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In order to identify the origin of possible errors in the mixed quantum/classical approach to inelastic
scattering [A. Semenov and D. Babikov, J. Chem. Phys. 140, 044306 (2014) and A. Semenov, M.-L.
Dubernet, and D. Babikov, J. Chem. Phys. 141, 114304 (2014)], a simplified model is considered
that consists of one intermolecular degree of freedom and two intramolecular states, coupled by
a simple potential. For this system, analytic derivations are carried out to determine (i) the exact
quantum mechanical solution of the inelastic scattering problem, (ii) a simplified version of it with
all oscillatory terms neglected, and (iii) the Ehrenfest solution in which the translational motion is
described by the mean-field trajectory while the internal molecular motion is treated by the time-
dependent Schrodinger equation. It is shown that the appropriate choice of velocity for the mean-field
trajectory permits to enforce microscopic reversibility and gives results in excellent agreement with
full-quantum results. The average velocity method of Billing is rigorously derived as a limiting case
(of this more general approach), when reversibility is enforced locally, at the initial moment of time
only. It is demonstrated that errors of state-to-state transition probabilities in the Ehrenfest approach
occur at lower values of total energy E if the magnitudes of excitation energy ∆E, potential energy
difference between the two states ∆V, and coupling of two states V12 are large. Possible ways of
applying this concept to rotational transitions in real molecules are explored, using examples from
CO + CO inelastic scattering. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4985074]

I. INTRODUCTION

During the last few years, the Ehrenfest approach for the
theoretical treatment of inelastic scattering of molecules has
been revisited.1–9 Within this approximate method, the time-
dependent quantum mechanics is used for the description of
the internal (rotational and vibrational) states of collision part-
ners, while their relative (translational) motion is described
by a classical trajectory, driven by the mean-field potential.10

This idea, introduced initially by McCann and Flannery,11,12

expanded by Billing and co-workers,13–18 and explored by oth-
ers,19–39 has recently bloomed due to the development of the
related theory,19–21 the demonstration of computational effi-
ciency of the method,6,7,10 and a systematic benchmark study
of its accuracy.5,10 The fully coupled version of this approach,
formulated in the body-fixed reference frame and suitable for
numerically efficient calculations of any collision partners
(including polyatomic molecules5 and molecule + molecule
systems8,9,40), was named as the mixed quantum/classical the-
ory (MQCT). A user-friendly suite of codes is now being
packaged and will be made available to the community
soon.41

So far, MQCT calculations have been reported for Na
+ N2,4,5 CO + He,2 H2 + He,5 H2O + He,6 CH3OOCH + He,7

H2 + N2,8 CH3 + He,10 H2 + H2,9 and H2O + H2O.40 Within this
set of benchmark systems, one finds light and heavy scattering
partners, at high and low collision energies, characterized by
differential (over scattering angle) and integral cross sections,
mostly for rotational but also for some vibrational transitions,
within low-lying and highly excited states, for excitation and

quenching but also for the elastic channel. Most of these
calculations are in very good and often detailed agreement
with the results of the full-quantum method (such as coupled-
channel theory), but in few cases non-negligible deviations
were reported.10 The origin of those deviations, and the reason
for excellent accuracy of MQCT in all other cases, remained
not entirely clear. Since the Ehrenfest method is approximate,
it is reasonable to expect that it may be less accurate in some
systems or collision regimes, so, it is particularly important to
come out with a set of well-defined criteria for applicability of
MQCT.

One may expect that the de Broglie wavelength of colli-
sion partners would be one suitable criterion for the accuracy
of the mixed quantum/classical method, but we showed that
even for the lightest systems (such as H2 + He5) and even for
the lowest kinetic energies T we studied (on the order of few
wavenumbers), the classical approximation is well justified,
and MQCT can be rather accurate. For all heavier systems
and higher collision energies, one should not worry about the
applicability of the classical treatment of the relative motion
of atomic or molecular scattering partners.

A more important consideration is the magnitude of (rota-
tional and vibrational) excitation quanta in the molecule, ∆E.
One may ask why quantization is a problem in a method
where the internal motion is treated with quantum mechan-
ics? Well, the internal (quantized) degrees of freedom are
coupled to the external degrees of freedom, treated clas-
sically. Since no couplings are neglected within MQCT,
the internal quantized energy is exchanged with continuous

0021-9606/2017/146(22)/224107/13/$30.00 146, 224107-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4985074
http://dx.doi.org/10.1063/1.4985074
http://dx.doi.org/10.1063/1.4985074
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4985074&domain=pdf&date_stamp=2017-06-12


224107-2 A. Semenov and D. Babikov J. Chem. Phys. 146, 224107 (2017)

translational energy. A known and related problem of the
Ehrenfest approach is the violation of microscopic reversibil-
ity. In the past, we showed, by a set of numerical “experiments”
on a model system,2 that the microscopic reversibility and
the accuracy of MQCT are both improved as the size of the
quantum,∆E = E2 �E1, is reduced. If the value of∆E is signif-
icant (e.g., vibrational states), then probabilities of transitions
between two states, say P1→2 (excitation) and P2→1 (quench-
ing) computed by running two trajectories with the same total
energy E, are drastically different, which violates reversibil-
ity. This is because transition is determined by the collision
velocity, but velocities of these two trajectories are very dif-
ferent, determined by the initial kinetic energy T∞ = E � E1

for excitation and by T∞ = E � E2 for quenching. One ad hoc
solution to this problem was proposed by Billing.13 To enforce
reversibility, by construct, his prescription was to launch a
single trajectory with average velocity (of those two cases),
which means that the effective or working kinetic energy U
should be such that

√
U = (

√
E − E1 +

√
E − E2)/2. We tested

this method in our MQCT calculations, for all systems listed
above, and found that it works really well. It becomes par-
ticularly important at lower collision energies, near excitation
threshold, when the excitation quantum ∆E represents a sig-
nificant fraction of the total energy E. Without this average
velocity trick, the results of MQCT (or any other Ehrenfest-
based method) would be inaccurate in the low energy regime,
and the problem would be more severe for systems with large
quanta.

Interestingly, Billing did not really derive his average
velocity method, although in his book13 he presented several
qualitative arguments in support of the method, by drawing
analogies with other similar theories. One goal of our paper is
to give a rigorous derivation of the average velocity method
using a simple two-level system, where both the exact quan-
tum and the mixed quantum/classical solutions can be derived
analytically. In this case, it is easy to see their similarities and
differences, and is possible to tell how to force the Ehren-
fest trajectory to give results very close to the full-quantum
results.

However, our experience with MQCT shows that the aver-
age velocity method is not always sufficient. There must be
another issue (or issues) with the Ehrenfest approach, besides
enforcing reversibility with respect to the size of the quantum
∆E. For example, we saw in the past10 that some state-to-
state transitions are reproduced rather accurately by MQCT,
while for some other transitions in the same molecule, MQCT
treatment leads to significant errors (when compared vs. exact
full-quantum results). Obviously, since we are talking about
transitions within the same molecule, the values of the de
Broglie wavelength, the collision energy, and the excitation
quanta are either exactly the same or comparable, for all
these processes. Thus, there must be another property of the
molecule, and/or a component of the theory, that works for
some state-to-state transitions but not for others. In this paper,
using the analytic two-state model, we show that the origin of
this second problem is in the mean-field assumption, intrinsic
to the Ehrenfest treatment.

Finally, we propose a fix to the problem, or actually,
a modified method that we call the average path, which

permits to avoid most of the problems in the standard Ehren-
fest approach. We discuss the limits of applicability of this
method and test it by applying it to one real system, namely, to
the inelastic scattering of CO + CO, using the potential energy
surface from the recent literature.42,43 Advantages and disad-
vantages of this method are outlined, and possible avenues for
its development and applications are discussed.

II. THEORY
A. The exact quantum framework

Consider a two-state system described by one inter-
nal coordinate s (vibrational, rotational) that scatters off a
structure-less collision partner (an atom), and the collision
process is described by one (translational) coordinate x ≥ 0.
The total wave function of such system isΨ(x, s) = ψ1(x)ϕ1(s)
+ ψ2(x)ϕ2(s), where ψi(x) describe scattering while
ϕi(s) describe the internal motion. The time-independent
Schrodinger equation is ĤΨ = EΨ, with Hamiltonian oper-
ator Ĥ = − ~

2

2m
d2

dx2 + Ĥs + V (x, s), where Ĥs is the Hamil-
tonian of the internal motion with two eigenvalues E1 and
E2, whereas V (x, s) is the remaining part of the potential
energy surface of the system (does not have to be separa-
ble). We will consider a simple model illustrated by Fig. 1,
in which the diagonal matrix elements are infinite at the ori-
gin x = 0, are null outside of the interaction region (x > a),
and are constant negative numbers within the inter-
action region, 0 < x ≤ a:

〈
ϕ1(s)��V (x, s)��ϕ1(s)

〉
=−V11 and〈

ϕ2(s)��V (x, s)��ϕ2(s)
〉
=−V22. The off-diagonal (coupling)

matrix element is non-zero only in the interaction region,〈
ϕ2(s)��V (x, s)��ϕ1(s)

〉
= V21 = V12, and can be either posi-

tive or negative. Substituting Ψ into the Schrodinger equation
and projecting ϕ1(s) and ϕ2(s) out, one obtains the following
system of coupled equations (within the interaction region, 0
< x ≤ a):




−
~2

2m
d2

dx2
ψ1(x) + E1ψ1(x)−V11ψ1(x) + V12ψ2(x)=Eψ1(x)

−
~2

2m
d2

dx2
ψ2(x) + E2ψ2(x)−V22ψ2(x) + V12ψ1(x)=Eψ2(x)

(1)

Outside of the interaction region, x > a, the wave function is
given by (see Fig. 1)

Ψ(x, s) = −e−ik1xϕ1(s) + C1eik1xϕ1(s) + C2eik2xϕ2(s), (2)

FIG. 1. Schematic of one-dimensional scattering of a two-state system in a
simple model problem considered in this work.
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which corresponds to the incoming wave for the initial state
1 and two outgoing waves for the final states 1 and 2, with
unknown probability amplitudes C1 and C2. Signs are chosen
such that in the case of elastic scattering (C2 = 0), the value
of C1 is real and positive (C1 = 1) and the total wave function
Ψ(x, s) turns zero at the origin x = 0. For the inelastic scattering
process 1 → 2, the values of C1 and C2 should be found by
solving system (1) and merging the solution with its asymptotic
form (2). Magnitudes of the wave vectors, k1 and k1, should
obey energy conservation, E = (~k1)2/2m + E1 = (~k2)2/2m
+ E2, where E is the total energy of the system. The value
of the scattering matrix element is given by S12 =

√
k2/k1C2.

The transition probability is |S12 |
2, and the corresponding cross

section is σ12 = (π/k2
1 ) |S12 |

2. Microscopic reversibility is ful-
filled by (E−E1)σ12 = (E−E2)σ21, whereσ21 = (π/k2

2 ) |S21 |
2

is the cross section for the reverse process and because S21

= S12 and |S12 |
2 = |S21 |

2. Note also that the excitation cross
section can be obtained from that for quenching through σ12

= (k2
2/k

2
1 )σ21.

One can try to seek the solution of (1) in the following
forms: ψ1(x) = A sin κx and ψ2(x) = B sin κx (in the range
0 < x ≤ a). Possible values of the wave vector in the interaction
region, κ (Greek symbol kappa), are found by substituting
these expressions into (1),




~2

2m
κ2A + E1A − V11A + V12B = EA

~2

2m
κ2B + E2B − V22B + V12A = EB

, (3)

and solving for κ as follows. One can express V12 from
each of these equations and multiply one by another. This
eliminates coefficients A and B, giving a quadratic equation
for κ,(

E + V11 −
(~κ)2

2m
− E1

) (
E + V22 −

(~κ)2

2m
− E2

)
= V2

12, (4)

which gives two solutions for κ2,

(~κ±)2

2m
=

E + V22 − E2 + E + V11 − E1

2

±

√
(E2 − E1 − V22 + V11)2

4
+ V2

12. (5)

We will assume E > E2, which makes state 2 energetically
accessible, and will only consider κ2 > 0 which correspond
to the attractive well, as in Fig. 1 (in contrast, the case of
κ2 < 0 is relevant to the repulsive barrier problem, such as
tunneling). Note that in general, kappa depends on both the
collision energy E and the properties of the system (E1, E2,
V12, V11, and V22).

Then, from the first of Eq. (3), we obtain(
B
A

)
±

=
E + V11 −

(~κ±)2

2m − E1

V12
= R ∓

√
R2 + 1, (6)

where, to characterize the strength of coupling in the system,
we introduced the ratio

R =
∆E − ∆V

2V12
, (7)

with ∆E = E2 � E1 and ∆V = V22 � V11. Below, it will be
convenient to replace the B to A ratio by another parameter,
B/A = p. So, p± = R∓

√
R2 + 1. We see that the product of two

possible values gives p+p
�

= �1. Other useful properties are
p
�

+ p+ = 2R and p− − p+ = 2
√

R2 + 1.
The fact that the B to A ratio can take two possible val-

ues means that the most general solution of (1) is ψ1(x) = A+

sin κ+x + A− sin κ−x and ψ2(x)=B+ sin κ+x + B− sin κ−x,
rather than a simpler version assumed in the sentence preced-
ing Eq. (3). This still turns the total wave functionΨ into zero at
x = 0, while in the interaction region 0 < x ≤ a,

Ψ(x, s) = (A+ sin κ+x + A− sin κ−x) ϕ1(s)

+ (B+ sin κ+x + B− sin κ−x) ϕ2(s). (8)

Without loss of generality, we can assume κ > 0. On the border
of the interaction region, at x = a, this solution should match
Eq. (2). In the Appendix, it is shown that this is achieved by
setting

C2 = −2e−ia(k1+k2)ik1[κ+ cos aκ+ sin aκ− − κ− cos aκ− sin aκ+]
/ [

p+ (κ+ cos aκ+ − ik2 sin aκ+) (κ− cos aκ− − ik1 sin aκ−)

× −p− (κ+ cos aκ+ − ik1 sin aκ+) (κ− cos aκ− − ik2 sin aκ−)
]
. (9)

Then, for transition probability, we can explicitly write

|S12 |
2 =

k2

k1
|C2 |

2 = 4k1k2[κ+ cos aκ+ sin aκ− − κ− cos aκ− sin aκ+]2
/ [

(p+ − p−)2(κ+κ− cos aκ+ cos aκ− − k1k2 sin aκ+ sin aκ−)2

+ ((p+k1 − p−k2)κ+ cos aκ+ sin aκ− − (p−k1 − p+k2)κ− cos aκ− sin aκ+)2
]
. (10)

This somewhat complicated expression is exact. It is used
in Sec. III to obtain accurate quantum results for this model
system. Properties of this formula are further explored in the
Appendix, and it is shown that the following simplified version

of it can be obtained (by neglecting all oscillating terms):

|S12 |
2 ≈

2k1k2(κ+ + κ−)2

k2
1k2

2 + κ2
+κ

2
−

·
sin2 a(κ+ − κ−)

(p+ − p−)2
. (11)
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Furthermore, in the limit of large scattering energies (the
classical limit, E → ∞), we obtain

|S12 |
2 ≈ 4

sin2 a(κ+ − κ−)

(p+ − p−)2

≈
1

R2 + 1
sin2




a
√

2m
~
·

V12

√
R2 + 1
√

E




. (12)

Deriving this approximate formula, we set k1 ≈ k2 ≈ κ+ ≈ κ−,
expressed κ+ − κ− through κ+ + κ− as shown in the Appendix
and assumed E >> E1 − V11 and E >> E2 − V22.

B. The mixed quantum/classical framework

The mixed quantum classical Hamiltonian for this prob-
lem is Ĥ =P2

x/2m + Ĥs + V (x, s), where the internal degree
of freedom s is still treated quantum mechanically, but the
motion along the scattering coordinate x is now described clas-
sically, by introducing classical momentum for this degree
of freedom, Px(t). In general, it evolves along the Ehren-
fest trajectory: ∂Px/∂t = − ∂Ṽ/∂x, driven by the mean-
field potential Ṽ (x) =

〈
Ψ(s)��V (x, s)��Ψ(s)

〉
. Here Ψ(s) is the

wave function for the internal motion. Its evolution obeys
the time-dependent Schrodinger equation, ĤΨ = i~∂Ψ/∂t.
Expressing wave function through eigenfunctions of two
states with time dependent coefficients, Ψ(s, t) = a1(t)ϕ1(s)
+ a2(t)ϕ2(s), substituting this expression into the time-
dependent Schrodinger equation, and projecting out ϕ1(s) and
ϕ2(s), we obtain




a1(t) (E1 + V11(x)) + a2(t)V12(x) = i~
∂

∂t
a1(t)

a2(t) (E2 + V22(x)) + a1(t)V21(x) = i~
∂

∂t
a2(t)

. (13)

Since in our model, the potential is zero outside of the inter-
action region, 0 < x ≤ a, we can start collision from x
= a at t = 0. As system moves through the interaction region,
let us try searching for solutions of Eq. (13) in the following
simplest forms: a1(t) = A exp (−iωt) and a2(t) = B exp (−iωt).
Substituting these expressions into Eq. (13) gives




A(E1 − V11) + BV12 = ~ωA

B(E2 − V22) + BV12 = ~ωB
. (14)

This system of equations should be solved for ω by express-
ing V12 from each, multiplying one by another to elimi-
nate coefficients A and B, and solving the resultant quadratic
equation

~ω± =
E1 −V11 + E2 −V22

2
±

√(
E2 −V22 −E1 + V11

2

)2

+ V2
12.

(15)

Note that omega depends on properties of the system only, that
is, on E1, E2, V12, V11, and V22. Using one of the equations
(14), we can obtain (B/A)± = p± = R ∓

√
R2 + 1, exactly

equivalent to the quantum equations, (6) and (7). Note that
Eq. (15) is also very similar to the quantum equation (5).

Again, the fact that there are two solutions, ω+ and
ω−, means that the general form of the time-dependent

coefficients is

a1(t) = A+ exp (−iω+t) + A− exp (−iω−t) ,

a2(t) = B+ exp (−iω+t) + B− exp (−iω−t) .
(16)

For simplicity, we will assume that only state 1 is populated
initially: a1(0) = 1 and a2(0) = 0. This gives us A+ + A

�

= 1
and p+A+ + p

�

A
�

= 0. Solving these two equations gives us A+

= p
�

/(p
�

� p+), A
�

= �p+/(p
�

� p+), and B+ = �B
�

= p+p
�

/(p
�

� p+) = �1/(p
�

� p+). Here we used p+p
�

= �1. Remember
that the denominator in these formulas is positive, p− − p+

= 2
√

R2 + 1.
Note that the total energy E does not show up anywhere

in these equations. It is determined by the asymptotic value
of kinetic energy of the system (by its classical momentum):
E = T∞ + E1, where T∞ = P2

∞/2m. So, P∞ = −
√

2m(E − E1).
When the system enters the interaction region, the value of
momentum changes according to

E =
P2

x

2m
+ 〈Ψ(s, t)| Ĥs + V (x, s)��Ψ(s, t)

〉
=

P2
x

2m
+ (E1 − V11) |a1(t)|2 + (E2 − V22) |a2(t)|2

+ V12 · 2Re
{
a1(t)a∗2(t)

}
. (17)

For the model system depicted in Fig. 1, at t = 0, as a sys-
tem, being initially at state 1, just have fallen into the well at
x = a, we obviously find Px(t = 0) = −

√
2m(E − E1 + V11)

(i.e., momentum receives a sudden boost, as it should be in
this problem with a discontinuous interaction potential). As
the system moves through the interaction region, probabil-
ity amplitudes change, according to Eqs. (16). From (16), we
have

|a1(t)|2 = A2
+ + A2

− + 2A+A− cos(ω+ − ω−)t,

|a2(t)|2 = B2
+ + B2

− + 2B+B− cos(ω+ − ω−)t,

Re
{
a1(t)a∗2(t)

}
= A+B+ + A−B− + (A+B− + A−B+)

× cos(ω+ − ω−)t.

The substitution of these expressions into Eq. (17) gives several
terms. The time-dependent term, proportional to cos(ω+−ω−)t,
happens to turn to null. The time independent term transforms
as follows:

(A+
2 + A−

2)(E1 − V11) + (B+
2 + B−

2)(E2 − V22)

+ 2(A+B+ + A−B−)V12 =
[
(E1 −V11)(4R2 + 2)

+ 2(E2 −V22) − 4RV12] /4(R2 + 1) = E1 − V11.

So, at any moment of time, we have E = Px
2/2m + (E1

� V11), which means that the value of classical momentum of
the system, as it moves through the interaction region, remains
constant, equal to Px = ±

√
2m(E − E1 + V11). It is not affected

by the value of V12, which is somewhat counterintuitive but is
a property of the system depicted in Fig. 1.
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The total time a particle spends in the interaction region
is τ = 2ma/Px, so, the inelastic transition probability is

P1→2 = |a2(τ)|2 =B+
2 + B−

2 + 2B+B− cos {2ma(ω+ −ω−)/Px }

=
2 − 2cos {2ma(ω+ − ω−)/Px }

(p− − p+)2

=
4sin2 {ma(ω+ − ω−)/Px }

4(R2 + 1)

=
1

R2 + 1
sin2

{
2ma
~Px

V12

√
R2 + 1

}
(18)

or, finally

P1→2 =
1

R2 + 1
sin2




a
√

2m
~
·

V12

√
R2 + 1

√
E − E1 + V11




. (19a)

We see that, first of all, the transition probability is zero in
the limit of negligible coupling, V12 → 0, just as in the full-
quantum case. We also see that in the limit of high scattering
energies E >> E1 −V11, the mixed quantum classical result is
equivalent to the full-quantum result, Eq. (12).

C. Merging results of the two methods

Note, however, that Eq. (19a) is not symmetric with
respect to the initial and final states. Namely, for quenching
(transition 2→ 1), we would obtain

P2→1 =
1

R2 + 1
sin2




a
√

2m
~
·

V12

√
R2 + 1

√
E − E2 + V22




. (19b)

Only in the limit of high energy, Eqs. (19a) and (19b) give
equivalent results, fulfilling reversibility, P2→1 = P1→2. But
if the energy is on the order of parameters of the system,
E ∼ (E1 �V11)∼ (E2 �V22), then Eqs. (19a) and (19b) vio-
late reversibility, P2→1 ,P1→2, and both deviate from the
quantum result of Eq. (12). It is important to understand
the origin of this difference. Note that in the calcula-
tions of excitation and quenching (at the same total energy
E), the mixed quantum/classical trajectories spend different
amount of time in the interaction region, since their momenta
are different: Px = ±

√
2m(E − E1 + V11) for excitation and

Px = ±
√

2m(E − E2 + V22) for quenching. When these tra-
jectories are launched from the asymptotic region (x � a,
where V11 = V22 = 0), they also have different initial momenta:
P∞ = −

√
2m(E − E1) for excitation and P∞ = −

√
2m(E − E2)

for quenching. Thus, these two trajectories run at two differ-
ent speeds and cannot give the same transition probability. The
problem is more severe when energies of the states, E1 and E2,
differ significantly. But this discrepancy is expected to vanish
in the high energy limit, when E >> E1 − V11 and E >>
E2 − V22. These properties of the mixed quantum/classical
approach are demonstrated in numerical experiments of
Sec. III.

But, one can ask the following question: Is it possible to
launch such trajectory that the mixed quantum/classical result
would agree with the full-quantum result? For this, we should
require that at least the arguments of sine functions in Eq. (18)
and in Eq. (11) are made equal: a(κ+− κ−)= ma(ω+ − ω−)/Px,
which gives the expression for the wanted velocity:
vx= (ω+ − ω−)/(κ+ − κ−). Expressing κ+− κ− through κ+ + κ−

as shown in the Appendix, we can re-express this velocity thor-
ough purely quantum parameters of the system: vx = (~/2m)
(κ+ + κ−). Using Eqs. (5) and (15), we explicitly obtain

vx =
1
2

√
1
m

·

[√
2E + V22 − E2 + V11 − E1 + (∆E − ∆V )

√
1 + R−2

+

√
2E + V22 − E2 + V11 − E1 − (∆E − ∆V )

√
1 + R−2

]
,

(20)

which we will call the effective velocity. This lengthy formula
can be drastically simplified in the case of weak coupling, V12

→ 0 or R→ ∞,

ṽ =

√
2(E − E1 + V11)/m +

√
2(E − E2 + V22)/m

2
. (21)

This moiety represents the average of two velocities, those two
that would normally occur in two independent calculations of
excitation and quenching. If the trajectory is forced to move
through the interaction region with velocity ṽ, this would per-
mit to obtain the essentially exact quantum result using the
mixed quantum/classical method.

Practical implementation of this idea would depend on
the initial state. If the initial state is 1 and the mixed quan-
tum/classical calculations are carried out for excitation, the
initial kinetic energy T∞ for the trajectory must be chosen such
that mṽ2/2 = T∞+V11. If the initial state is 2 and the mixed
quantum/classical calculations are carried out for quenching,
the condition would be mṽ2/2 = T∞ + V22. In either case, as
the system reaches the interaction region at x = a, falls into the
well, and accelerates (by V11 or by V22 depending on the initial
state), its kinetic energy becomes equal to mṽ2/2, which guar-
antees nearly perfect agreement with full-quantum results. It
should be stressed that this approach requires launching trajec-
tories for excitation and quenching with two different initial
velocities. Only when they reach the interaction region, their
velocities become equal to each other [and to the value required
by Eq. (20) or Eq. (21)].

Although this approach is attractive, it becomes clear that
the effective velocity is well defined and is straightforward
to match only in the case of a simple model considered in
this paper (shown in Fig. 1). But, in a general case, when the
coordinate-dependence of matrix elements of the interaction
potential is continuous [as in real systems with smooth V11(x)
and V22(x), such as molecule + atom or molecule + molecule],
it seems unfeasible to force any trajectory to follow such a
path along which the effective velocity condition would remain
rigorously satisfied.

One can, however, try to use Eq. (21) as the initial con-
dition, enforcing average velocity at the initial moment of
time, at least, when the system is in the asymptotic region
x → ∞, where V11 = V22 = 0. Then, a simplified version of
Eq. (21) is

ṽ =

√
2(E − E1)/m +

√
2(E − E2)/m

2
, (22)

and the initial kinetic energy is chosen as T∞ = mṽ2/2,
for both excitation and quenching trajectories. This simple
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formula, when used to define the initial condition, is equiv-
alent to the average velocity recipe of Billing.13 One can also
hope that if the potential energy of interaction is small com-
pared to the kinetic energy, E � E1 >> V11(x) and E − E2

>> V22(x), then this condition would remain approximately
satisfied during the course of collision, helping to improve
reversibility and better agreement with the exact full-quantum
result.

It should be stressed that our approach is, in fact, an
antithesis of the method of Billing, at least in the non-
trivial case of significant ∆E and ∆V. Indeed, our approach
is to match the speeds of excitation and quenching trajecto-
ries in the interaction region (which requires launching them
with different initial speeds), while the approach of Billing
is to make the speeds equal at the initial moment of time
(which unavoidably leads to different speeds in the interaction
region). Accuracy of one or the other approach may depend
on the properties of the system and should be checked by
calculations.

III. NUMERICAL RESULTS FOR MODEL SYSTEM

In this section, we will compare the results of the
mixed quantum/classical theory against the full-quantum
results, for several choices of parameters of the model sys-
tem. Four versions of the mixed quantum/classical theory
will be used: a straightforward Ehrenfest approach without
any adjustments to enforce reversibility, the average veloc-
ity method of Billing based on the simplest equation (22),
and two modified versions with a more accurate formula
for the effective velocity, those of Eqs. (21) and (20). Two
versions of the full-quantum results will be shown: those
obtained using the exact formula of Eq. (10) and a sim-
plified formula of Eq. (11) where all oscillatory terms are
neglected.

The first set of model parameters is chosen such that
∆E, ∆V, and V12 are all small. The range of parameters
is typical to rotationally inelastic scattering of CO + CO,
namely,

m = 14 amu, a = 3.1 Bohr, E1 = 0, E2 = 10 cm−1,
V11 = 200 cm−1, V22 = 200 cm−1, and V12 = 60 cm−1,

which we will call system 0. For this case, the transition prob-
ability is plotted in Fig. 2(a) as a function of total energy in
the range 100 6 E 6 10 000 cm−1. Full-quantum results are
shown by black lines: solid for the exact solution, Eq. (10),
and dashed for the approximate solution, Eq. (11). We see, first
of all, that in the high energy limit, where the dependence is
smooth, the approximate quantum formula gives perfect agree-
ment with the accurate quantum formula. At lower energy, the
accurate quantum solution shows oscillations of the transition
probability. Importantly, the approximate quantum solution
goes right through the middle of those oscillations, provid-
ing a meaningful representative answer, on average. At very
low energies, the deviation of the approximate quantum solu-
tion from the exact quantum solution becomes noticeable [see
Fig. 2(a)].

Red and blue lines in Fig. 2(a) correspond to the mixed
quantum/classical results obtained with two different initial

FIG. 2. Transition probability as a function of total energy determined by
the straightforward application of the mixed quantum/classical approach for
excitation and quenching (red and blue lines, respectively). Results of the
exact and approximate full-quantum formula (solid and dashed lines, respec-
tively) are shown for comparison. Upper frame demonstrates excellent agree-
ment for system 0 with a small quantum of internal energy. Lower frame
demonstrates poor agreement for system 1 with a large quantum of internal
energy.

states: red for the initial state 1 and blue for the initial state 2.
In those two cases, the initial kinetic energies of collision are
different (slightly), determined simply by the total energy, and
the velocities are different: v1 =

√
2(E − E1)/m for excitation

and v2 =
√

2(E − E2)/m for quenching. Equations (19a) and
(19b) are used to compute the transition probability. We see
that the two mixed quantum/classical results agree with each
other rather well and are also in excellent agreement with full-
quantum results. They do not oscillate (similar to the approxi-
mate quantum dependence) and, on average, are even slightly
more accurate at low energies than the approximate quantum
dependence. The “anti-resonance” behavior at the intermedi-
ate energies and the asymptotic behavior at high energies are all
perfectly reproduced by the mixed quantum/classical method
[see Fig. 2(a)].

From this example, it becomes clear that there may
be molecules and collision conditions where the Ehrenfest
approach is acceptably accurate without any adjustments.
In these cases, calculations can be carried out as excita-
tion or as quenching, but results would be very similar
because the difference between E1 and E2 is small, lead-
ing to similar kinetic energies and collision velocities, v1

≈ v2. This simple conclusion might be quite useful for the
description of rotational excitation in polyatomic molecules,
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where the rotational quanta are typically small (e.g., on the
order of 0.3 cm�1 in methyl formate, CH3OOCH7). In such
cases, reversibility is not an issue. The simplest version of
the mixed quantum/classical theory can be employed and is
expected to give results in good agreement with full-quantum
results.

Now let us increase the value of the internal energy quan-
tum in the system by shifting the second state to E2 = 100 cm�1

and keeping all other parameters same as before (call this
system 1). In this case, ∆E is rather large, the same order
of magnitude as V11 and V22. Results of the full-quantum
and the mixed quantum/classical methods are presented in
Fig. 2(b). In this system, we see two “anti-resonances” in the
considered energy range. We also see that the amplitude of
quantum oscillations is an order of magnitude larger [com-
pared to system 0, Fig. 2(a)], but the approximate quantum
formula still does a good job, on average (dashed vs. solid black
lines). However, two results of the mixed quantum/classical
method (red and blue) deviate significantly from each other
and in opposite directions from the quantum result. The high
energy limit is still reproduced perfectly, and the two “anti-
resonances” are still captured, but the low-energy behavior
is rather inaccurate. For example, while in the intermedi-
ate energy range, the full-quantum result oscillates between
the two mixed quantum/classical results (black line oscillates
between red and blue lines), and those two can even be used
as a guidance for predicting the range of quantum oscilla-
tions, at low energies, the deviations are so significant that
discrepancies by several orders of magnitude may occur [see
Fig. 2(b)].

The explanation for this behavior is that now, when the
values of E1 and E2 are substantially different, the values
of kinetic energies and initial velocities in the mixed quan-
tum/classical calculations of excitation and quenching are also
substantially different, in particular when the total energy E
is small: v1 =

√
2(E − E1)/m vs v2 =

√
2(E − E2)/m. Set-

ting up the initial condition using the average velocity of
Billing, ṽ = (v1 + v2)/2, helps in this case, as one can see from
Fig. 3(a), where we used Eq. (22) to start excitation and
quenching trajectories in system 1. Now the blue and red curves
completely coincide [thus, only one can be seen in Fig. 3(a)]
and both agree well with the exact full-quantum result. In fact,
at low energies, the mixed quantum/classical method (when
used properly, here with Billing initial conditions) again gives
a slightly better description than the approximate quantum for-
mula of Eq. (11). [As a technical note, we want to mention that
in order to implement the approach of Billing, we simply used
Eq. (18) with the appropriate value of momentum; we did not
really propagate trajectories, since the solution is analytic for
this system.]

In our past experience with MQCT, we, indeed, saw situa-
tions when the straight application of the Ehrenfest mean-field
approach was terribly inaccurate, but a simple correction of
average velocity, according to Billing, would improve the
result dramatically. Those cases correspond to large internal
quanta ∆E, such as vibrational quenching of CO(ν = 1)2 or
rotational quenching of light quantum rotors such as H2,5 and
most transitions in H2O. In these molecules, reversibility is
enforced almost perfectly (by the average velocity choice that

FIG. 3. Same as in Fig. 2, but the mixed quantum/classical approach is
implemented using the average velocity method of Billing. Upper frame
demonstrates excellent agreement for system 1 with identical potentials in
the ground and excited states. Lower frame demonstrates poor agreement for
system 2 with a large difference between the two potentials.

takes care of large ∆E) because the entrance potential energy
surfaces for excitation, V11, and for quenching, V22, are very
similar (as in our model system 0 and system 1, where we have
set ∆V = 0).

Let us check what happens when V11 and V22 are differ-
ent, by shifting the excited state potential to V22 = 100 cm�1

and keeping all other parameters as in system 1 (call this sys-
tem 2). For this case, results of the mixed quantum/classical
method with the average velocity approach of Billing already
implemented (just as in the example above, as initial condi-
tions) are shown in Fig. 3(b), together with two sets of quantum
results (same line styles and colors). Now we see that two
results of the mixed quantum/classical method (for excitation
and quenching), again, deviate significantly from each other
and in opposite directions from the quantum result. The Billing
correction does not help anymore. The reason for this is that
although the average velocity is set up at the initial moment
of time, its value changes as the trajectory enters the interac-
tion region, and does it differently for trajectories that start
in the ground and excited potential energy surfaces. Only in
the high energy limit, when the potential energy becomes less
important, the mixed quantum/classical result is accurate [see
Fig. 3(b)]. Interestingly, all anti-resonances are still there [four
in this system, see Fig. 3(b)], but their positions are signif-
icantly shifted, leading to large errors, and more so at low
energy.
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We have to admit that in our past MQCT calculations,
we saw that, although the average velocity method of Billing
worked for most cases, there were few transitions in couple
molecules where it did not help. Examples include the tran-
sition between 202 and 220 states of H2O6 and the excitation
of states 66 and 40 in CH3 from its ground state.10 We went
back to these molecules, checked and found that indeed the
potential energy surfaces are rather different for the initial and
final states involved into these transitions, as in system 2.

A solution to this problem is our improved formula for the
effective velocity, Eq. (21) which, in the case of large∆V, does
better job (than the original approach of Billing). The result
is shown in Fig. 4(a), where we see a dramatic improvement
of the mixed quantum/classical result for system 2 [relative to
Fig. 3(b)]. In this case, the excitation and quenching results are
again identical, so, only a red line is seen. Agreement with the
full-quantum result is now excellent, through the entire range
of energies.

The last case to consider is system 3, obtained (from sys-
tem 2) by significantly raising the value of coupling, to reach
V12 = 150 cm�1. This is a significant modification, which
creates seven “anti-resonances” in the same energy range,
as one can see from Fig. 4(b). In this system, some quan-
tum oscillations of transition probability remain visible even
at high energies. Still, the mixed quantum/classical method
[with a simplified effective velocity formula, Eq. (21), already
implemented] gives, on average, a reasonable description at

FIG. 4. Same as in Fig. 3, but the mixed quantum/classical approach is
improved by using the effective velocity of Eq. (21). Upper frame, for system
2 with weak coupling between the ground and excited states, demonstrates
excellent agreement with full-quantum results. Lower frame, for system 3
with strong coupling, demonstrates poor agreement.

FIG. 5. Same as in Fig. 4, but the mixed quantum classical approach is imple-
mented using the exact formula for the effective velocity, Eq. (20). Agreement
with quantum results is excellent even for system 3 with strong coupling.

intermediate and higher energies. However, at low energies, it
deviates from the full-quantum results. Even the approximate
effective velocity of Eq. (21) is insufficient.

One solution to this problem is to use the most general
form of the effective velocity, namely, the exact (although
not particularly transparent, and somewhat lengthy) formula
of Eq. (20). With this effective velocity, the mixed quan-
tum/classical result matches almost exactly the prediction of
an approximate quantum formula, Eq. (11). This is illustrated
in Fig. 5, where solid red and dashed black lines are hardly
distinguishable. Comparing Fig. 5 with Fig. 4(b), we see that
the improvement due to Eq. (20) is very significant.

Such a case of strong coupling can be found in CO
+ CO.43 Preliminary calculations for this system (unpublished)
revealed poor agreement between MQCT and the full quan-
tum results, even if the average velocity of Billing is used. This
system is considered next.

IV. APPLICATION TO REAL MOLECULES

Four sets of model parameters considered in Sec. III help
to understand three possible sources of errors in the mixed
quantum/classical treatment of inelastic scattering. They occur
due to large values of∆E,∆V, and V12. In a given real molecule,
only one of these may play a role or all three may happen to be
relevant at the same time. In principle, the exact formula for
effective velocity, Eq. (20), should help in either case. But the
excellent accuracy we saw in Sec. III is guaranteed only for
a simple model depicted in Fig. 1. In particular, the blue and
red lines in Figs. 4 and 5 coincide completely only because in
the model of Fig. 1 the velocity of motion through the inter-
action region does not depend on V12 (as it was demonstrated
and discussed in Sec. II). This is not necessarily the case in
general, and some differences could occur between the mixed
quantum/classical calculations of excitation and quenching in
real molecules, even if Eq. (20) is used. This should also be
checked by calculations.

But, it is not yet clear how to employ Eq. (20) in the
multi-dimensional scattering calculations for real molecules,
where the values of V11(x), V22(x), and V12(x) are all smooth
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and continuously changing functions. One simple approach
would be to use Eq. (20) with some representative values
of V11, V22, and V12, for example, the values typical to the
interaction region (e.g., near the minimum, or near the turning
point), where the state-to-state transitions are most intense. In
a sense, this would be opposite to the prescription of Billing
that is also specified for one single point on the trajectory
(namely, for its initial point). Enforcing effective velocity in the
interaction region is expected to work better, since most transi-
tions occur in its vicinity, but it should somehow be taken into
account that the scattering process is not one-dimensional (not
as in the model of Fig. 1). Indeed, only a head-on molecule-
molecule collision (the one with orbital angular momentum l
= 0) is one-dimensional, but, its contribution to the cross sec-
tion is typically small, as one can see from Fig. 6. Majority
of important trajectories correspond to l > 0. They experi-
ence centrifugal potential and, depending on the value of l,
explore different parts of the potential surfaces V11(x) and
V22(x), and experience a different amount of coupling V12(x).
So, the estimation of the effective velocity must somehow be
done for each individual trajectory, as a function of l, which
would require a more involved algorithm of generating the
initial conditions.

Another, completely different approach (not the mean-
field trajectory per se) would be to “manually drag” the system
along an artificial path such that it allows satisfying the aver-
age velocity condition at every moment of time. The following
two-step procedure was implemented to try this idea. First, two
elastic MQCT trajectories were propagated in a standard way,
one for excitation and the other one for quenching, starting
with the average velocity of Billing, that of Eq. (22). Along
these trajectories, we recorded time-evolutions of classical
variables (coordinates and momenta) and used them to con-
struct an average path. At the second step, the equations for the
time-evolution of probability amplitudes, analogous to those in
Eq. (13), were integrated along this average path. This method
of calculations is not proposed as a practical tool but rather as
a demonstration of the main idea, of the principle, that could

FIG. 6. Opacity function for excitation of the rotational state j1j2(jm) = 11(00)
in CO + CO collisions at total energy E = 100 cm�1. Black line is the exact
quantum result, red and blue lines are MQCT results obtained from quench-
ing and excitation calculations, with the average velocity method of Billing
implemented. Green line is from the average path approach proposed in this
work.

be used for the development of an efficient algorithm in the
future. Here, we will call it as the average path method, to dif-
ferentiate it from the average velocity method of Billing that
is specified only at the initial point. Technical note: Although
one may think that the average trajectory is hard to define
and may not even be unique, careful look at the MQCT equa-
tions formulated in the body-fixed reference frame3 reveals
that all we need is to set, at every moment of time, the
average value of the molecule-molecule separation and the
average value of the orbital component of velocity (given
by the time-derivative of azimuthal angle). Other classical
variables are not required.

The tests are conducted for a real system, CO + CO,
in which we only keep two internal states: the ground state
00(00) and one rotationally excited state j1j2(jm). In this nota-
tion, j1 and j2 represent individual angular momenta of two
molecules, while j represent the total internal angular momen-
tum of the system j = j1 + j2 (also quantized in MQCT8,9)
and m is its projection on the body-fixed reference frame.
Note that j does not include the orbital angular momentum
l, since scattering is treated classically. Since initially j = 0,
the total angular momentum of the system J = l. Rota-
tional constants for CO are Be = 1.923 cm�1 and De = 6.12
× 10�6 cm�1. Each CO is treated as a rigid rotor. Identical
particle exchange symmetry is incorporated into MQCT. The
potential energy surface for CO + CO interaction is that by
Dawes and co-workers.42,43

In the first example, the excited state is 11(00) at energy
E2 = 7.69 cm�1 which corresponds to simultaneous excitations
of both CO molecules into the first rotationally excited state.
So, ∆E = 7.69 cm�1 (relative to the ground state energy E1

= 0). The dependencies of V11(x), V22(x), and V12(x) are given
in the supplementary material. In the interaction region, the
characteristic values are V11 = 59 cm�1, V22 = 39 cm�1, and
V12 = 20 cm�1. This means that in this example, MQCT may
suffer from both large∆V and large V12. Excitation energy∆E
is relatively small. The method of Billing, on its own, is not
expected to be particularly useful.

In Fig. 6, we present the opacity function for this transi-
tion at relatively low total energy E = 100 cm�1. This gives a
scaled transition probability or actually the excitation cross
section, as a function of J. The full-quantum result (black
solid line) computed using MOLSCAT44 serves as a refer-
ence. Two results of the standard MQCT, with the average
velocity method of Billing already incorporated and carried
out as excitation and quenching, are shown by red and blue
lines, respectively. One interesting point, immediately obvi-
ous from Fig. 6, is that there is no simple way of averaging
the red and blue lines (two MQCT results) to obtain the black
line (full-quantum result) because these three curves appear
to be shifted from each other along the J-axis. For example,
near J = 26, where blue and red curves cross (i.e., give the
same value of cross section), the black curve is near zero.
But, if one looks at the entire dependence, globally rather than
locally, one observes that the evolution of the black line is, on
average, “bracketed” by the red and blue lines. So, the mixed
quantum-classical method caries accurate information about
the scattering process. It would be nice to find a simple way
of extracting it.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-037722
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FIG. 7. Inelastic scattering cross section for excitation of state j1j2(jm)
= 11(00) in the CO + CO system, starting from the ground state, as a function
of total energy. Black symbols indicate the exact full-quantum data, while the
green line is a result of the average path method. Red and blue lines are results
of the MQCT calculation carried out as excitation (blue) or quenching (red),
using the average velocity method of Billing.

Green line in Fig. 6 is the result of the average path method
proposed above, and we see that it works much better. For all
values of J (and l), i.e., globally, the green line is closer to
the full-quantum result than results of the other methods. So,
enforcing reversibility at every point of trajectory (here by
hands) works better than doing it at any one point, either the
initial point (according to Billing) or in the interaction region
(as we suggested above).

This message is further emphasized in Fig. 7, where the
integral cross section for excitation of the rotational state
j1j2(jm) = 11(00), starting from the ground state of CO + CO,
is presented as a function of total energy. Again the pairs of
red and blue lines (MQCT with average velocity of Billing)
bracket black dots (the full quantum result). But our average
path method (green line) works much better, giving an excel-
lent description of the process at higher energies, and even a
meaningful description at low energies.

In Fig. 8, the integral cross section for excitation of
another rotational state, j1j2(jm) = 11(20), also starting from

FIG. 8. Same as in Fig. 7, but for excitation of the rotational state j1j2(jm)
= 11(20) of the CO + CO system.

the ground state of CO + CO, is presented as a function of
total energy. For this state, we also have E2 = 7.69 cm�1. The
dependencies of V11(x), V22(x), and V12(x) can be found in the
supplementary material. In the interaction region, the charac-
teristic values are V22 = 36 cm�1 and V12 = 30 cm�1 (i.e., rather
similar to the first state we considered above). For this transi-
tion, we see that at intermediate and high energies, the results
of MQCT with the average velocity of Billing (the pairs of red
and blue lines) bracket the full quantum result (black dots) and
monotonically converge to it in the limit of high energy. But
at lower energies, predictions of MQCT become inaccurate.
Interestingly, our average path method (green line) gives an
excellent description of the process through the entire range of
energies.

V. CONCLUSION

In order to identify the origin of errors in the mixed quan-
tum/classical approach to inelastic scattering of molecules,
we considered a simplified model that consists of one inter-
molecular degree of freedom and two intramolecular states,
coupled by a simple potential. For this system, we derived
analytically (i) an exact quantum mechanical solution of the
inelastic scattering problem, (ii) a simplified version of it with
all oscillation terms neglected, and (iii) a mixed/quantum clas-
sical solution in which the translational motion is described by
the mean-field Ehrenfest trajectory, while the internal molec-
ular motion is treated by the time-dependent Schrodinger
equation. To our best knowledge, this has never been done
before.

Analysis of these formulas reveals that the mixed quan-
tum/classical description can produce nearly exact results if
the velocity of the mean-field trajectory is appropriately cho-
sen. If done correctly, this permits to obtain compatible results
for the excitation and quenching processes, which also restores
the microscopic reversibility, a known issue with the Ehrenfest
approach. The average velocity method of Billing is rigorously
derived as a limiting case of this approach, when reversibil-
ity is enforced locally, at the initial point of the Ehrenfest
trajectory.

Further numerical experiments with these analytic expres-
sions showed that deviations of the mixed quantum/classical
results from the full-quantum results can occur at lower values
of the total energy E if the magnitudes of the excitation quan-
tum∆E, the potential energy difference between two states∆V,
and the coupling of two states V12 are large. The effect of each
of these three sources of errors is studied, separately, using
four different sets of model parameters. It is shown that for
some systems and collision conditions, very accurate results
can be obtained by the mixed quantum/classical theory in its
simplest form, some other cases may require setting up the
initial conditions according to the average velocity recipe of
Billing, but there may be cases when even this is not suffi-
cient. For those cases, a new concept of effective velocity is
proposed that can avoid problems due to large values of ∆E,
∆V, and V12 (all of them at once, at least in the case of a sim-
ple model system considered in this work), by an appropriate
choice of the initial conditions for the mixed quantum/classical
trajectories.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-037722
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Possible ways of applying this concept to real molecular
systems are explored, using examples from CO + CO inelastic
scattering on the actual potential energy surface. A practical
algorithm for employing the effective velocity concept in the
multi-dimensional MQCT calculations of inelastic scattering
is yet to be found. An alternative ad hoc method is tried, in
which the system is manually dragged along the average path,
and is found to give results in excellent agreement with full
quantum results. This exploratory implementation indicates
new opportunities and may help to develop a numerically
efficient computational tool for the description of inelastic
scattering.

SUPPLEMENTARY MATERIAL

See supplementary material for the detailed derivation of
analysis of equations and the potential energy surface data of
CO + CO.
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APPENDIX: QUANTUM SOLUTION
FOR THE TWO-STATE MODEL PROBLEM
AND ITS PROPERTIES

Matching Eq. (2) with Eq. (8) at x = a (the boundary of
interaction region) leads to the following four conditions:




A+ sin κ+a + A− sin κ−a = −e−ik1a + C1eik1a

A+p+ sin κ+a + A−p− sin κ−a = C2eik2a

A+κ+ cos κ+a + A−κ− cos κ−a = ik1e−ik1a + C1ik1eik1a

A+p+κ+ cos κ+a + A−p−κ− cos κ−a = C2ik2eik2a

.

(A1)

This system of linear equation can be solved in a standard way,
by writing it in a matrix form

*.....
,

sin aκ+ sin aκ−
p+ sin aκ+ p− sin aκ−

−eik1a 0

0 −eik2a

κ+ cos aκ+ κ− cos aκ−
p+κ+ cos aκ+ p−κ− cos aκ−

−ik1eik1a 0

0 −ik2eik2a

+/////
-

*.....
,

A+

A−
C1

C2

+/////
-

=

*......
,

−e−ik1a

0

ik1e−ik1a

0

+//////
-

, (A2)

and diagonalizing the matrix

*.....
,

A+

A−
C1

C2

+/////
-

=

*......
,

sin aκ+ sin aκ−
p+ sin aκ+ p− sin aκ−

−eik1a 0

0 −eik2a

κ+ cos aκ+ κ− cos aκ−
p+κ+ cos aκ+ p−κ− cos aκ−

−ik1eik1a 0

0 −ik2eik2a

+//////
-

−1

*......
,

−e−ik1a

0

ik1e−ik1a

0

+//////
-

. (A3)

All elements of the inverted matrix can be obtained analyt-
ically, as shown in the supplementary material. But, among
these four coefficients, we only need C2, given by Eq. (9)
in Sec. II A of the main text. From that, the element of the
scattering matrix is

S12 =

√
k2

k1
C2 = −2e−ia(k2+k1)i

√
k1k2 [κ+ cos aκ+ sin aκ−

− κ− cos aκ− sin aκ+] /
[
p+ (κ+ cos aκ+

− ik2 sin aκ+) (κ− cos aκ− − ik1 sin aκ−)

− p− (κ+ cos aκ+ − ik1 sin aκ+) (κ− cos aκ−
− ik2 sin aκ−)] . (A4)

One can formally obtain S21 by switching indexes in this
expression and then check that indeed S21 = S12. A square
of this matrix element gives a transition probability, Eq. (10),
in Sec. II A of the main text. The expression in the brackets in
the numerator of Eq. (10) can be rewritten, using trigonometric
identities, as follows:

κ+ cos aκ+ sin aκ− − κ− cos aκ− sin aκ+

=
κ+ − κ−

2
sin a(κ+ + κ−) −

κ+ + κ−
2

sin a(κ+ − κ−)

=
a(κ2

+ − κ
2
−)

2

(
sin a(κ+ + κ−)

a(κ+ + κ−)
−

sin a(κ+ − κ−)
a(κ+ − κ−)

)
=

2maV12

~2

√
R2 + 1

(
sin a(κ+ + κ−)

a(κ+ + κ−)
−

sin a(κ+ − κ−)
a(κ+ − κ−)

)
.

(A5)

Here we used the following formula:

~2

2m
(κ2

+ − κ
2
−) =

(~κ+)2

2m
−

(~κ−)2

2m
= 2V12

√
R2 + 1, (A6)

obtained from Eqs. (5)–(7) in Sec. II A of the main text. Also,
since (κ2

+−κ
2
−) = (κ+−κ−)(κ++κ−), it gives two useful relations

employed further below

1
(κ+ − κ−)

=
~2

4mV12
·

(κ+ + κ−)
√

R2 + 1
, (A7)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-037722
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(κ+ − κ−)2 E→∞
−−−−→

2m

~2
·

V2
12(R2 + 1)

E
. (A8)

Using Eq. (A5), the numerator of Eq. (10) becomes

16
k1k2m2a2

~4
V2

12(R2 + 1)

(
sin a(κ+ + κ−)

a(κ+ + κ−)
−

sin a(κ+ − κ−)
a(κ+ − κ−)

)2

. (A9)

Manipulations with the denominator of Eq. (10) are somewhat lengthy and are presented separately in the supplementary material.
The overall result for the modified form of Eq. (10) is

|S12 |
2 = 16

k1k2m2a2

~4
V2

12(R2 + 1)

(
sin a(κ+ + κ−)

a(κ+ + κ−)
−

sin a(κ+ − κ−)
a(κ+ − κ−)

)2/ 

κ2
+κ

2
− + k2

1k2
2

2
(p+ − p−)2 +

κ2
+κ

2
− − k2

1k2
2

2
(p+ − p−)2

× cos a(κ+ + κ−) cos a(κ+ − κ−) + *
,

[
p+(k1κ+ − k2κ−) + p−(k1κ− − k2κ+)

] 2

4
−

(κ+κ− − k1k2)2

4
(p+ − p−)2+

-
sin2 a(κ+ − κ−)

+ *
,

[
p+(k1κ+ + k2κ−) − p−(k1κ− + k2κ+)

]2

4
−

(κ+κ− + k1k2)2

4
(p+ − p−)2+

-
sin2 a(κ+ + κ−)

+
[p+(k1κ+ + k2κ−) − p−(k1κ− + k2κ+)] · [p+(k1κ+ − k2κ−) + p−(k1κ− − k2κ+)]

2
sin a(κ− − κ+) sin a(κ+ + κ−)


. (A10)

Although Eq. (A10) is exactly equivalent to Eq. (10) of
the main text, this formula is easier to analyze. For such analy-
sis, we should recall the definitions: p± = R ∓

√
R2 + 1, where

R = (∆E − ∆V )/(2V12) with ∆E = E2 � E1 and ∆V = V22

� V11. This gives (p+ � p
�

)2 = 4(R2 + 1) and also p+p
�

= �1.
One approximate version of Eq. (A10) is obtained by neglect-
ing all oscillating terms. In the denominator, just the first term
is retained, while in the numerator the second sine-function
term is retained (see the supplementary material), which
gives

|S12 |
2 ≈ 16

k1k2m2a2

~4
V2

12(R2 + 1)
sin2 a(κ+ − κ−)

a2(κ+ − κ−)2

/
× *

,

κ2
+κ

2
− + k2

1k2
2

2
(p+ − p−)2+

-

=
8m2

~4
V2

12
k1k2 sin2 a(κ+ − κ−)

(k2
1k2

2 + κ2
+κ

2
−)(κ+ − κ−)2

. (A11)

Now we see, first of all, that if the coupling is small, V12

→ 0, then the transition probability is also small, |S12 |
2 → 0,

as expected. Using Eq. (A7), Eq. (A11) can be rewritten
in a slightly different way, as it appears in the main text,
Eq. (11).

We can also explore the high energy limit, E→∞.
In this case, the following relations should be used: κ+κ−
→ 2mE/~2(which means that the values of kappa depend
on energy only and not on the system properties) and k1k2

→ 2mE/~2. Also, sin2 a(κ+−κ−)
a2(κ+−κ−)2 → 1 because a(κ+ − κ−)→ 0 in

the limit E → ∞, due to Eq. (A8). For transition probability,
this gives

|S12 |
2 ≈

4m2a2

~4
V2

12
1

k1k2
=

2ma2

~2
·

V2
12

E
. (A12)

Another interesting property of Eqs. (A10) and (A11) is
“anti-resonance,” which is a possibility for transition proba-
bility to turn to zero at some value of energy. This happens
when sin a(κ+ − κ−) = 0 in the numerator of these equations
or κ+ − κ− = πN/a. Using Eq. (A8), which assumes relatively
high energies (so, is used for qualitative analysis only), we
obtain

E =
2ma2

π2~2

V2
12(R2 + 1)

N2
.

We see that positions (energies) of these “anti-resonances”
depend on all parameters of the system and reversely propor-
tional to N2. The highest energy “anti-resonance” corresponds
to N = 1. The next is found at energy four times smaller, and
the following one at energy nine times smaller, etc.

Finally, one can turn from excitation to quenching, which
is the transition from state 2 to state 1, assuming E1 < E2,
and look at the low-energy limit, as E → E2 (from above),
k2 → 0 (kinetic energy of collision is close to zero), and
k1 ≈

√
2m∆E/~. This is done by using |S21 |

2 = |S12 |
2 and σ21

= π
k2

2
|S21 |

2. In this case,

(~κ±)2

2m
≈

V22 + V11

2
± V12

√
R2 + 1.

So, the values of κ+ and κ− depend on parameters of the system
only (and not on collision energy). Then, we can simplify the
equation as follows:

|S12 |
2 ≈

8m2

~4
k1k2

V2
12 sin2 a(κ+ − κ−)

κ2
+κ

2
−(κ+ − κ−)2

=
8m2

~4
k2

√
2m∆E
~

·
V2

12 sin2 a(κ+ − κ−)

κ2
+κ

2
−(κ+ − κ−)2

,

σ21 =
π

k2
2

|S21 |
2 =

8πm2

~4

√
2m∆E
k2~

·
V2

12 sin2 a(κ+ − κ−)

κ2
+κ

2
−(κ+ − κ−)2

.

(A13)
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We see that quenching cross in the low-energy limit is reversely
proportional to k2, consistent with Wigner’s law. The value of
cross section depends on parameters of the system: ∆E, V12,
V11, and V22, according to Eq. (A13).
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