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Abstract 
Purpose 
This study quantified the performance of coronary artery motion artifact metrics relative to human observer 
ratings. Motion artifact metrics have been used as part of motion correction and best-phase selection 
algorithms for Coronary Computed Tomography Angiography (CCTA). However, the lack of ground truth makes 
it difficult to validate how well the metrics quantify the level of motion artifact. This study investigated five 
motion artifact metrics, including two novel metrics, using a dynamic phantom, clinical CCTA images, and an 
observer study that provided ground-truth motion artifact scores from a series of pairwise comparisons. 
Method 
Five motion artifact metrics were calculated for the coronary artery regions on both phantom and clinical CCTA 
images: positivity, entropy, normalized circularity, Fold Overlap Ratio (FOR), and Low-Intensity Region Score 
(LIRS). CT images were acquired of a dynamic cardiac phantom that simulated cardiac motion and contained six 
iodine-filled vessels of varying diameter and with regions of soft plaque and calcifications. Scans were repeated 
with different gantry start angles. Images were reconstructed at five phases of the motion cycle. Clinical images 
were acquired from 14 CCTA exams with patient heart rates ranging from 52 to 82 bpm. The vessel and shading 
artifacts were manually segmented by three readers and combined to create ground-truth artifact regions. 
Motion artifact levels were also assessed by readers using a pairwise comparison method to establish a ground-
truth reader score. The Kendall's Tau coefficients were calculated to evaluate the statistical agreement in 
ranking between the motion artifacts metrics and reader scores. Linear regression between the reader scores 
and the metrics was also performed. 
Results 
On phantom images, the Kendall's Tau coefficients of the five motion artifact metrics were 0.50 (normalized 
circularity), 0.35 (entropy), 0.82 (positivity), 0.77 (FOR), 0.77(LIRS), where higher Kendall's Tau signifies higher 
agreement. The FOR, LIRS, and transformed positivity (the fourth root of the positivity) were further evaluated 
in the study of clinical images. The Kendall's Tau coefficients of the selected metrics were 0.59 (FOR), 0.53 (LIRS), 
and 0.21 (Transformed positivity). In the study of clinical data, a Motion Artifact Score, defined as the product of 
FOR and LIRS metrics, further improved agreement with reader scores, with a Kendall's Tau coefficient of 0.65. 

Conclusion 
The metrics of FOR, LIRS, and the product of the two metrics provided the highest agreement in motion artifact 
ranking when compared to the readers, and the highest linear correlation to the reader scores. The validated 
motion artifact metrics may be useful for developing and evaluating methods to reduce motion in Coronary 
Computed Tomography Angiography (CCTA) images. 

1 Introduction 
Coronary CT Angiography (CCTA) has shown benefit for detecting and diagnosing coronary artery disease.1-
3 Numerous improvements have been made to CCTA acquisition techniques to increase the temporal resolution 
and to reduce the effects of vessel motion, including retrospective and prospective ECG gating,4 dual-source 
acquisition,7 and single-beat wide-cone beam imaging.5, 6 Algorithms have also been introduced to reduce the 
effects of vessel motion after acquisition, including motion compensated reconstruction algorithms, motion 
correction algorithms, and automatic determination of the lowest-motion phase for viewing.8-14 While these 
efforts have reduced the effects of motion, residual vessel motion artifacts such as blur, deformation, and 
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shading may still be present. As reported by a recent study, motion artifacts caused by small levels of coronary 
artery motion can challenge the visual grading of stenosis, despite the high temporal resolution of the CT 
acquisition.22 

Quantifying the level of motion artifact is key for developing and evaluating acquisition and algorithmic methods 
to reduce the effects of motion. Algorithms have been proposed that use motion metrics to optimize CCTA 
reconstruction to reduce motion artifacts.11, 12, 14 Several algorithms have also been proposed to determine 
the lowest-motion phase, with the algorithms generally representing the level of motion through a metric and 
then selecting the phase that optimizes this metric.8-10, 23 Some algorithms use metrics of motion, such as the 
correlation coefficient between images at adjacent phases, to determine the lowest-motion phase.8, 9, 14 Other 
algorithms use metrics of vessel image quality or motion artifact severity to identify the lowest-motion phase, 
such as metrics of entropy, positivity, and circularity.10, 11 

Although motion artifact metrics have been widely used to improve CCTA images, it has been challenging to 
validate how well the metrics represent the level of motion artifact. The lack of ground-truth motion data is one 
challenge for validating motion artifact metrics. Another challenge is the complexity of motion artifacts, which 
depend on the interrelated combination of both patient and CT scanner factors. Patient factors include heart 
rate, artery diameter and orientation, and the presence of pathologies such as calcifications and soft plaques. 
Gantry speed, start angle, contrast level, and spatial resolution are examples of scan factors that affect motion 
artifacts. 

This study presents a procedure for evaluating continuously valued metrics that quantify the level of vessel 
motion artifact against reader scores. Five motion artifact metrics, both previously proposed metrics and novel 
metrics, were evaluated using dynamic phantom data and clinical CCTA images. This study focused on metrics of 
through-plane vessel quality, as the fastest coronary artery segments are when the vessels are in the through-
plane orientation17 The motion artifact metrics were calculated on the images and then compared with ground-
truth scores that were obtained by reader studies using a multiple pairwise comparison method. 

This paper first describes the typical features of coronary artery motion artifacts (Section 2.A) followed by a 
description of the investigated motion artifact metrics (Section 2.B). The phantom (Section 2.C), clinical images 
(Section 2.D) and observer study methods (Section 2.E) are then described, with results presented in Section 3. 

2 Methodologies and materials 
2.A. Motion artifacts 
Motion artifacts are caused by inconsistencies in projection data due to vessel motion. The appearance of 
motion artifacts depends on a complex relationship between patient and acquisition factors. The artifacts 
depend on the vessel motion velocity relative to the projection direction, and thus depend on heart rate, heart 
rate variability, gating, gantry speed, and gantry angle. Artifact size and intensity generally increase with vessel 
size and intensity, respectively. Because of the complexity of motion artifacts, it is difficult to quantify these 
motion artifact effects individually. Therefore, previous studies have proposed motion artifact metrics that 
evaluate the overall vessel image quality.8-13 

Despite the complexity of motion artifacts factors, motion artifacts present as vessel deformation and low-
intensity shading artifacts. Motion artifacts can be classified into different patterns of vessel deformation, as 
shown in Fig. 1: 

• Crescent: The vessel appears with a crescent shape. The orientation of the crescent is determined by 
both the CT gantry start angle and the direction of vessel movement. Figure 1(b) shows that low-
intensity shading artifacts are present in addition to the vessel deformation. 
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• Tails and horns: The vessel has a distinguishable core and one or more high intensity tails [see Fig. 1(c)]. 
When the vessel displacement is small, the tails are short which look like horns [Fig. 1(d)]. Dark shading 
is observed between the tails/horns. 

 
Figure 1 Motion artifacts patterns. (a) Artifact free image (b) Crescent, (c) Tails, (d) Horns. The images are regions of interest 
(ROIs) extracted from the phantom study described in Section 2.C. 

2.B. Evaluated motion artifact metrics 
This section describes the motion artifact metrics investigated in this work. Each metric is calculated on a region 
of interest (ROI) extracted around the vessel, which includes the vessel, shading artifacts and the vessel 
background. The methods used to extract the vessel ROIs for the phantom and clinical data study are described 
in Sections 2.C and 2.D. 

Motion artifact metrics in previous studies were developed for quantifying the relative level of motion artifacts 
within a single exam. For example, metrics were developed for finding the lowest-motion phase within one 
exam or optimizing the reconstruction parameters for a specific exam to reduce motion artifacts. In these 
previous applications, the metrics need only to represent the relative change in motion artifact level for a 
particular patient and vessel. The performance of these metrics is unknown for absolute quantification, i.e., 
consistently measuring motion artifact levels across patients and vessels. The metric values may vary with 
factors such as vessel size, contrast, and the appearance of calcifications and soft plaques. These factors may be 
relatively constant within one exam but vary across patients. Absolute quantification of motion artifact level 
may be important for developing and comparing motion reduction techniques across different patients. In 
addition, metrics validated to measure the absolute level of motion artifact level will also be beneficial for 
relative evaluation of motion artifact level. 

This study investigated three existing metrics (positivity, entropy, and normalized circularity) for the task of 
absolute motion artifact quantification, as well as two additional novel metrics: Fold Overlap Ratio (FOR) that 
quantifies vessel symmetry and Low-Intensity Region Score (LIRS) that quantifies the intensity and area of dark 
shading regions. Unlike previously proposed motion artifact metrics, the FOR and LIRS metrics were designed for 
absolute quantification of motion artifact level. For example, FOR measures vessel symmetry independent of 
vessel diameter and intensity. LIRS is designed as a function of values that are relative to the vessel intensity and 
size. Sections 2.B.1 through 2.B.5provide details about the investigated motion artifact metrics. 

2.B.1. Positivity 
A metric of positivity was previously proposed to guide motion correction and reconstruction.11 The positivity 
metric is designed to penalize outlier pixels with low-intensity values. Positivity is defined as 
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where hj is the intensity of the jth pixel of the vessel ROI. Shading artifacts are assumed to have lower intensity 
than the myocardium. In previous work, the myocardium intensity was calculated as the mean value of the 
pixels surrounding the coronary artery. The threshold T was defined as the myocardium intensity minus the 
standard deviation of the myocardium to identify the shading artifacts while reducing sensitivity to noise. The 
range of positivity is [0, ∞). 

2.B.2. Normalized circularity 
A metric of circularity was previously proposed to quantify motion artifacts,14 as through-plane vessels appear 
as circles when static and deform with motion. The circularity metric is calculated on a binary image 
representing the segmented vessel region (Segmentation procedure described in Section 2.C). Circularity is 
defined as 

 

(2) 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   = 𝑝𝑝2

4𝜋𝜋𝜋𝜋
  ;  

where A and p are area and perimeter of the segmented binary vessel, respectively. The circularity of a perfect 
circle is equal to one, with noncircular shapes having circularity greater than one. Since A and p are measured on 
a pixelized image, the circularity value may be less than one in some cases due to discretization errors. As in 
previous work, the circularity values were transformed to have a range of zero to one, with a value of zero 
indicating high deformation and a value of one indicating a perfect circle. The transformation function, (Eq. 3) 
assumes that vessels with Lcirc > 2 represent high deformation and are assigned a metric value of zero. The 
transformed circularity is called normalized circularity in this study. 

 

(3) 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑛𝑛  =  �1 −  |𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1|
0

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  ≤  2
𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  <  2        

 

2.B.3. Entropy 
A metric of entropy was previously proposed for quantifying motion artifacts.15 Entropy is given by 

 

(4) 𝐿𝐿𝑒𝑒𝑛𝑛𝑒𝑒  = ∑ 𝑝𝑝(ℎ) ln𝑝𝑝(ℎ) 
ℎ𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 ,  

 

Where h is the intensity of a pixel in a vessel ROI. p(h) is the probability of the pixels having intensity h. As in 
previous motion artifact metric work, p(h) was estimated using a Parzen-window technique,16 
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(5) 𝑝𝑝(ℎ)  = 1
𝑁𝑁

 ∑ 𝑅𝑅�ℎ – ℎ𝑗𝑗� 
ℎ𝑗𝑗𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖   

where N is the number of pixels in the ROI, and R(x) is a Gaussian kernel. 

The entropy metric is relatively small when the intensities within the extracted ROI are concentrated within a 
narrow range. The entropy metric increases as the intensity values become more widely distributed. The 
entropy range is from zero to one with zero representing an ROI with uniform intensity. 

Motion causes vessel deformation and low-intensity shading. These artifacts expand the distribution of image 
intensities, causing higher entropy values. One advantage of the entropy method is that it does not require 
segmentation of the vessel or shading artifact regions. 

2.B.4. Fold overlap ratio 
The Fold Overlap Ratio (FOR) is a metric of symmetry proposed to measure vessel deformation. It is calculated 
from a binary image of the segmented vessel region. The segmentation method will be described in Section 2.C. 
The binary image is folded along an axis passing through the segmented vessel centroid. The segmented binary 
vessel pixels are then divided into two subsets, V1 and V2, by the axis, where V1 represents the region that was 
held stationary while V2 is the region that was folded over the axis. FOR is defined as the ratio of the number of 
pixels in the intersection of V1 and V2 to the number of pixels in the union of V1 and V2 

 

(6) 𝐿𝐿𝐹𝐹𝜖𝜖𝜖𝜖 = ‖𝑉𝑉1 ∩ 𝑉𝑉2‖0
‖𝑉𝑉1∩ 𝑉𝑉2‖0

 , 

 

A static through-plane vessel is circular. Therefore, the FOR of a static through-plane vessel is close to one. A 
deformed vessel may have a high FOR when folded across some axes. We selected two orthogonal axes for 
folding, vertical and horizontal, with the smaller FOR selected to represent the FOR of the vessel, 

 

(7) 𝐿𝐿𝐹𝐹𝜖𝜖𝜖𝜖 _𝑉𝑉  =  min�𝐿𝐿𝐹𝐹𝜖𝜖𝜖𝜖_𝑣𝑣𝑒𝑒𝑐𝑐 , 𝐿𝐿𝐹𝐹𝜖𝜖𝜖𝜖_ℎ𝑝𝑝𝑐𝑐�, 
where LFOR_ver and LFOR_hor are the FOR values obtained by folding across the vertical and horizontal axes, 
respectively. The calculation of the FOR metric is illustrated in the flowchart of Fig. 2. 

 
Figure 2 Vessel FOR calculation flowchart. The dark point in the binary images represents the vessel region centroid. 
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2.B.5. Low-Intensity Region Score 
Low-intensity motion shading artifacts depend on vessel size, contrast, and motion, as well as scan conditions 
and the reconstruction algorithm. As the severity of the motion artifact increases, the low-intensity shading 
generally becomes larger in area and more negative in intensity. However, in addition to the effects of motion, 
the size of the shading artifact increases with vessel size, while the shading intensity decreases with increasing 
vessel contrast. The Positivity metric described in Section 2.B.1penalizes the size and intensity of the artifact 
region, without considering the vessel properties. Therefore, the positivity metric may overpenalize large and 
bright vessels, while being less sensitive to motion artifacts in vessels that are small or have less contrast. 

To overcome these potential issues with the positivity metric, we instead propose a Low-Intensity Region Score 
(LIRS). The Low-Intensity Region Intensity Score (LIR-IS) quantifies the low-intensity shading relative to the 
background intensity. LIR-IS is expressed as: 

 

(8) 𝐿𝐿𝐿𝐿𝜖𝜖𝜖𝜖_𝜖𝜖𝐼𝐼 = 𝜖𝜖�̅�𝐿𝐿𝐿𝐿𝐿+ 1024
𝜖𝜖�̅�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+1024

, 

where 𝐼𝐼�̅�𝐿𝜖𝜖𝜖𝜖 is the mean intensity in the dark shading region and 𝐼𝐼�̅�𝑏𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑝𝑝𝑏𝑏𝑛𝑛𝑏𝑏 denotes the mean intensity of the 
vessel background (i.e., the myocardium in clinical images), with both intensities offset by 1024 to ensure a 
positive relative fraction. This metric requires a method to identify the low-intensity shading regions, similar to 
the positivity metric. Since the intensity within the dark shading region is always lower than background tissue, 
the range of the LIR-IS metric is (0, 1], where zero indicates severe artifact. If the image has no identified dark 
shading artifacts, the LIR-IS is set equal to one. 

The Low-Intensity Region Area Score (LIR-AS) is defined as 

 

(9) 𝐿𝐿𝐿𝐿𝜖𝜖𝜖𝜖_𝜋𝜋𝐼𝐼 = 1 − 𝜋𝜋𝐿𝐿𝐿𝐿𝐿𝐿
 𝜋𝜋𝑉𝑉𝑉𝑉𝑉𝑉

 ,   

where ALIR is the total area of all segmented low-intensity shading regions in the vessel ROI, and Avesis the area of 
the segmented vessel region. The LIR-AS metric quantifies the low-intensity shading artifact size relative to the 
vessel size, so that the metric can be sensitive to artifacts in small vessels without penalizing larger vessels. Since 
the low-intensity shading region is usually smaller than the vessel region, LIR-AS ranges from zero to one, with 
one indicating a region without dark shading artifact. 

The LIRS metric is defined as the average of the LIR-IS and the LIR-AS metrics. The range of the LIRS metric is (0, 
1], with zero corresponding to severe artifact and one corresponding to no artifact. 

 

(10) 𝐿𝐿𝐿𝐿𝜖𝜖𝜖𝜖𝐼𝐼 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐿𝐿𝑉𝑉 +𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐴𝐴𝑉𝑉
2
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2.C. Phantom data 
The motion artifact metrics were first evaluated using an experimental dynamic cardiac phantom. A phantom 
was used in this study because it provided a test case with known vessel diameters and contrast levels and with 
known motion phases against which to test the metrics. 

The cardiac phantom modeled the cardiac chambers and coronary arteries (Fig. 3). Six artery models were 
added to the phantom, each filled with iodine-based contrast. The vessel diameters were 2 mm for vessel 1 (V1), 
3 mm for vessels 2 and 3 (V2 and V3), 4 mm for vessels 4 and 5 (V4 and V5), and 5 mm for vessel 6 (V6). The 
vessels contained varying levels of iodinated contrast and contained calcifications and soft plaques in some 
slices. Phantom motion, simulating a 60 bpm cardiac cycle, was controlled by a dynamic platform (Quantitative 
Standard Pulsating Phantom, Fuyo Corporation, Tokyo, Japan). 

 
Figure 3  (a) and (b) The dynamic cardiac phantom shown in two orientations and (c) CT image of the static phantom 
depicting the vessels and the extracted ROIs. The diameters of V1 through V6 are 2, 3, 3, 4, 4, 5 mm. [Color figure can be 
viewed at wileyonlinelibrary.com] 

CT images of the phantom were collected using a wide-cone beam axial scan (256 slice, 16-cm detector 
coverage) at 120 kVp tube voltage, 600 mA tube current, and 0.35 s gantry rotation (Revolution CT, GE 
Healthcare). A variety of motion artifacts were generated by repeating the scan using eleven different gantry 
start angles ranging from 37 to 333 degrees. For each gantry start angle, images were reconstructed at 55%, 
60%, 65%, 70%, and 75% of simulated R-R interval, representing vessel velocities of 65, 53, 33, 17, and 10 mm/s. 
All images were reconstructed by Filtered Back Projection (FBP) with 0.4883 × 0.4883 mm pixel dimensions and 
0.625 mm slice thickness. No motion correction algorithms were applied to the data. 

Regions of interest (ROIs) of size 25 × 25 mm were extracted around each vessel in each reconstructed image for 
further analysis (Fig. 3). The selected ROI size ensured that the deformed vessel and its shading artifacts were 
included in the ROI. For vessel V1, ROIs that contained the myocardium were manually processed to exclude 
those pixels from further analysis. 

The circularity, FOR, and LIRS metrics require binary images of the deformed vessel and/or low-intensity shading 
regions. In the phantom images, the vessel intensity is greater than 500 HU, while the background intensity is 
approximately −460 HU. A threshold of −200 HU was selected as the threshold Tves to segment the bright vessel 
regions, with all pixels greater than Tvesconsidered to be part of the deformed vessel. A threshold, TLIR, of 
−600 HU was selected for segmenting the low-intensity shading regions, with any pixel with value less 
than TLIR identified as shading artifact. To investigate the sensitivity of the FOR and LIRS metrics to these 
threshold parameters in the phantom images, the metrics were also calculated with the Tves threshold varied 
between −250 and −150 HU in increments of 5 HU, and with TLIRvaried between −650 and −550 HU in increments 
of 5 HU. The change in metric value with the change in threshold was evaluated across the ROIs. 

The LIRS and positivity metrics require the mean vessel background value, which in clinical images would be 
equal to the mean myocardium intensity. For the phantom images, the mean vessel background value was 
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calculated as the average of all pixels in the extracted ROI not in the segmented vessel and shading regions. Part 
of the myocardium is visible in the extracted V1 vessel ROI. To prevent this region from biasing the observer or 
metric results, the myocardium pixel values for this vessel were set to background levels prior to vessel 
segmentation. Segmentation of the vessel and low-intensity shading regions was performed on all extracted 
vessel ROIs. Figure 4 displays example segmented vessel and low-intensity shading regions for all motion phases 

 
Figure 4 Vessel and shading region segmentation results for phantom images. The top row displays the original images. The 
center row displays the vessel segmentation results. The bottom row displays the shading artifact segmentation results. (a) 
phase 55%, (b) phase 60%, (c) phase 65%, (d) phase 70%, and (e) phase 75% of the simulated R-R cycle. 

2.D. Clinical data 
The phantom vessel ROIs, which contain only vessel and artifact structures, are relatively simple compared to 
clinical images. The simplified phantom images provide a useful initial evaluation of the motion artifact metrics 
for the ideal case where the artifacts are easy to distinguish through thresholding. After identifying candidate 
metrics using the phantom data, this study then evaluated the metrics on clinical images to investigate 
effectiveness for absolute motion artifact quantification across different patients and varying conditions such as 
heart rate, vessel size, noise levels, and contrast level. 

Fourteen previously acquired CCTA exams were used for this study. The exams were collected at 100 and 
120 kVp tube voltage, depending on patient size (Revolution CT, GE Healthcare). Tube current was modulated 
through automatic exposure control for each patient. Gantry speed was 0.35 s per rotation, with randomly 
varying gantry start angle. All images were collected by axial scan mode, as is the protocol for the wide-cone 
beam acquisition on the investigated scanner. 

The patient heart rates ranged from 52 to 82 bpm. Twenty phases were reconstructed across the 14 exams by 
filtered backprojection, with reconstructed phases ranging from 43% to 82% of the R-R interval. The images 
were reconstructed with 17 to 26 cm Field of View (FOV) and 0.625 mm slice thickness. No motion correction 
algorithms were applied to the data. 

For each dataset, slices containing the through-plane Right Coronary Artery (RCA) were manually identified. 
Since the purpose of this study is to investigate the performance of the motion artifact metrics independent of 
the vessel and shading segmentation algorithms, the RCA ROIs were extracted manually. The vessel and shading 
regions required by the normalized circularity, FOR and LIRS metrics were also segmented manually by three 
expert readers. The ground-truth vessel and shading region segmentations were obtained by combining the 
reader segmentations using the Simultaneous Truth And Performance Level Estimation (STAPLE) method.21 The 
myocardium region, which is required by the LIRS and positivity metrics, was defined as pixels in the ROI that 
were not in the segmented vessel, shading artifact, and lung regions. 
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2.E. Ground truth and metric performance evaluation 
2.E.1. Observer study 
A ground-truth motion artifact level is required for each vessel ROI to assess the effectiveness of the proposed 
metrics. Because of the complex combination of factors that cause motion artifacts, we hypothesize that 
velocity is insufficient for providing a ground-truth artifact level. For example, Fig. 5 demonstrates the 
inconsistency between vessel velocity and artifact level, which will be further quantified in the phantom study. 

 
Figure 5 Example images demonstrating the inconsistency between vessel velocity and motion artifact. Velocities of the 
ROIs are (a) 10 mm/s, (b) 17 mm/s, (c) 17 mm/s, and (d) 33 mm/s. The motion artifact in image (a) is more severe than 
image (b) despite the slower velocity. Images (b) and (c) have the same velocity but different levels of artifact. The vessel in 
image (d) has the highest velocity, but with moderate artifacts. 

This study performed human observer studies to provide a ground-truth artifact score. Likert scale and pairwise 
comparison are two tools that are commonly used for subjective image quality assessment. A previous 
study18 demonstrated that pairwise comparison yielded more accurate reader assessment than the Likert scale. 
This study used a pairwise comparison reader study to obtain ground-truth motion artifact scores against which 
to evaluate the continuously valued motion artifact metrics. 

Two separate observer studies were performed for phantom data and clinical data. Forty vessel ROIs were 
selected randomly for each observer study. For the phantom study, the selected ROIs spanned the range of 
acquired vessel diameters, motion phases, slices, and gantry start angles, as can be seen in the labels in Fig. 6. 
Figure 7 displays the clinical ROIs, with the patient heart rate and motion phase labeled above each image. 

 
Figure 6 Each pair of images represents (left) a phantom vessel ROI randomly selected for the observer study and (right) the 
image of the same vessel segment during a static scan. The label above each selected image states the motion phase 
percentage/diameter (mm)/and the gantry start angle of the selected vessel ROI. 
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Figure 7 Each image represents a clinical vessel ROI randomly selected for the observer study. The label above each image 
states the patient's heart rate/motion phase percentage of the selected vessel ROI. 

The observer studies were performed using the same monitor settings for all readers. Three readers with 
experience in CCTA imaging were sequentially and individually shown all 780 pairs of the 40 ROI images. For the 
phantom data, the readers were trained physicists and engineers in the field of cardiac imaging. For the clinical 
data, the readers were radiologists specializing in cardiothoracic (S. G. B. and Z. R. L.) or body (N. M. K) imaging. 
All images were presented to the readers at the same window level and window width. The ROI images were 
magnified by a factor of three for display, with this magnification factor held constant throughout the observer 
study. For each pairwise comparison, the readers were asked to select the image with the least motion artifacts. 
The readers could also indicate a “tie” if they could not distinguish a difference in image quality between the 
two images. The order of the presented image pairs was randomized across the three readers. The readers were 
blinded to image information such as the phase, gantry start angle, or vessel diameter, blinded to the other 
reader scores, and were blinded to the motion artifact metric values. 

At the beginning of each reader evaluation, all image ROIs were initialized with a score of zero. For each pairwise 
comparison, the score of the image selected by the reader was incremented by one, while the score of the 
unselected image was decremented by one. If the reader selected a tie, no score was added or removed from 
either of the images. At the end of the evaluation, the score for each image and reader represented the number 
of times that image was selected as having better image quality minus the number of times the image was 
selected as having lower image quality. An image's final score was the sum of the three scores obtained from 
the three independent reader evaluations, with higher scores representing lower motion artifact severity. 

2.E.2. Ranking agreement between metrics and reader scores (Kendall's Tau Coefficient) 
The motion artifact metrics described in Section 2.B were calculated for each vessel ROI used in the observer 
studies. The Kendall's Tau coefficient was calculated to quantify the ranking agreement between a motion 
artifact metric and the ground-truth reader score. Kendall's Tau coefficient is a statistic to measure ordinal 
association, or ranking relationship, between two measured quantities.19 It quantifies the similarity of the 
orderings when ranked by two quantities, which in this study were one of the calculated metrics (X) and the 
aggregate reader score (Y). 

The aggregate reader score increases with decreasing motion artifact. For each pair of images (p1, p2), we 
defined the signed difference of the reader scores for two images as 
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(11) ∆𝑝𝑝𝑌𝑌  = �
1,
0,
−1,

𝑒𝑒𝑖𝑖 𝑌𝑌𝑝𝑝1 > 𝑌𝑌𝑝𝑝2
𝑒𝑒𝑖𝑖 𝑌𝑌𝑝𝑝1 = 𝑌𝑌𝑝𝑝2
𝑒𝑒𝑖𝑖 𝑌𝑌𝑝𝑝1 < 𝑌𝑌𝑝𝑝2

  

Using the definition in Eq. 11, ∆𝑝𝑝𝑌𝑌  = 1 when image p1 has fewer artifacts than image p2. 

For metrics that increase with decreasing motion artifact (normalized circularity, FOR, LIRS), ∆𝑝𝑝𝑋𝑋 was similarly 
defined as the sign of the difference of the metric value, i.e., Xp1 and Xp2 

 

(12) ∆𝑝𝑝 𝑋𝑋  = �
1,
0,
−1,

𝑒𝑒𝑖𝑖 𝑋𝑋𝑝𝑝1 > 𝑋𝑋𝑝𝑝2
𝑒𝑒𝑖𝑖 𝑋𝑋𝑝𝑝1 =𝑋𝑋𝑝𝑝2
𝑒𝑒𝑖𝑖 𝑋𝑋𝑝𝑝1 < 𝑋𝑋𝑝𝑝2

 

For metrics that decrease with decreasing motion artifact (entropy, positivity), ∆𝑝𝑝𝑋𝑋 was calculated according to 
the following expression, so that ∆𝑝𝑝𝑋𝑋 = 1 when image p1 has fewer artifacts than image p2. 

 

(13) ∆𝑝𝑝 𝑋𝑋  = �
1,
0,
−1,

𝑒𝑒𝑖𝑖 𝑋𝑋𝑝𝑝1 < 𝑋𝑋𝑝𝑝2
𝑒𝑒𝑖𝑖 𝑋𝑋𝑝𝑝1 =𝑋𝑋𝑝𝑝2
𝑒𝑒𝑖𝑖 𝑋𝑋𝑝𝑝1 > 𝑋𝑋𝑝𝑝2

 

In this study, the 40 ROIs were compared with 780 comparisons, with each ROI compared to all other 
ROIs.  ∆𝑝𝑝 𝑋𝑋,∆𝑝𝑝 𝑌𝑌was calculated for each of the comparisons. A pair 𝑝𝑝1𝑝𝑝2 was concordant if the X and Y scores 
agreed on the ranking of the two ROIs, i.e., ∆𝑝𝑝 𝑋𝑋,∆𝑝𝑝 𝑌𝑌> 0. Then, for L image pairs, the Kendall's Tau coefficient was 
the difference of the fraction of concordant and discordant pairs. Let  ∆𝑝𝑝 𝑋𝑋,∆𝑝𝑝 𝑌𝑌be the indicator of 
concordance. Cp = 1 indicates are concordant. Cp = −1 means the pair of images are discordant. Kendall's Tau 
coefficient was then calculated as: 

 

(14) 𝜏𝜏 =
∑ 𝐶𝐶𝑝𝑝𝐿𝐿
𝑝𝑝=1

𝐿𝐿
  

The range of τ is from −1 (100% negative association) to 1 (100% positive association). 

We used a bootstrap method to evaluate the confidence intervals of the estimated Kendall's Tau coefficients, 
using the following procedure:20 
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• M images were randomly selected from N images without replacement (i.e., for each bootstrap trial, 
some images may be selected more than once, while others may not be selected). In this 
study, M = 40, N = 40. 

• The Kendall's Tau, τb, coefficient was calculated for this resampled data, as described in Eqs. 11-13. The 
duplicates contributed as tied observations. 

• Steps (1) – (2) were repeated n times to obtain τb, b = 1,2,3,…,n. This study used n = 1000. 
• The bootstrap standard error was estimated as: 
 

 

(15) 𝑆𝑆𝑆𝑆𝑏𝑏𝑝𝑝𝑝𝑝𝑒𝑒(𝜏𝜏) = �∑ (𝜏𝜏𝑖𝑖−𝜏𝜏�)2𝑏𝑏
𝑖𝑖=1
𝑛𝑛−1

, 

 

where  was the average τb, b = 1,2,3,…,n. 

2.E.3. Ranking agreement between two metrics 
The bootstrap method described in Section 2.E.2 was also used to compare agreement between two metrics. In 
each iteration of the bootstrap process, both the Kendall's Tau coefficient τb1 of X1 with Y and τb2 of X2 with Y 
were calculated. The standard error of (τb1–τb2) was estimated as 

 

(16) 𝑆𝑆𝑆𝑆𝑏𝑏𝑝𝑝𝑝𝑝𝑒𝑒 (𝜏𝜏1 − 𝜏𝜏2) = � ∑ ((𝜏𝜏𝑏𝑏1−𝜏𝜏𝑏𝑏2)−( 𝜏𝜏�1−𝜏𝜏�2))𝑏𝑏
𝑖𝑖=1

𝑛𝑛−1
, 

The null hypothesis that two metrics have equivalent ranking agreement to the ground-truth reader score was 
tested with the asymptotically normal distributed test statistic 

 

𝑍𝑍 =
𝜏𝜏1 − 𝜏𝜏2

𝑆𝑆𝑆𝑆(𝜏𝜏1 − 𝜏𝜏2)
 ∼ 𝑁𝑁(0,1) 

2.E.4. Linear correlation between metrics and observers 
For some applications, it may be important for the motion artifact metrics to correlate linearly to the reader 
scores, in addition to having good ranking agreement. A linear relationship means that the metric and reader 
scores agree in how they quantify the relative difference between motion artifact levels. Linear regression was 
performed for each investigated metric against the ground-truth reader scores to evaluate whether the metrics 
correlated linearly with the reader scores 
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3 Results 
3.A. Phantom study results 
Figure 8 shows the results of the phantom data observer study, with the ground-truth aggregate reader score 
displayed for each ROI. Images with higher score generally demonstrated less artifacts, such that the images in 
Fig. 8 and are displayed from low to high artifact level. 

 
Figure 8 The 40 phantom images used in the reader study displayed in descending order of reader score. The number 
displayed above each image is the ground-truth aggregate reader score, which was calculated as the sum of the three 
reader scores. 

Figure 9 displays the scatter plots of the aggregate reader score for the phantom vessel ROIs against the vessel 
velocity and diameter. Generally, the reader score decreased with increasing vessel velocity, signifying more 
artifact at higher velocities, as seen in Fig. 9(a). However, the plot demonstrates overlap in reader scores across 
different velocities, suggesting that velocity is not a unique indicator of motion artifact level. Vessel diameter 
had a negligible effect on reader score, as shown in Fig. 9(b). 

 
Figure 9 Scatter plots displaying the relationship between the ground truth and the (a) vessel velocity, and (b) diameter. 

As described in Section 2.C, the vessel and low-intensity regions were segmented by thresholding, with 
thresholds TLIR and Tves set to −200 and −600 HU, respectively. An additional investigation was performed to 
investigate the sensitivity of the metrics to these threshold settings. Figure 10(a) plots the change in FOR, ΔFOR, 
for a range of threshold settings. ΔFOR was calculated as the difference between the FOR metric calculated at a 
particular threshold setting to the FOR metric calculated at the reference −200 HU threshold. The FOR metric 
increased with increasing Tvesvalues, suggesting that a smaller segmented vessel region results in a lower 
estimation of the motion artifact level. However, these changes were relatively small, with a total change of 
~0.07 across the 100 HU threshold range, compared to the total FOR range of 0 to 1. Figure 10(b) similarly plots 
the change in LIRS metric, ΔLIRS, for a range of settings. As the LIRS threshold TLIR is increased, more pixels are 
identified as shading artifact, causing an increased estimation of the level of motion artifacts. While the LIRS 
metric was more sensitive to the threshold setting than the FOR metric, the change in LIRS was relatively robust 
(±0.1) within a 50 HU range around the selected TLIR threshold level of −600 HU. 
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Figure 10  (a) ΔFOR, the average change in FOR metric, is plotted for a range of Tves settings and (b) ΔLIRS, the average 
change in LIRS metric, is plotted for a range of TLIRS settings. Both plots display the average metric change across the 40 
phantom ROIs, with the error bars representing the standard deviation in the change of metric value. For reference, both 
the FOR and LIRS metrics range from 0 to 1, with increasing metric value corresponding to increasing image quality. 

Figure 11 plots the Kendall's Tau coefficients and standard error for all investigated metrics relative to the 
ground-truth reader score. The Kendall's Tau coefficients of the metrics were: 0.35 (entropy), 0.50 (normalized 
circularity), 0.82 (positivity), 0.77 (FOR), and 0.77 (LIRS). For comparison, the Kendall's Tau coefficients between 
the different pairs of readers were 0.81, 0.84, and 0.87. 

 
Figure 11 Ranking agreement between the investigated motion artifact metrics and the ground-truth reader score for the 
phantom study. The error bars represent the standard error. 

The FOR, LIRS, and positivity metrics were found to have statistically significantly higher Kendall's Tau agreement 
than the entropy and normalized circularity metrics (P < 0.05). There was no statistically significant difference 
between the Kendall's Tau values of the FOR, LIRS, and positivity metrics (P > 0.22), suggesting that agreement 
with readers in ranking order is statistically equivalent for these metrics. 

Figure 12 displays scatter plots of the investigated metrics plotted against the ground-truth reader score. The 
results of the linear regression are also displayed on each plot. 
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Figure 12 Scatter plots displaying the relationship between the ground-truth aggregate reader score and the investigated 
metrics (a) entropy, (b) normalized circularity, (c) positivity, (d) LIRS, and (e) FOR. The results of the linear regression are 
also displayed on each plot. 

Because positivity has good ranking relationship with the ground truth but poor linear correlation, a 
transformed positivity metric (TPOS) was also investigated, where the transformed metric is the fourth root of 
the positivity metric. Results are shown in Fig. 13. 

 
Figure 13 Scatter plot displaying the relationship between the transformed positivity metric and the ground-truth aggregate 
reader score. 

The FOR, LIRS, and transformed positivity metrics were selected for further study on clinical data because they 
demonstrated both high ranking agreement and linear correlation to the ground-truth reader score for the 
relatively easier task of quantifying artifact level in the phantom images. 

As an example of metric performance, Fig. 14 displays the 40 ROIs sorted by descending values of the FOR 
metric. While the metric rankings in Fig. 14 are not identical to the reader ranking shown in Fig. 8, both images 
demonstrate similar ranking trends. The images with higher FOR have vessels that appear more circular with less 
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shading artifacts. Images with lower FOR generally contain higher motion artifacts, i.e., longer vessel tails and 
more shading regions. 

 
Figure 14 The 40 images used in the reader study displayed in descending order of the FOR metric. The values of the 
FOR/LIRS metrics are displayed above each image. 

3.B. Clinical study results 
Figure 15 shows the results of the observer study on clinical data with the ground-truth aggregate reader score 
displayed on each ROI. The images with higher score demonstrated less artifacts. Similar to Fig. 8, the images are 
displayed in decreasing order of reader score, i.e., displayed from low to high artifact level. 

 
Figure 15 The 40 clinical images used in the reader study displayed in descending order of aggregate reader score. The 
number displayed above each image is the ground-truth aggregate reader score, which was calculated as the sum of the 
three reader scores. 

Figure 16 plots the Kendall's Tau coefficients representing the agreement between the selected metrics and the 
ground-truth reader scores for the clinical ROIs. The Kendall's Tau coefficients for the phantom study are also 
plotted for comparison. The coefficients of the selected metrics were: 0.21 (TPOS), 0.59 (FOR), and 0.53 (LIRS). 
For comparison, the Kendall's Tau coefficients between the different pairs of readers were 0.65, 0.68, and 0.74. 
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Figure 17 displays scatter plots of the metrics plotted against the ground-truth reader score. The results of the 
linear regression are also displayed on each plot. 

 
Figure 16 Ranking agreement on clinical images between the selected metrics and the ground-truth scores plotted with 
standard error. The Kendall's Tau coefficients for the phantom study are also plotted for comparison. 

 
Figure 17 Scatter plots displaying the relationship between the ground-truth aggregate reader score and the single metrics 
(a) FOR, (b) LIRS, and (c) transformed positivity. The results of the linear regression are also displayed on each plot. 

Of the selected metrics, transformed positivity showed weak agreement to the ground-truth reader scores 
(Kendall's Tau = 0.21, R2 = 0.07). FOR (Kendall's Tau = 0.59) and LIRS (Kendall's Tau = 0.53) demonstrated 
statistical significantly higher Kendall's Tau than the transformed positivity metric (P < 0.05). 

As shown in Fig. 16, the agreement between the metrics and the reader scores was lower for clinical images 
than phantom data. While transformed positivity demonstrated good performance on phantom data, both the 
Kendall's Tau coefficient and linear correlation were weaker when applied to clinical data. One potential 
advantage of positivity is that the metric uses a simple thresholding step to identify regions of low-intensity 
shading. In phantom data, this thresholding step was successful in identifying regions of low-intensity shading. In 
the clinical images, the thresholding step erroneously identified some low-intensity pixels from the lung and 
myocardium as artifact, leading to the low agreement to reader scores. 

The FOR and LIRS metrics, which were designed for absolute artifact quantification, demonstrated both good 
ranking relationship (Kendall's Tau of 0.59 for FOR metric, 0.53 for LIRS metric) and linearity (R2 of 0.49 for FOR, 
0.54 for LIRS) to the ground-truth scores on clinical images. These metrics evaluate complementary motion 
artifact features. In the phantom images, vessel deformation and shading regions were typically jointly visible. 
For clinical images, the vessels deformation and low-intensity shading may not always be jointly visible, as can 
be seen in some of the ROIs in Fig. 7. Therefore, a combination of these two metrics may be beneficial as an 
overall measure of motion artifact level. A compound metric, Motion Artifact Score (MAS), was defined as the 
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product of the FOR and LIRS metrics. The Kendall's Tau coefficient of MAS to the ground-truth score was found 
to be 0.65, which is higher than the individual metric coefficients (0.59 for FOR, 0.53 for LIRS), although this 
improvement was not statistically significant (P > 0.25). Figure 18displays a scatter plot of the MAS metric 
against the ground-truth reader score. The linear correlation was also higher for the compound MAS metric than 
for the individual metrics with an R2of 0.64, compared to 0.49 for the FOR metric and 0.54 for LIRS. 
Figure 19 displays the 40 ROIs sorted by descending values of the MAS metric which demonstrate similar ranking 
trends as the reader results in Fig. 15. 

 

Figure 18 Scatter plot displaying the relationship between the MAS and the ground-truth aggregate reader score. 

 
Figure 19 The clinical images used in the reader study displayed in descending order of the MAS metric, with the MAS value 
displayed above each image. 

4 Discussion 
This study evaluated continuously valued motion artifact metrics against ground-truth reader scores for both 
phantom and clinical data. The results of Fig. 5 demonstrate that while motion artifacts generally increase with 
vessel velocity, velocity does not consistently represent motion artifact severity. Velocity is only one of several 
factors that affect motion artifacts. For example, the direction of vessel motion relative to the projection 
direction affects the motion artifact severity. 

Kendall's Tau is a measure of ranking agreement, quantifying how often a metric and the readers agree that one 
image is better than the other. For some applications, such as selecting the lowest-motion phase for display, 
ranking agreement may be the most important property of a metric. For other applications, such as optimizing 
motion compensation algorithms, it may be beneficial to have metrics that correlate linearly with the reader 
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scores. Of the individual metrics investigated in the phantom study, the proposed metrics of FOR and LIRS, along 
with the previously used metric of positivity, demonstrated the highest ranking agreement with the reader 
scores (Kendall's Tau >0.75), with statistically similar performance for these three metrics. The positivity metric 
performance on clinical images was worse than on phantom images due to errors in identifying low-intensity 
artifacts by the thresholding step. The FOR and LIRS metrics demonstrated good ranking agreement with the 
reader scores (Kendall's Tau >0.53) and linearity (R2 > 0.49) on clinical images. One limitation of this study is that 
different readers evaluated the phantom and clinical images, making it difficult to directly compare the results 
of the two studies. 

A compound metric of Motion Artifact Score, defined as the product of the FOR and LIRS metrics, demonstrated 
better performance than the individual FOR and LIRS metrics for clinical data (Kendall's Tau = 0.65, R2 > 0.63). 
The ranking agreement between the MAS metric and the readers (Kendall's Tau = 0.65) was similar to ranking 
agreement between readers (average Kendall's Tau = 0.69). 

The FOR and LIRS metrics require segmentation of the vessel region. The LIRS metric requires segmentation of 
the dark shading artifacts, while the positivity metric requires a threshold to identify dark shading artifacts. All 
metrics require identification of the vessel ROI. In the phantom study, the regions were segmented by simple 
thresholding. Results demonstrated that the metrics were systematically affected by the threshold settings, but 
that the changes in FOR or LIRS metrics were relatively small (<0.1) for a 100 HU range of threshold settings. In 
the study of clinical images, the vessel ROIs, vessel region, and dark shading regions were manually segmented, 
so that the motion artifact metrics could be evaluated independently of segmentation approaches. Automated 
identification of vessel regions and automated segmentation will be challenging for clinical images due to noise, 
contrast dynamics, anatomical structure, and artifacts due to metal and beam hardening. The results of the 
phantom study suggest that the metrics are sensitive to variability in the segmented regions, therefore robust 
segmentation algorithms will be needed. Future work is required to develop and validate these segmentation 
algorithms. 

The metrics of vessel deformation used in this study, normalized circularity and FOR, assume that the arteries 
are circular, requiring images in which the vessels are through-plane in the transverse slices. Algorithms have 
been previously proposed to identify through-plane vessel regions from the acquired 3D cardiac 
volume.10, 11 The FOR metric of vessel symmetry could potentially be modified for in-plane vessels, by folding 
the vessel region across the main vessel axis. 

One limitation of this study is that the metrics were evaluated only for images acquired by axial scanning using 
wide-cone-beam acquisition on a single scanner model and with filtered backprojection reconstruction. The 
metrics were not evaluated in the presence of helical artifacts. However, with the advent of scanners with 
160 mm of coverage, the entire heart can be captured in a single axial scan. This eliminates the need for helical 
cardiac scanning and the subsequent risk of helical artifacts. As seen in Figures 6 and 7, the images used for 
validation contained a wide range of motion artifact presentations, so as to provide a variety of artifacts for 
validation despite the limitation of evaluation on one scanner. The clinical study used images reconstructed 
from varying heart rates and anatomical configurations, as well as different pixel spacing, contrast and noise 
levels to mitigate this limitation. 

The motion artifact metrics validated in this work may be useful for comparing cardiac CT protocols, as well as 
for developing, validating, and comparing motion correction algorithms.13 The metrics may also be useful for 
optimization-based reconstruction algorithms that compensate for motion.11, 12 The metrics may also improve 
algorithms that select the lowest-motion phase for display.8-10 Future work is needed to investigate the 
performance of the developed metrics for such clinical applications that require evaluation of motion artifact 
severity. 
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5 Conclusions 
This study evaluated coronary artery motion artifact metrics using observer studies on phantom images and 
clinical images. The metrics of Low-Intensity Region Score (LIRS), Fold Overlap Ratio (FOR) and their product, 
MAS, resulted in the highest agreement in motion artifact ranking when compared to the readers. The FOR, 
LIRS, and MAS metrics also demonstrated the highest linear correlation to the reader scores. The validated 
motion artifact metrics may be useful for developing and validating algorithms to reduce motion in Coronary 
Computed Tomography Angiography (CCTA) images. 
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