is therefore a paucity of the data relating the impact of changes in aortic morphology 
to LV structure and function in the setting of CoA.22 The current model may be important in this regard. For 
example, recent literature suggests the putative treatment guideline of 20 mm Hg BPG frequently implemented 
in CoA studies causes potentially irreversible vascular changes despite correction when assessed by myography, 
histology, immunohistochemistry, and gene microarray analysis.7, 8 However, the current results from the same 
group of rabbits where these vascular changes were measured suggest that, from the LV's perspective, the 
current putative gradient for correction seems reasonable. Although it is reassuring to note there are seemingly 
different levels of plasticity within the cardiovascular system, this presents a potential difficulty when deciding 
when to intervene, as permanent cardiac changes do not appear to accompany a BPG <20 mm Hg. 

The current animal model of CoA devoid of underlying genetic precursors for changes in cardiac or vascular 
morphology, and without concomitant anomalies that often present with CoA in humans, may have added value 
beyond that presented here. This model may now be employed in future research efforts of more complex 
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disease to allow systematic study of the effects of coarctation on the myocardium and impacted vasculature 
from changes in local hemodynamics. Future research efforts may also employ the current rabbit CoA model to 
assess the clinical course in animals when myocardial function is not optimal. Longer follow-up may also be 
undertaken in future studies to simulate adult pathology resulting from residual CoA. Finally, this model may be 
useful, as attempts are made to optimize interventional options for arch repair, such as through the 
development of vascular stents having properties more akin to native vessels. 

The current results should be interpreted relative to several potential limitations. The vascular pathology from 
the current model has striking similarities to that found in humans. However, the current model induces CoA in 
10-week-old juvenile rabbits, which remains in place for corrected rabbits until the equivalent of 11-12 human 
years of age. The age of onset used to date in the model may therefore suggest the current results could be 
more applicable to cases of BPG resulting from recoarctation after treatment early in life, rather than cases of 
native CoA. However, a recent review of ∼400 coarctation patients at our center revealed that the age when 
surgical treatment was imposed in these patients ranged from 0 to 37 years (mean = 2.6 years). 73% of these 
patients were treated by age 2, and another ∼22% had an average age of 12 years at the time of surgery. These 
age distributions in humans with CoA lend support to the use of juvenile rabbits in the present study, while also 
underscoring the need to repeat the current work with neonatal rabbits in future studies. The present study was 
also limited in follow-up to 32 weeks (i.e., human equivalent 19 years), as this research focused on disease in a 
pediatric-equivalent cohort. Thus, long-term consequences of a residual 20 mm Hg BPG, remaining into adult 
years, could not be assessed here but will be the focus of future studies as time and funding permit. 

The current data suggest the increase in systolic pressure induced by the CoA results in myocardial hypertrophy, 
which resolves following repair of the CoA (in the corrected group). The findings of this study indicate this rabbit 
model can be used to elucidate the complex ventricular remodelingcapabilities of the heart under different 
loading conditions such as those occurring in CoA and a wide variety of congenital heart diseases. 
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