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ABSTRACT  

This study investigates optimal hedge ratios in all base metal markets. Using recent 

hedging computation techniques, we find that 1) the short-run optimal hedging ratio is 

increasing in hedging horizon, 2) that the long-term horizon limit to the optimal hedging 

ratio is not converging to one but is slightly higher for most of these markets, and 3) that 

hedging effectiveness is also increasing in hedging horizon. When hedging with futures 

in these markets, one should hedge long-term at about 6 to 8 weeks with a slightly greater 

than one hedge ratio. These results are of interest to many purchasing departments and 

other commodity hedgers. 
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I. INTRODUCTION 

Hedging is considered an integral part of a competitive and successful commodity 

purchasing department.  With raw material demand rising globally the strategic 

importance of hedging has never been as critical as it is today.  Volatility in commodity 

markets continues to increase because of 1) political uncertainty and natural disasters, 2) 

the expanding global nature of trade and the resulting soaring demands from remote 

markets, and 3) a corresponding shift in manufacturing capacity as more product flow 

into the U.S. from abroad (Dickson et al. (2006)). Due to the increased volatility in 

commodity markets and strengthened global competition, companies can no longer rely 

on traditional approaches, such as strategic sourcing and volume aggregation, to manage 

their purchasing needs. Multinational firms no longer compete “…by exploiting scale and 

scope economies or by taking advantage of imperfections in the world’s goods, labor, and 

capital markets” (Hansen and Nohria (2004)).  Firms must rely more than before on risk 

management techniques to manage their materials exposure. These techniques include, 

but are not limited to, eliminating cost inefficiencies in operations, hedging commodity 

price risk with financial derivatives, and altering hedging horizons. 

 

Our study concentrates on optimal hedging ratios and horizons in the metals 

markets.  Our results show that 1) the short-run optimal hedging ratio is increasing in 

hedging horizon, 2) the long-term horizon limit to the optimal hedging ratio is not 

converging to one but is slightly higher for most of these markets, and 3) hedging 

effectiveness is also increasing in hedging horizon. The best hedging decision for these 

markets is to hedge long-term at about 6 to 8 weeks with a slightly greater than one hedge 
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ratio. These findings provide insights and a better understanding of the characteristics and 

properties that shape the effectiveness of futures commodity trading, insights that are 

valuable and relevant to the general commodity hedger. 

 

In 2003, a survey taken as part of the Corporate Executive Board Procurement 

Strategy Council (2003) revealed that 41% of risk managers believe that their 

procurement department will become significantly more important in the coming years 

and, critically, over 50% acknowledge that the effectiveness of their procurement 

organization’s risk management division needs significant improvement. In fact, these 

managers ranked commodity price risk as more relevant than currency price risk by a 3 to 

2 ratio. Consequently, it is no surprise that hedging demand in the metals markets is such 

that, over the period from Jan-June 2005 to Jan-June 2006, non-precious metals futures 

trading increased by 21% in volume and the volume for aluminum contracts alone 

increased by 32% (Holz (2006)). Wall Street is responding to the demand by hiring more 

traders and new product developers. Barclays aims to hire 20% more staff in 2007 after it 

already increased staff by 35% the previous year (Freed (2007)). Market demand 

projections see no end to this trend. In the aluminum market, demand is projected to grow 

by 9.4% in 2007, following on the 2006 8% growth. This matches unfavorably with the 

projections in supply. The International Primary Aluminum Institute forecasts an increase 

in production in 2007 of 6.5% and an increase in 2008 of 3.4%. While metals producers 

can expect profitable years, metal consumers are faced with difficult choices and reduced 

profitability.  Market conditions point to the need for a concerted risk management policy 

at the corporate level. 
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The hedging literature is vast and covers both the motives for hedging and the 

strategies used to address these motives. For the current study, it is important to recall 

two areas of the literature. First, one branch of the literature aims to justify the use of 

hedging by procurement divisions (Froot et al (1993), Hansen and Nohria (2004), 

Koppenhaver and Swidler (1996)), while the second helps determine how best to select 

optimal futures positions that minimize the risk inherent in the spot (cash) market 

(chronologically, Fletcher and Ward (1971), Benninga et al (1984), Perron (1989), Baillie 

and Meyers (1990), Chowdhury (1991), Lien and Luo (1993), Geppert (1995), Alexander 

(1999), Chen, Lee and Shrestha (2004)).  This study is an investigation into the optimal 

hedge ratio and hedging effectiveness for base metals. 

 

Hedging in futures markets involves taking a futures position opposite to that of a 

spot market position (Institute for Financial Markets (1998)).  For commodity purchasing 

departments, the futures markets effectively represent a pricing mechanism in the 

commodity purchasing process.  One common definition of the optimal hedge ratio is 

“…the ratio of the covariance between spot and futures prices to the variance of the 

futures price” (Myers and Thompson (1989)).  Intuitively, the optimal hedge ratio defines 

the futures market position that will simultaneously minimize the risk absorbed in the 

spot market or, plainly, what amount of the commodity should be hedged with futures.  

We also look specifically at the hedging horizon, as previously studied by Chen, Lee, and 

Shrestha (CLS) (2004) using cointegration to estimate the optimal hedge ratio, to 

determine whether hedging effectiveness improves across greater hedging time horizons. 



Journal of Risk and Financial Management 
 

45 
 

This study analyzes the six base metals traded on the London Metal Exchange 

(LME): aluminum, copper, lead, nickel, tin, and zinc.  The use of LME base metals is 

beneficial given its global acceptance as the world’s leader in metal futures trading.  It is 

also interesting to study these futures and their respective hedging effectiveness given 

their dramatic upswing in volatility over the past few years: the six base metals 

volatilities increased by 174% on average.  

 

The paper first presents a review of the academic literature then Section III 

presents the empirical questions. In Section IV, we present the data and the methodology. 

Section V reports the results and we conclude in Section VI. 

    

II. LITERATUTE REVIEW 

Our study builds on the last 25 years of the optimal hedge ratio literature. Our 

empirical models for estimation are based on the body of research that started with 

Ederington in 1979.  This research area evolved through three phases. First and notably, 

Ederington (1979) established the first empirical models; later more sophisticated 

techniques of GARCH estimation were applied, and most recently approaches of 

cointegration have been used. 

 

Ederington (1979) is the first to empirically estimate optimal hedge ratios and is 

accordingly credited with formulating the theoretical framework. Ederington summarizes 

the three working theories of hedging at the time: 1) Traditional Theory, 2) Theories of 

Holbrook Working, and 3) the Portfolio Theory.  He finds fault with Traditional Theory, 
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the leading theory at the time. Ederington challenges its convenient yet unrealistic 

assumption that a change in futures price is exactly proportionate to a change in cash 

prices.  Ederington argues that the theories of Holbrook Working improve on the inherent 

weakness of the Traditional Theory by bringing light to the fact that most hedgers do 

account for the dynamic information the cash-futures basis provides at the time the hedge 

is placed.  Still, the study argues that a more realistic approach is to view hedging in a 

risk and return framework best formulated by an approach that combines Portfolio 

Theory and Working’s Theory.  This provides rationale as to why a hedger may at 

different times be either hedged or completely un-hedged. 

 

Ederington’s seminal contribution to the optimal hedge ratio literature is the 

empirical finding that even pure risk minimizers will hedge less than their spot market 

requirements which is contrary to the findings of preceding research.  Moreover, he finds 

that hedging effectiveness improves across two time horizons for financial security 

futures.  Specifically, his findings show that the futures markets for two financial 

securities prove to be more effective hedging instruments over longer periods.  However, 

the limitation of only using two time horizons, along with the arbitrary method of 

defining a long period as four weeks and a short period as one week, jeopardizes the 

applicability of Ederington’s conclusions.  Furthermore, the study assumes that the 

minimum variance hedge ratio is simultaneously the optimal hedge ratio without formally 

proving or interpreting this relationship.  A second related weakness lies in the 

assumption that a hedger who maximizes profit will simultaneously be minimizing the 

variance of the hedge. 
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In consideration of these limitations, several important studies quickly addressed 

these concerns.  Benninga, Eldor, and Zilcha (1984) respond first, finding fault in the 

latter of the two weaknesses.  Benninga et al. (1984) find that assuming a hedger has a 

quadratic utility function presents ‘undesirable properties’ for estimation and also point 

out that the assumption that the minimization of producer income variance is equivalent 

to the optimal hedge ratio is theoretically inappropriate.  Instead, Benninga et al. do prove 

that, in unbiased futures markets, the minimization of income variance is equivalent to 

the optimal hedge ratio.  

 

Benninga et al. make two assumptions: 1) the futures price is an unbiased 

predictor of the future spot price, [F0=E0(F1)=E0(P2)], and 2) the regressibility of spot 

prices on futures price, [P1= α + βF1 + ε] where ε is homoscedastic.  F0 represents the 

futures price at t=0, F1 represents the futures price at t=1, and P2  represents the spot price 

at t=2.  Therefore, both F1 and P2 are unknown prices that the producer faces in everyday 

hedging decisions.    In unbiased markets, the only reason for the producer to hedge is to 

minimize risk, given that on average there will be little to gain in an unbiased market.  

Therefore, the optimal hedge is where X=βQ with Q representing the quantity required in 

the spot market and X representing the optimal amount hedged on the futures market.  

Assumption 2 may be econometrically troublesome since the use of price levels can lead 

to autocorrelation with the residuals.  Therefore, using price changes, [(P1 - P0) = α + 

β(F1 - F0) + ε] rids the model of autocorrelation. This model still yields the optimal hedge 

ratio under the assumption of unbiased futures markets.  The only uncertainty remaining 

in the producer’s expected income is the residual and the regression coefficient, β, is the 
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minimum variance hedge ratio.  The strength of their results “…derives from its 

generality (it is free from assumptions about utility functions) and from the ease of its 

applicability (it requires only a regression analysis to derive the optimal hedge ratio)” 

(Benninga et al (1984)). 

 

Following the research by Benninga et al (1984), the empirical estimation of the 

optimal hedge ratio was improved by accounting for cointegration between spot and 

futures prices.  One of the key findings is that spot and futures prices tend to drift 

together over time.  Chowdhury (1991) proves that “…the market efficiency hypothesis 

requires that the current futures price and the future spot price of a commodity are close 

together.”  This follows from the definition of market efficiency which implies that 

current prices should reflect all current and past price information in establishing current 

market prices.  Chowdhury uses price data from the LME to test the hypothesis of market 

efficiency (cointegration) for copper, lead, tin, and zinc.1  Cointegration is found between 

the four base metals studied suggesting that the use of conventional estimation techniques 

to estimate the optimal hedge ratio would lead to over-hedging.  A model that fails to 

incorporate the long run co-movement between variables does not capture the mean 

reverting tendency of the model, which leads to an upward bias in the point estimates in 

the model. 

 

                                                 
1 Base metals are some of the most commonly traded futures contracts, yet this is the only study to 
incorporate base metals in the optimal hedge ratio analysis.  It should be noted that the Chowdhury study 
does not give any attention to hedging strategy, paying all of its attention to the statistical properties of 
cointegration. 
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Lien and Luo (1993) address the problem of over-hedging by estimating the 

optimal hedge ratio using an error correction model to account for the issue of 

cointegration the Chowdhury study raises.  Lien and Luo run their estimation at 9 

hedging horizons and find that the optimal hedge ratio tends to fluctuate before 

converging towards one suggesting that the optimal hedge ratio converges to the naïve 

hedge ratio over time.  These findings were later augmented by Geppert (1995), who 

establishes that hedging effectiveness and the optimal hedge ratio both depend on the 

permanent and transitory components of the price changes between spot and futures 

prices.  “Over long horizons, the shared component ties the spot and futures series 

together and the two prices will be perfectly correlated” (Geppert (1995)). A major 

weakness in the Geppert study is the model requirement that both spot and futures prices 

be I(1) to implement the Stock and Watson (1988) methodology suggested in the study.  

It would be useful to adopt a methodology that provides valid hedge ratios when the unit-

root condition is not satisfied. 

Such a study is Chen, Lee and Shrestha (CLS) (2004). CLS empirically estimate 

the optimal hedge ratio with a cointegration methodology that does not require both the 

spot and futures prices to contain a single unit root.  They are able to estimate both the 

short-run and long-run hedge ratios with the Pesaran et al (2001) approach that does not 

require both series to be I(1) or I(2) together.  This approach works when prices are unit 

root processes and when they are stationary.  In all, 9 different hedging horizons are 

considered over 25 different commodities. As expected, they find that the futures and 

spot prices share a stochastic trend implied theoretically by market efficiency and the no-

arbitrage condition.  In estimating the optimal hedge ratios they find that hedging 
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effectiveness does improve over greater hedging horizons and that the short-run hedge 

ratio is significantly less than one.  Our study of the six LME metals follows the CLS 

methodology. 

 

III. EMPIRICAL QUESTIONS  

In principle, futures markets exist to offer buyers and sellers of the underlying 

commodities, financial instruments, or index the opportunity to minimize the price risk 

inherent in cash market positions.  These open markets allow for better price discovery. 

Moreover, futures markets are appealing to firms because of high liquidity and ease of 

entry/exit properties.  Various businesses across the globe utilize these advantageous 

properties to manage price risk exposure.  This translates to firm cost savings as they 

mitigate their risk exposure.  Firms especially adept at risk management will likely 

survive periods of high price risk and volatility.  Given the recent competitive nature of 

the commodity landscape, firms are implementing and plan to implement multitudes of 

hedging strategies to trim the costs of elevated commodity prices.   

 

In commodity purchases, hedging using futures contracts can be thought of as 

offsetting the risk imposed by a firm’s commodity requirements.  A firm that requires a 

fixed amount of copper in the production of their good would want to offset their market 

price risk by buying copper futures against their annual requirements.  Under a futures 

contract, the price is set for delivery at a future date.  Therefore, if the trader is 

anticipating a bullish copper market, she would be wise to assume a long position defined 
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as buying deferred month futures contracts. This allows the trader to realize this gain in 

futures prices which would alleviate the upside price risk in the spot market. 

 

 Hedging price risk involves not only when to be short and when to be long but it 

also requires a thorough understanding of the long-run relationship between the spot and 

futures markets.  This may be the most important element in an efficient commodity 

purchasing department because it ultimately reveals how effective a department is at 

using the price discovery relationship in formulating hedging strategies.  The price 

discovery relationship implies that spot and futures share a long-run stochastic trend; 

thus, an effective hedging department would understand that over longer hedging 

horizons prices tend to revert to the mean together.  For these reasons, the hedging 

horizon is the key issue being addressed in this research.  Given the volatile and upward 

trending data employed in this study, it seems appropriate to hypothesize that the hedging 

effectiveness of a firm with a comparatively longer hedging horizon would be much more 

effective in minimizing risk over our data period.  The current research consensus is that 

spot and futures markets move together over long horizons.  This implies that a firm 

facing adverse upside price risk would be wise in lengthening their hedging horizon to 

offset the unfavorable prospect of increasing spot market prices. 

Let us look at a trading scenario in the aluminum futures market to emphasize the 

importance of effective risk management. Consider major American beverage industry 

players such as Pepsi-Cola Co., Anheuser-Busch Inc., Miller Brewing Co., and Coca-

Cola Co. All of these firms have significant annual aluminum requirements.  

Correspondingly, all these companies assume a long position in the futures markets 
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October 1998 
Price: $1,322 

May 2000 
Price: $1,498 

October 1998 
Price: $1,322 

Actual Aluminum Market Timeline 

$1,357 

Actual Aluminum Market Time Spread 

because they are always in demand of (buying) aluminum to package their respective 

products.  Aluminum has recently experienced a 41% increase in its mean historical 

futures price.  Likewise, the spot market prices followed this trend but in an often erratic 

and unpredictable fashion.  This naturally introduced a considerable amount of basis risk, 

making the hedging decisions by commodity traders within these companies difficult at 

best.  Basis risk is the unexpected fluctuations in the prices of cash and futures that is a 

product of influences ranging from seasonality to supply disruptions.  All of these firms 

likely would have endured this period unsuccessfully without the use of some form of 

hedging strategy. 

Consider a beverage company, similar to one of the firms mentioned above, with 

an annual and realistic aluminum requirement of 100,000 metric tons (MT).  The 

standard aluminum contract is specified for 25 MT at some point in time for future 

delivery.  Now, consider the price of $1,322 for cash aluminum in October of 1998 and 

compare it to the prices prevailing in May of 2000.  
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 The market in October was in contango as indicated by the futures price being 

greater than that of the market.  Therefore, pursuing the recommended strategy above 

would lead to hedging the spot market position of 100,000 MT.  This strategy would lock 

in the price of $1,357/MT on October of 1998 for delivery in May 2000.  Assuming away 

transaction costs, this simple hedging strategy would save the hypothetical firm $14M 

dollars (= (1,498-1,357) * 100,000).  The questions a commodity hedger has to answer 

before implementing her strategies include: what is the best hedge ratio and what is the 

best time horizon for this hedge? Our methodology allows us to answer these two 

questions. 

 

IV. ECONOMETRIC METHODOLOGY 

Table 1 shows the six metals markets our data set covers. All these metals are 

traded on the London Metal Exchange: Aluminum, Copper, Lead, Nickel, Tin, and Zinc.  

Our dataset is longer than those in previous studies and provides the daily close price for 

both the cash and futures prices dating back to July of 1998 and up to October 2006.  The 

futures data is collected from Futuresource, a database specifically designed for 

commodity traders.  The futures price data represent the near-by futures contract or the 

contract with the closest settlement date and rolled over 10 days prior to expiration. Cash 

prices used are very closely related to the second bell close on the LME, since nearly all 

metals pricing is based on this quote. 

 

[INSERT TABLE 1 HERE] 
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Table 2 illustrates the recent increased volatility in the metal markets: the price 

standard deviation increased across the six metals by an average of 174%.  The table also 

reports the ratio of the standard deviation to the mean price to indicate how volatility 

increased in proportion to the average price for all six of the base metals.  This statistic 

indicates that both mean prices and standard deviation increased over the period. Figure 1 

illustrates the increased volatility prevailing in the current commodity landscape.  The 

figure shows the dramatic upward shift in prices that has occurred in all six of the 

contacts over the last two years of our sample.  We observe that mean aluminum futures 

prices increase over 41% after the break point in March 2005, with a record high being 

reached on May 11, 2006.  Copper provides a similar story, but the mean futures prices 

more than doubles (137%) with a record high also being reached on May 11.  The copper 

contract is usually regarded as the leading base metal, primarily because of its large 

trading volume, which helps explain the contract’s significant uptrend in comparison to 

aluminum, lead, nickel, and tin. Finally, Panel A illustrates the increase of futures prices 

in the zinc market of over 100%. Lead’s historical prices reached a record high on 

October 16 and the mean futures price increasing over 77%.  Nickel’s price path parallels 

that of copper with its price more than doubling (124%).  Again, the record high was 

established on October 16.  Tin increases modestly in comparison to Lead and Nickel 

with a much less dramatic increase of 51% with a record high being set on October 16. 

 

[INSERT FIGURE 1 HERE] 

 

[INSERT TABLE 2 HERE] 
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Empirically, the estimation follows the derivation provided by Benninga et al. 

(1984). First, let’s assume that a commodity purchasing department for a beverage 

company has to buy some quantity (Q) of aluminum at t=1.  The price (P1) at period t=1 

is uncertain since one is unable to predict future prices.  The commodity trader can 

purchase futures (F0) at t=0 to offset the uncertainty of the price (P1) at t=1.  The income 

of the firm after implementing the hedge is, therefore, represented in equation (1) below, 

QP1 + X(F0 – F1) (1) 

where F1 represents the futures price at t=1 and X represents the trader’s hedge.  

In this case, the quantity X represents a long position in the futures market and the 

difference in the two futures prices will establish whether the hedge was favorable. 

 

In order to derive the optimal hedge ratio, one must assume that the futures 

market is an unbiased predictor (market efficiency) of the spot market which is denoted 

below in equation (2).  This assumption is not unrealistic given the wide body of research 

on cointegration that indicates that futures and spot prices do share a mean-reverting 

relationship in the long run (Lien and Luo (1993), Geppert (1995), Alexander (1999), 

CLS (2004)).  It is also assumed that the spot price shares a linear relationship with the 

futures market or that spot prices can be regressed on futures prices.  This holds if ε, the 

error term, is not correlated with F1 (Benninga et al (1984)).  

F0=E0(F1)=E0(P2) (2) 

P1 =  α + β F1 + ε (3) 



Journal of Risk and Financial Management 
 

56 
 

  Subsequently, the variables are differenced to rid the model of this inherent 

problem as illustrated below in equation (4).  All the assumptions still hold if equation (4) 

is estimated in favor of equation (3). 

(P1 – P0) = α + β (F1 – F0) + ε (4) 

Equation (5) replicates equation (1) but in this case the dependent variable is 

included to capture the income of the firm after the hedge is completed.  

I = QP1 + X*(F0 – F1) (5) 

The expected income of the firm is found to equal the cost of the spot market 

requirement under the unbiasedness assumption in equation (2).  This relationship is 

denoted below in equation (6), where the two futures prices cancel out under the 

assumption of unbiasedness.  The only reason remaining to hedge is to minimize the risk 

that the commodity poses.  

E0(I) = Q*E0(P1) + X*(F0 – E0(F1)) = Q*E0(P1) (6) 

 

If the commodity trader allows his hedge position to equal the product of the 

coefficient in the regression equation (β) with the physical requirement of the commodity 

(Q) then equation (7) below follows.  This is the result of substituting (β * Q) for X in 

equation (5). 

I = Q (P1 - β F1) + Q β F0 (7) 

Solving equation (3) for (P1 - β F1) allows the substitution of (α + ε) into equation 

(8) below: 

I = Q (α + ε) + Q β F0 (8) 
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Equation (8) proves that the optimal hedge ratio is X = (Q β) and it indicates that 

the only remaining uncertainty in the equation is in the error term which, by definition, 

cannot be hedged.  Therefore, all income variance is eliminated and the only reason for 

the trader to hedge is to minimize the risk variance captured by (Q β).  This finding 

proves that the minimum variance hedge ratio is also the optimal hedge ratio.  

Equation (9) represents the minimum variance hedge ratio defined by Ederington 

(1979) when the trader/producer is attempting to minimize income variance.    

Var I = Q2 Var P1 + X2 Var F1 – 2 Q X Cov (P1 , F1) (9) 

 The minimum variance hedge can also be represented as equation (10) below with 

the use of simple differentiation: 

X = Q Cov (P1 , F1) / Var F1 (10) 

  Note that X/Q is equivalent to β, the coefficient representing the hedge ratio in 

equation (4), which is also equivalent to the expression Cov (P1 , F1) / Var F1.   

 Given this proof, it is theoretically valid to empirically estimate the optimal hedge 

ratio with the differenced form equation (4) above.  Before estimating this model, it needs 

to be addressed how the optimal hedge ratio will be estimated for the different hedging 

horizons.  These estimation techniques are produced in the studies by Geppert (1995) and 

CLS (2004).  Both studies prove that the price changes (∆Pt and ∆Ft) in equation (4) 

should be k-period differenced to properly estimate a respective k-period hedging horizon 

optimal hedge ratio.  Simply put, this means that the frequency of the data must match the 

hedging horizon of the estimated optimal hedge ratio.  A major drawback in the Geppert 

study is the use of overlapping differencing to prevent the sample size from becoming too 
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small.  As CLS points out, such a method produces correlated observations which lead to 

a regression that has autocorrelated error terms.  This should be avoided to eliminate the 

upward bias in estimates of the statistical significance of coefficient estimates.  The 

sample size in the present study is large enough to warrant the use of non-overlapping 

differences which prevents the troublesome properties of autocorrelated error terms 

produced by overlapping differencing. 

 

The next step in the methodology is to test for unit root in the prices for both the 

spot and futures in all six of the base metals.  This is necessary because, as market 

efficiency implies, futures and spot prices should move together over time.  Under market 

efficiency, if the futures move in one direction then so do the spot prices, implying that if 

both series are I(1) then they also should be cointegrated.  Perron (1989) unit root tests 

are performed to account for the breaks in the data that are quite obvious when visually 

examining Figures 1-6.  This method tests for stationarity after detrending the series and 

allowing for structural breaks.  The structural breaks in this test should be exogenous.  

This is easily supported in the base metals as speculative hedge funds have increasingly 

emerged in commodity markets to create more balanced portfolios.  This phenomenon 

has coincided with the price increases outlined in Figures 1-6 and would be difficult to 

conceive as anything but exogenous in the causality of futures prices.  Detrending the 

series using both slope and intercept shifts are employed after several updates to the study 

have shown this method to be preferred (Pesaran (1997)).  Choosing the break points for 

these tests is done by visually examining the data to determine the break in the data 

which is used in estimating the test statistic. 
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After the unit root tests are performed, it is necessary to evaluate whether 

cointegration exists among the prices of both the futures and spot markets.  Again, market 

efficiency implies that this is the case.  CLS only assumes cointegration so this study 

improves upon this by empirically verifying the long-run co-movement.  Cointegration is 

tested using the Pesaran et al method (2001) which transforms equation (4) into the 

unconstrained version of the error-correction model denoted by equation (11) below: 

∆Pt =  α - β 1∆Ft-1 – β 2 ∆Ft-2 + β 3∆Pt-1 + β 4∆Pt-2 + Φ1 Ft-1 + Φ2 Pt-1 + εt (11) 

In (11), two lags are included for the purpose of uniformity but in the actual 

estimation of the test, lags will be determined with the Akaike Information Criterion 

(AIC) model selection test.  The Pesaran approach uses an F-statistic to test whether the 

lagged level variables are jointly significant [Φ1= Φ2=0]. Critical values for these tests are 

obtained from the study by Pesaran et al (2001).  These tests are performed with the 

weekly data that are also used in the unit root tests. 

After testing for cointegration, the simultaneous equation models considered by 

Pesaran (1997) in equation (8) of that study is adapted to jointly estimate the ratios, 

which allow us to evaluate the long-run relationship that exists between spot and futures 

prices enabling a dynamic model that corrects short-run deviations from the long-run 

equilibrium (Alexander (1999).  Equation (12) is “…parameterized so as to be closely 

associated with the error-correction models encountered in the vector autoregressive 

models with cointegration” CLS (2004): 

(P1 – P0) = α1 + α2Pt-1 + α3Ft-1 + β (F1 – F0) + ε (12) 



Journal of Risk and Financial Management 
 

60 
 

This equation differs from the error correction model in that ∆Ft is used instead of 

the ∆Ft-1 term that the vector autoregressive model yields.  This alteration is supported 

theoretically in the CLS study which uses ∆Ft because it explicitly represents the short-

run hedge ratio.  Additionally, a simultaneous equations approach is avoided because the 

interest lies only in the short-run and long-run ratios.  In equation (12) both the short-run 

and long-run hedge ratios can be estimated where - α3 / α2 is the long-run hedge ratio, as 

proved by Geppert, and β is the short-run hedge ratio.  This eliminates the problem 

associated with equation (4) only incorporating short-run information.  It is anticipated 

that the long-run hedge ratio will remain constant and that the short-run ratio will 

converge to the long-run ratio across greater time horizons.  Equation (12) is supported 

theoretically by CLS and adapted from Pesaran et al. 

 

The final and most important step in the methodology involves testing the out-of-

sample hedging effectiveness.  Out-of-sample hedging effectiveness will enable the 

researcher to evaluate how effective the hedging strategy is over increasing hedging 

horizons.  Using equation (13) as the hedged portfolio, hedging effectiveness will be 

determined by equation (14) which frequently serves as a measure of hedging 

effectiveness in the body of research on optimal hedge estimation (see among others, 

Anderson and Danthine (1981) or Meyers and Thompson (1989)): 

∆Vh = Q (∆Pt ) + X(∆Ft) (13) 

1 – [Var(∆Vh) / Var (∆Pt)] (14) 

The first half of the sample will be utilized to compute the optimal hedge ratio 

across all of the hedging horizons with these estimated hedge ratios being substituted for 
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X in equation (13).  Furthermore, the second half of the data set will be used in 

calculating the remainder of the coefficients with Q being set to 1.  Ultimately, this 

equation represents the amount of variance reduced with the implementation of the hedge 

above and beyond that of an unhedged position.  

 

V. RESULTS 

The first part of the methodology involves testing for unit root or the stationarity 

of the variables.  Table 3 shows the results of the unit root tests conducted on the weekly 

data for each market.  All the variables except for the futures prices on zinc appear to be 

I(1) or integrated of order 1.  The λ represents the proportion of the sample at which the 

break point occurs, measured from the beginning of the data sample to the breaks, which 

are determined visually.2 The finding on zinc might be attributed to the low power of unit 

root tests.  In any case, the test statistic is close to passing the test and would 

hypothetically pass at the 12% level of significance.  The DF-GLS test was also used to 

provide further insight into the results, and the finding from this test shows that zinc does 

in fact have unit root.   These findings coupled together point to zinc futures being I(1).  

The fact that the cash prices have unit root suggests the futures should as well, given the 

no-arbitrage condition and market efficiency condition assumed in the literature (CLS 

(2004)).  Therefore, all prices are assumed to suffer from unit root. 

 

[INSERT TABLE 3 HERE] 
                                                 
2 A range of possible break points were selected including the minimum, mean, and maximum.  All three of 
these were tested with their respective lambda statistic and all proved to change the results very little.  Also, 
the test statistics were calibrated as needed to more appropriately capture a break that falls between the 
values offered in the study.  These were altered approximately 0.75 for each incremental move away from 
the lambda statistic to produce more reliable estimates.  
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Given that all the variables appear to be integrated of order 1, the optimal hedge 

ratios are calculated for 9 hedging horizons ranging from one day, one week to eight 

weeks. The results are reported in Table 4.  All the estimates in Table 4 prove to be 

significant at the 1% level of significance.  Estimation of the ratios is performed using 

simple OLS from equation (4).  The variables are differenced to account for unit root and 

autocorrelation.  Ultimately, all the optimal hedge ratios do not converge towards one 

across greater hedging horizons.  Many of them do appear to fluctuate across the horizons 

but each of the markets exhibit a distinct trend (except aluminum) towards a value greater 

than one.  The very short horizon (one-day) optimal hedge ratios are all less than 0.65 

but, as soon as the differentiation frequency is increased to 1-week, the optimal ratio 

increase to a range from 0.83 (Tin) to 0.99 (Nickel). The ratio at the 4-week horizon are 

all greater than 1, ranging from 1.00 (Aluminum and Copper) to 1.11 (Nickel). At the 

longest time horizon we study, the optimal ratios range from 1.00 (Aluminum) to 1.17 

(Nickel). Overall, the average (median) 8-week hedging horizon across the six metals is 

roughly 1.074 (1.066).  Empirically, this means that the trader should be hedged 7.4% 

above the respective spot position.  This finding is contrary to the findings of CLS and 

Geppert who both found that the optimal hedge ratio converges to one across greater time 

horizons.  Table 4 suggests that, in general, the proportion of spot positions to be covered 

by opposite positions on futures markets is greater than one.  This finding is of 

importance, but at this point, should be considered preliminary since the I(1) prices in this 

study are assumed to trend together over time which can lead to misleading results in an 

OLS regression (Chowdhury (1991)). 
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[INSERT TABLE 4 HERE] 

 

Given that all the variables in the model contain unit root, it is anticipated that all 

the relationships between spot and futures prices share a long-run stochastic trend.  Table 

5 verifies that each of the 6 markets studied do share a mean-reverting relationship, as in 

each case the test statistic is greater than the upper I(1) bound found in the Pesaran study.  

The test employed here has two variables (k), an intercept, and no trend.  The 10% 

critical value is 4.14 in this case, which means that for the series to be cointegrated the 

test statistic must be greater than the 4.14 test statistic.  The use of this test improves on 

several earlier studies that used the Engle-Granger method.  Using this test takes 

advantage of the minimum variance criterion used in the test that is also used in the risk 

management application of this study (Alexander (1999)).  These tests were reinforced 

with the Engle-Granger test that provided the same conclusions as the Pesaran approach. 

 

[INSERT TABLE 5 HERE] 

 

Having confirmed that all the variables within each respective market are 

cointegrated, the associated joint estimation that ties this long-run co-movement together 

is performed.  The estimation approach is CLS’s which jointly estimates the long-run and 

short-run hedge ratios.  Table 6 presents the result from this approach and it is apparent 

that the results are very similar to that of the previous short-run estimation.  This 

estimation, which correctly includes the long-run properties of the cash-futures 
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relationship, should account for the concerns associated with the estimation of equation 

(4).  Correcting for cointegration issues, the results in Table 6 tend to bear out that the 

naïve estimation of equation (4) leads to over-estimation of the optimal hedge ratio. At 

the 8-week horizon, the optimal hedge ratio in Table 6 is lower than that in Table 4 for 4 

of the 6 metal markets, namely aluminum, lead, nickel and zinc. Nonetheless, the results 

in Table 6 confirm that, after controlling for cointegration issues, the hedgers should have 

been overhedged to minimize the variance of their cash position.  Namely, market 

participants should, across the six metals on average, overhedge by 6.7% at the 8-week 

hedging horizon.  One may question whether 7.4% and 6.7% are really different from one 

another.  However, using the hypothetical aluminum requirement of 100,000 MT used in 

Section III as a benchmark, the two different hedge ratios account for a $1.9M difference 

when employing the two hedge ratio values.  Any firm would be more than glad to add 

this additional cost avoidance to their portfolio. Again, these findings are indicative of the 

volatile commodity landscape that has taken form over the recent years. 

 

[INSERT TABLE 6 HERE] 

 

The study by CLS points out that the short-run hedge ratio should approach the 

long-run hedge in this joint estimation.  Table 6 provides confirmation of this fact. First, 

as one can anticipate, at the one day horizon, the two estimates are very different. The 

average value of the percentage difference between the two estimates, measured as 

(Short-run ratio – Long-run ratio) / Long-run ratio, is a high -41%. At the one-week 

horizon, the difference is already greatly reduced to -7.6% and is further reduced at the 2-
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week horizon to -2.7%. Aggregating all other horizons reported in Table 6, the difference 

narrows to an average 0.1% confirming the convergence but we should note that the sign 

of this difference is not consistent either across horizon or across markets. 

Finally, Table 7 presents the findings of how effective these optimal hedge ratios 

would be in a portfolio consisting of cash and futures positions.  All the metals are 

considered in this example to thoroughly evaluate the effectiveness of the hedges.  All the 

values appear to exhibit a common trend towards the mid-90% across the hedging 

horizons. The hedging effectiveness value represents the percentage reduction in variance 

over and beyond a portfolio unhedged.  It is evident that these optimal hedge ratios are 

useful in minimizing variance but even more important, the hedges improve across the 

time horizons.  Namely, a hedge may be more favorable as the hedging horizon is 

lengthened given the nature of price discovery in the spot and futures relationship.   

 

[INSERT TABLE 7 HERE] 

 

A viable question in commodity purchasing departments is: how far out a 

company should hedge given the nature of the commodity landscape?  The empirical 

evidence contained in this study indicates that, in general, a longer hedging horizon may 

help mitigate the risk in the spot market.  The results provided in Table 7 indicate that the 

optimal hedging horizon should be at 8-week or the longest hedging horizon considered 

in this study.  This statement is not saying that the 8 week effectiveness value is always 

greatest at this horizon, as in the case of aluminum the 6-week horizon is preferred to the 

8-week horizon.  Rather, it is evident that these values are generally asymptotically 
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improving across the horizons and therefore, it is inferred that this would also occur 

across a broader dataset.  A longer hedging horizon is the course of strategy advocated in 

this study.  

 

VI. CONCLUSIONS 

This study investigates the optimal hedge ratio and hedging effectiveness for six 

base metals markets. After applying careful econometrics methods, we first document 

that the short-run optimal hedging ratio is increasing in hedging horizon. If a corporate 

hedger is attenuating demand risks for his company with a longer time-frame in the 

futures market, he should increase his exposure to the futures market as his hedging 

horizon lengthens. Second, we show that the optimal hedging ratio, contrary to results in 

other markets, does not converge to the naïve ratio of 1 for our markets over our time-

period over longer time horizons. We document that the appropriate position a hedger 

should take is to over-hedge by over 5% in order to best minimize price impacts. Finally, 

we find that hedging effectiveness for the optimal hedging ratios we computed in an out-

of-sample methodology is very high in the mid-90’s in percentage terms. In other words, 

implementing a hedge with the hedge ratios we determined would eliminate over 90% of 

price uncertainty for large corporation procurement departments. Overall, the best 

hedging decision for these markets is to hedge long-term at about 6 to 8 weeks with a 

slightly greater than one hedge ratio. These results are robust to the increased volatility 

over our data period and are of great interest to many purchasing departments and other 

commodity hedgers. 
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FIGURE 1 
 

Figure 1 graphs in two panels the complete time series of data used in the study. In each panel, 
using the same scale, we highlight the dramatic price increase experienced by the metals markets over the 
study period. From these representations, we determine break points which are reported in Table 2. 
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TABLE 1 – Data Description 

 Table 1 reports the time period and frequency of the data used in our empirical determination of 
the optimal hedge ratio and optimal hedging horizon. All prices are prices from the London Metal 
Exchange (LME). The futures price information is obtained from Futuresource, a platform relaying the 
LME data, and represents the near-by futures contract. The cash prices are related to the second bell close 
on the LME.  
 

 

Base Metal Data Sample Range Frequency Observations 
Aluminum July 8,1998 - October 19,2006 Daily  2068 

Copper July 8,1998 - October 19,2006 Daily  2066 
Lead July 8,1998 - October 19,2006 Daily  2068 

Nickel July 8,1998 - October 19,2006 Daily  2063 
Tin  July 15,1998 - October 19,2006 Daily  2064 

Zinc July 15,1998 - October 19,2006 Daily  2058 
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TABLE 2 - Descriptive Statistics 

Table 2 reports sample descriptive statistics for the cash prices for all 6 metal markets investigated in the 
study. Over the sample period, each of these markets exhibited a large change in both price level and 
volatility level. The table reports the mean, maximum, minimum and the standard deviation of prices for 
each market for the two distinct periods: before the price level change break and after the price level 
change break. The break points are determined visually from the historical price charts and are reported in 
the table below. In addition, the table reports the ratio of volatility to level of prices (σ/µ) before and after 
the break to confirm that the break represents both a change in level and a change in volatility in prices. 
 

Metal
ALUMINUM Break Point Date
Mean 41%
Standard Dev 97%
Maximum 45%
Minimum 45%
σ/µ
COPPER
Mean 137%
Standard Dev 272%
Maximum 175%
Minimum 114%
σ/µ
LEAD
Mean 77%
Standard Dev 56%
Maximum 79%
Minimum 67%
σ/µ
NICKEL
Mean 124%
Standard Dev 150%
Maximum 87%
Minimum 179%
σ/µ
TIN
Mean 51%
Standard Dev 15%
Maximum 41%
Minimum 65%
σ/µ
ZINC
Mean 114%
Standard Dev 452%
Maximum 137%
Minimum 58%
σ/µ

$4,442

0.275

$693

$1,178

% Increase

$2,213
$894

$3,960

$8,095
$887

$6,000

$1,672
$745

$4,770
$1,796
$8,650
$2,865

$989
$165

0.377

$16,126

$7,795
$3,638

Break Point Date

$162

$3,785

$7,204

$769

0.247

$5,371
Break Point Date

$862

Break Point Date

$1,777
$17,100

$2,186

0.240

$1,161

Break Point Date
$2,012
$483

0.117

$1,339

0.163 40%

Before Break After Break

$2,169
$354

$3,180

$1,540
$180

57%

0.189 0.167 -12%

$560

$415
$1,540

$3,140

Break Point Date

$106

0.156 0.404 158%

12%

0.143 0.110 -23%

$1,036

17-Mar-05

15-Nov-04

29-Jan-04

17-Mar-05

18-Mar-04

8-Jan-04

$1,688

$11,000

$31,900
$10,550
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TABLE 3 – Perron Unit Root Test 

Table 3 reports the results of the Perron Unit Root test performed on both the cash and the futures price 
time series. The Perron Unit Test allows to determine if the price series is integrated of order 1, I(1).  Unit 
root testing was performed on weekly data. λ represents the proportion of the sample at which the break 
points occurs. The tests are based on Perron (1989) 10% critical values with both a slope and intercept 
shift. * denotes an I(1) series or unit root. 
 

 

Variables Cash Futures 
METAL Sample Frequency λ Test Statistic Critical Value λ Test Statistic Critical Value 

ALUMINUM Weekly (433) 0.8 -3.34* -3.69 0.8 -3.53* -3.69 
COPPER Weekly (433) 0.7 -2.77* -3.86 0.7 -2.51* -3.86 
LEAD Weekly (433) 0.7 0.02* -3.86 0.7 0.02* -3.86 
NICKEL Weekly (433) 0.7 -0.38* -3.86 0.7 0.14* -3.86 
TIN Weekly (433) 0.7 0.71* -3.86 0.7 -0.64* -3.86 
ZINC Weekly (433) 0.9 -2.53* -3.46 0.8 -3.97 -3.86 
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TABLE 4- OLS Minimum Variance Hedge Ratio 

Table 4 reports the empirical results of estimating the optimal minimum variance hedge ratio for each of 
the six metal markets. The estimation in this table relies on Equation (4): 

(P1 – P0) = α + β (F1 – F0) + ε 
where the MV Hedge Ratio reported is the point estimate of β in Equation (4) found with an Ordinary Least 
Squares (OLS) estimation. The table also contains the standard deviation of the estimate and the adjusted 
R-Square of the OLS regression. The analysis is repeated at different level of differentiation from as short 
as one day to as long as 8 weeks. Due to data constraint (our time series contains 433 weeks worth of data), 
we limit our longest hedging horizon to 8 weeks to insure our results remain statistically meaningful. 
 

 

METAL

1 
Day

1 
Week

2 
Weeks

3 
Weeks

4 
Weeks

5 
Weeks

6 
Weeks

7 
Weeks

8 
Weeks

ALUMINUM 0.475 0.909 0.973 0.996 1.002 1.020 1.067 1.054 1.006
(0.020) (0.020) (0.028) (0.028) (0.031) (0.036) (0.031) (0.038) (0.029)
0.210 0.824 0.853 0.899 0.907 0.903 0.940 0.927 0.959

COPPER 0.391 0.860 1.007 1.032 1.001 1.018 1.051 0.990 1.026
-0.019 -0.021 -1.027 -0.015 -0.020 -0.025 -0.016 -0.014 -0.016
0.178 0.800 0.868 0.973 0.960 0.953 0.983 0.988 0.987

LEAD 0.654 0.951 1.023 1.022 1.075 1.055 1.100 1.046 1.108
-0.023 -0.027 -0.036 -0.028 -0.049 -0.032 -0.034 -0.034 -0.032
0.284 0.749 0.792 0.904 0.820 0.930 0.938 0.941 0.957

NICKEL 0.526 0.992 1.103 1.074 1.116 1.002 1.084 1.034 1.173
-0.022 -0.025 -0.028 -0.037 -0.032 -0.027 -0.021 -0.047 -0.044
0.218 0.788 0.879 0.853 0.920 0.944 0.975 0.892 0.932

TIN 0.443 0.832 0.872 1.004 1.012 1.062 1.030 1.043 1.053
-0.021 -0.026 -0.028 -0.023 -0.030 -0.043 -0.028 -0.029 -0.032
0.185 0.701 0.820 0.903 0.915 0.880 0.951 0.957 0.954

ZINC 0.554 0.982 0.986 1.099 1.036 1.002 1.059 1.117 1.079
-0.021 -0.020 -0.025 -0.023 -0.024 -0.016 -0.024 -0.017 -0.014
0.255 0.853 0.884 0.943 0.948 0.979 0.966 0.986 0.992

MV Hedge Ratio
Std. Deviation

Adj. R-Squared

MV Hedge Ratio
Std. Deviation

Adj. R-Squared

Adj. R-Squared

MV Hedge Ratio
Std. Deviation

Adj. R-Squared
MV Hedge Ratio

Std. Deviation

Adj. R-Squared

MV Hedge Ratio
Std. Deviation

Adj. R-Squared
MV Hedge Ratio

Std. Deviation

Statistic
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TABLE 5 – Pesaran Cointegration Tests 

Table 5 reports the results of test statistics about the cointegration of the data series.  Specifically, the 
Pesaran cointegration test (1997) is run. The test employed has two variables (k), an intercept and no trend. 
The 10% critical value is 4.14 in this case. Cointegration was also found to be the case in Engle-Granger 
tests using ADF and the Engle-Granger test statistics. 

 

METAL
ALUMINUM
COPPER
LEAD
NICKEL
TIN
ZINC 6

5

5
6

5.06 YES
0.64 7.936

# of Lags
5 1.02

Beta F-Statistic Cointegration

YES
9.87

11.23
6.00

12.87

0.58
0.83
0.60
0.72

YES
YES
YES
YES
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TABLE 6 – Joint Estimation of the Short-Run and Long-Run MV Hedge Ratios 

Table 6 reports the empirical results of estimating the optimal minimum variance hedge ratio for each of 
the six metal markets. The estimation in this table relies on Equation (12): 

(P1 – P0) = α1 + α2Pt-1 + α3Ft-1 + β (F1 – F0) + ε 
where the (short-run) MV Hedge Ratio reported is the point estimate of β in Equation (12). The table also 
contains the standard deviation of the estimate and the adjusted R-Square for that estimation. The long-run 
MV Hedge ratio is computed as –α3/α2 and is also reported. The analysis is repeated at different level of 
differentiation from as short as one day to as long as 8 weeks. Due to data constraint (our time series 
contains 433 weeks worth of data), we limit our longest hedging horizon to 8 weeks to insure our results 
remain statistically meaningful. 
 

 

METAL

1 
Day

1 
Week

2 
Weeks

3 
Weeks

4 
Weeks

5 
Weeks

6 
Weeks

7 
Weeks

8 
Weeks

ALUMINUM 0.624 0.946 0.981 0.985 0.982 1.009 1.033 1.013 0.987
(0.021) (0.019) (0.025) (0.025) (0.027) (0.030) (0.031) (0.034) (0.027)
0.990 0.996 0.992 0.997 0.994 0.995 0.991 1.007 0.983
0.305 0.859 0.887 0.922 0.935 0.941 0.954 0.954 0.971

COPPER 0.487 0.901 1.022 1.036 1.009 1.044 1.063 0.999 1.042
(0.020) (0.020) (0.025) (0.015) (0.020) (0.023) (0.017) (0.014) (0.016)
1.017 1.026 1.033 1.045 1.040 1.046 1.061 1.050 1.060
0.227 0.829 0.894 0.976 0.967 0.966 0.987 0.990 0.990

LEAD 0.716 0.967 1.029 1.018 1.063 1.033 1.078 1.059 1.100
(0.023) (0.025) (0.033) (0.027) (0.046) (0.031) (0.035) (0.035) (0.035)
1.044 1.053 1.056 1.052 1.064 1.053 1.065 1.065 1.053
0.335 0.783 0.830 0.918 0.862 0.944 0.949 0.952 0.963

NICKEL 0.597 0.996 1.088 1.055 1.109 0.999 1.059 1.051 1.128
(0.023) (0.024) (0.027) (0.035) (0.032) (0.028) (0.023) (0.047) (0.048)
1.054 1.063 1.068 1.059 1.072 1.033 1.042 1.069 1.091
0.262 0.810 0.899 0.889 0.935 0.952 0.979 0.921 0.952

TIN 0.596 0.908 0.926 1.004 1.009 1.066 1.015 1.043 1.033
(0.021) (0.024) (0.026) (0.024) (0.030) (0.034) (0.025) (0.024) (0.028)
1.027 1.030 1.030 1.025 1.033 1.038 1.030 1.030 1.024
0.285 0.768 0.859 0.927 0.939 0.926 0.965 0.971 0.969

ZINC 0.617 0.994 0.993 1.058 1.002 0.997 1.073 1.015 1.112
(0.023) (0.025) (0.018) (0.018) (0.026) (0.019) (0.022) (0.031) (0.038)
1.032 1.012 1.029 1.036 1.032 1.032 1.029 1.031 1.031
0.334 0.912 0.947 0.966 0.975 0.977 0.991 0.990 0.991

MV Hedge Ratio
Std. Deviation

Adj. R-Squared

MV Hedge Ratio
Std. Deviation

Adj. R-Squared
-α3/α2

-α3/α2

Adj. R-Squared

MV Hedge Ratio
Std. Deviation

Adj. R-Squared
MV Hedge Ratio

Std. Deviation

-α3/α2

-α3/α2

Adj. R-Squared

MV Hedge Ratio
Std. Deviation

Adj. R-Squared

-α3/α2

MV Hedge Ratio
Std. Deviation

Statistic

-α3/α2
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TABLE 7 – Hedging Effectiveness using Out-of-Sample Analysis 

Table 7 reports the empirical results of implementing the optimal long-run MV Hedge Ratio as determined 
with the technique used in Table 6. However, in order not to resample, we split the sample in two halves. 
The first half of the data is used to estimate Equation (12) and to determine the optimal long-run MV 
Hedge Ratio. This optimal Hedge Ratio was then used to put in place a hedged position for the second half 
of the sample. We keep track of the changes in value of that portfolio defined as Equation (13): 

∆Vh = Q*(∆Pt ) + X*(∆Ft) 
We use the series of ∆Vh to compute the Hedging Effectiveness as defined in Equation (14): 

1 – [Var(∆Vh) / Var(∆Pt)] 
The table contains both the estimated optimal Hedge Ratio and the corresponding Hedge Effectiveness 
achieved. 
 
 

METAL Statistic 

1  
Week 

2  
Weeks 

3  
Weeks

4  
Weeks 

5  
Weeks

6  
Weeks 

7  
Weeks

8  
Weeks

ALUMINUM Hedging Effectiveness 0.839 0.850 0.927 0.902 0.899 0.960 0.936 0.942 
  Optimal Hedge Ratio 0.923 1.037 0.976 1.080 1.052 1.090 1.026 1.1066 
COPPER Hedging Effectiveness 0.747 0.773 0.844 0.887 0.842 0.932 0.924 0.962 
  Optimal Hedge Ratio 0.876 0.912 0.995 1.015 1.091 1.074 1.084 1.031 
LEAD Hedging Effectiveness 0.916 0.935 0.921 0.943 0.957 0.949 0.965 0.966 
  Optimal Hedge Ratio 0.964 1.012 1.002 1.058 1.059 1.025 1.064 1.098 
NICKEL Hedging Effectiveness   0.789 0.815 0.860 0.892 0.926 0.935 0.947 0.953 
  Optimal Hedge Ratio 0.984 1.054 1.036 1.093 1.048 1.011 1.112 1.100 
TIN Hedging Effectiveness 0.799 0.846 0.882 0.916 0.932 0.914 0.926 0.954 
  Optimal Hedge Ratio 0.914 0.938 1.012 1.009 1.045 1.037 1.055 1.041 
ZINC Hedging Effectiveness 0.869 0.881 0.900 0.912 0.897 0.925 0.946 0.979 
  Optimal Hedge Ratio 0.979 0.999 1.078 1.001 1.071 1.036 1.050 1.093 
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