Bimetallic Cooperativity in Proton Reduction with an Amido-Bridged Cobalt Catalyst

Kenneth K. Kpogo
Wayne State University
Shivnath Mazumder
Wayne State University
Denan Wang
Marquette University, denan.wang@marquette.edu
H. Bernhard Schlegel
Wayne State University
Adam T. Fiedler
Marquette University, adam.fiedler@marquette.edu

See next page for additional authors

Accepted version. Chemistry-A European Journal, Vol. 23, No. 39 (July 2017): 9272-9279. DOI. © 2017 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim. Used with permission.

Authors

Kenneth K. Kpogo, Shivnath Mazumder, Denan Wang, H. Bernhard Schlegel, Adam T. Fiedler, and Cláudio N . Verani

Marquette University

e-Publications@Marquette

Chemistry Faculty Research and Publications/College of Arts and Sciences

This paper is NOT THE PUBLISHED VERSION; but the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in th citation below.

Chemistry : A European Journal, Vol. 23, No. 39 (July 12, 2017): 9272-9279. DOI. This article is © Wiley and permission has been granted for this version to appear in e-Publications@Marquette. Wiley does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Wiley.

Bimetallic Cooperativity in Proton Reduction with an Amido-Bridged Cobalt Catalyst

Kenneth K. Kpogo
Department of Chemistry, Wayne State University, Detroit, MI
Shivnath Mazumder
Department of Chemistry, Wayne State University, Detroit, MI
Denan Wang
Department of Chemistry, Marquette University, Milwaukee, WI
H. Bernhard Schlegel
Department of Chemistry, Wayne State University, Detroit, MI
Adam T. Fiedler
Department of Chemistry, Marquette University, Milwaukee, WI
Cláudio N. Verani
Department of Chemistry, Wayne State University, Detroit, MI

Abstract

The bimetallic catalyst $\left[\mathrm{Co}_{2}{ }_{2}\left(\mathrm{~L}^{1}\right)(\text { bpy })_{2}\right] \mathrm{ClO}_{4}(\mathbf{1})$, in which L^{1} is an $\left[\mathrm{NN}_{2} \mathrm{O}_{2}\right]$ fused ligand, efficiently reduced H^{+}to H_{2} in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of 100 equiv of HOAc with a turnover number of 18 and a Faradaic efficiency of 94% after 3 h of bulk electrolysis at $-1.6 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$. This observation allowed the proposal that this bimetallic cooperativity is associated with distance, angle, and orbital alignment of the two Co centers, as promoted by the unique $\mathrm{Co}-\mathrm{N}_{\text {amido }}-\mathrm{Co}$ environment offered by L^{1}. Experimental results revealed that the parent [$\mathrm{Co}^{\text {" }} \mathrm{Co}^{\prime \prime}$] complex undergoes two successive metal-based $1 \mathrm{e}^{-}$reductions to generate the catalytically active species [Co'Co'], and DFT calculations suggested that addition of a proton to one Co' triggers a cooperative 1 e^{-}transfer by each of these Co^{\prime} centers. This $2 \mathrm{e}^{-}$transfer is an alternative route to generate a more reactive [$\mathrm{Co}^{\prime \prime}\left(\mathrm{Co}^{\prime \prime}-\mathrm{H}^{-}\right)$] hydride, thus avoiding the $\mathrm{Co}^{\text {III }}-\mathrm{H}^{-}$required in monometallic species. This [$\mathrm{Co}^{\prime \prime}\left(\mathrm{Co}^{\prime \prime}-\mathrm{H}^{-}\right)$] species then accepts another H^{+}to release H_{2}.

Introduction

The widespread dependence of our society on fossil fuels and the impending depletion of carbon-based reserves have triggered the search for renewable and clean H -based energy. ${ }^{\underline{1}=}$ Earth-abundant transition metals such as cobalt, nickel, and iron have attracted attention owing to their ability to generate $\mathrm{H}_{2} .{ }^{3-6}$ Among these metals, cobalt is particularly relevant because of its affordable redox potentials between the $3 \mathrm{~d}^{6} \mathrm{Co}^{11 \prime}, 3 \mathrm{~d}^{7} \mathrm{Co}{ }^{11}$, and $3 d^{8} \mathrm{Co}^{\prime}$ states. The catalytically active monovalent species can be stabilized and yield the doubly-oxidized cobalt/hydride intermediate $\mathrm{Co}^{\prime \prime \prime}-\mathrm{H}^{-}$, which is pivotal for H^{+}reduction to H_{2} after reduction to a more reactive $\mathrm{Co}^{\prime \prime}-\mathrm{H}^{-} . \underline{-11}$ Known cobalt catalysts follow either a heterolytic or a homolytic pathway. 9 . 12, , 13 The former mechanism relies on a single $\mathrm{Co}^{111}-\mathrm{H}^{-}$or a $\mathrm{Co}^{11}-\mathrm{H}^{[14,15]}$ reacting with another H^{+}and is favored if the concentration of protons is not limiting. The latter involves the collision of two $\mathrm{Co}^{\prime \prime \prime}-\mathrm{H}^{-}$moieties from independent molecules. $\frac{16}{}$ Enhanced activity is expected from some binuclear analogues of monometallic catalysts in which close proximity between two Co centers triggers cooperativity either by facilitating homolytic pathways ${ }^{17}$ or by enabling electron transfer between the metallic centers, thus avoiding formation of a $\mathrm{Co}^{\text {III }}-\mathrm{H}^{-}$species.

Cooperative effects have been proposed by Dinolfo and co-workers ${ }^{18}$ for a binuclear Co" catalyst in a bicompartmental Robson/Okawa-type $\left[\mathrm{N}_{6} \mathrm{O}_{2}\right]$ macrocycle ${ }^{19}$ with a Co-Co distance of $3.22 \AA$, whereas Gray and co-workers ${ }^{20, \underline{21}}$ evaluated oxime-based $\mathrm{Co}^{11 /}$ catalysts with both flexible hydrocarbon and rigid BO_{4} bridges that revealed no significant catalytic enhancement. Similarly, the lack of cooperativity observed in dicobalt complexes featuring pyrazolato bridges ${ }^{16,}, 22$ was attributed either to the large distance of $3.95 \AA$ between the Co centers or to the flexibility of the ligand. To date it is unclear what factors control metal cooperativity in proton reduction, and this lack of understanding prevents a more rational design of CO_{2} catalysts. Continuing our longstanding interest in the mechanisms of H_{2} generation by Co catalysts, $\frac{23-26}{}$ we hypothesize that cooperativity will be dependent on 1) the distance between the Co centers, 2) the relative topology of the coordination environments, and 3) the degree of orientation and overlap between redox-active orbitals. To evaluate this hypothesis, we analyzed the catalytic potential of the bimetallic complex $\left[\mathrm{Co}^{\circ}{ }_{2}\left(\mathrm{~L}^{1}\right)(\text { bpy })_{2}\right] \mathrm{ClO}_{4}(\mathbf{1})$, , ${ }^{27}$ in which $\left(L^{1}\right)^{3-}$ is the triply deprotonated ligand shown in Figure $\underline{1}$ a, by means of electrochemical, spectroscopic, and computational methods. Complex $\mathbf{1}$ is a unique bimetallic species singularly suited for this study because of the short distance between the two vicinal Co centers along with the presence of a Co- $\mathrm{N}_{\text {arylamido }}$-Co unit that may foster the proper orientation of Co orbitals involved in catalysis. Our results indicate that the two Co centers of complex $\mathbf{1}$ function cooperatively in the electrocatalytic reduction of H^{+}, thus offering a viable mechanistic alternative to homolytic and heterolytic pathways employed by mononuclear Co catalysts.

Figure 1 The complex $\left[\mathrm{Co"}_{2}\left(\mathrm{~L}^{1}\right)(\mathrm{bpy})_{2}\right] \mathrm{ClO}_{4}(1)$: (a) Drawing and (b) Oak Ridge thermal ellipsoid plot (ORTEP) of the core showing a Co1-N3-Co2 angle of 86.9° expected to facilitate cooperativity.

Results and Discussion

Bimetallic $\left[\mathrm{Co}_{2}{ }_{2}\left(\mathrm{~L}^{1}\right)(\mathrm{bpy})_{2}\right] \mathrm{ClO}_{4}(1)$
Species 1 is prepared by treatment of 1 equiv of $\mathrm{H}_{3} \mathrm{~L}^{1}$ with 2 equiv of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and bipyridine in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ as base. A detailed description of the synthesis of $\mathbf{1}$, along with its thorough characterization and molecular structure, was recently reported by Fiedler and co-workers. ${ }^{27}$ Figure $\underline{1}$ b shows that the $\left(\mathrm{L}^{1}\right)^{3-}$ ligand loses two phenolic and one amidic protons to support a dicobalt(II) core in which the metal centers lie at a short distance of 2.70 Å, bridged by the N3 atom of a diarylamido unit with a Co1-N3-Co2 angle of 86.9°. Each of the five-coordinate Co" centers is bonded to the N atom of an azomethine (N 1 or N 2) and the O atom of a phenolate (O 1 or O 2), with a bidentate bipyridine (bpy) completing the coordination sphere. This monocationic unit is neutralized by a single ClO_{4}^{-}counterion. The low-spin $(S=1 / 2)$ nature of both Co" centers is indicated by relatively short metal-ligand bond lengths, ranging between 1.89 and $2.06 \AA$ (the average Co-N/O bond length is $1.95 \AA \AA$). The Co " centers are antiferromagnetically coupled as revealed by the sharpness of the ${ }^{1} \mathrm{H}$ NMR features. ${ }^{27}$ The UV/Vis spectrum of $\mathbf{1}$ was recorded in $\mathrm{CH}_{3} \mathrm{CN}$ (Figure 2). The catalyst presents a yellowish brown color owing to the presence of intense intraligand charge transfers (ILCTs). The initial spectrum shows bands below 320 nm tentatively attributed to $\sigma^{*} \leftarrow \sigma$ and $\pi^{*} \leftarrow \sigma$ ILCT processes, whereas the shoulders around 343 and 452 nm are attributed to low-intensity $\pi-\pi^{*}$ transitions typical of distorted environments. ${ }^{27}$

Figure 2 UV/Vis spectra of 1: (a) Pre-catalytic [Co"Co"] at $1 \times 10^{-3} \mathrm{~m}$; (b) chemically reduced [Co'Co'], unknown concentration; (c) post-catalysis.

Electrocatalytic H^{+}reduction

To study the possibility of 1 as a catalyst for the reduction of H^{+}to H_{2}, we investigated the electrochemical response of 1 in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ by using a glassy carbon working electrode with increasing concentrations of acetic acid ($\mathrm{HOAc}, \mathrm{p} K_{\mathrm{a}}=22.3$ in $\mathrm{CH}_{3} \mathrm{CN}$) as the proton source. 28 The standard reduction potential of H^{+}in $\mathrm{CH}_{3} \mathrm{CN}, E^{\circ}\left(\mathrm{H}^{+} / \mathrm{H}_{2}\right)$ was determined by open-circuit potential measurements as $-0.028 \pm 0.008 \mathrm{~V}$ (vs. $\left.\mathrm{Fc}^{+} / \mathrm{Fc}\right)$. 29 Under standard conditions, $E^{\circ}\left(\mathrm{AH} / \mathrm{A}^{-} ; \mathrm{H}_{2}\right)$ would be $-1.35 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc}^{+} / \mathrm{Fc}\right)$ for HOAc; however, high concentrations can afford homoconjugation, leading to an incremental acidity and increasing the standard reduction potential., ${ }^{29}, 30$ As shown in Figure 3, a cyclic voltammogram of 1 shows three cathodic events. An irreversible wave was observed near $-1.51 \mathrm{~V}(\mathrm{vs} . \mathrm{Fc}+/ \mathrm{Fc})(-0.99 \mathrm{~V} \mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$ and assigned to the reduction of the dicobalt(II) core [$\left.\mathrm{Co}^{\prime \prime} \mathrm{Co}^{\text {" }}\right]$ to the formal [$\left.\mathrm{Co}^{\prime} \mathrm{Co}^{\text {" }}\right]$ state.

Figure $\mathbf{3}$ Cyclic voltammograms (CVs) of $\mathbf{1}(2.0 \mathrm{~mm})$ measured vs. $\mathrm{Ag} / \mathrm{AgCl}$ and plotted vs. $\mathrm{Fc}^{+} / \mathrm{Fc}$ in the presence of increasing concentrations of HOAc . The $\mathrm{CH}_{3} \mathrm{CN}$ solvent contained $0.1 \mathrm{~m} \mathrm{NBu} 4 \mathrm{PF}_{6}$ as the supporting electrolyte, and a glassy carbon working electrode was employed.

This [Co'Co"] state does not seem able to afford catalysis, which is observed at a potential of $-1.86 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc}^{+} / \mathrm{Fc}\right)$ $(-1.34 \mathrm{~V}$ vs. $\mathrm{Ag} / \mathrm{AgCl})$, thus requiring a $\left[\mathrm{Co}^{\prime} \mathrm{Co}^{\prime}\right]$ state. Upon increase of the HOAc concentration, this electrocatalytic current enhancement becomes evident and reaches its maximum at -2.08 V (vs. $\left.\mathrm{Fc}^{+} / \mathrm{Fc}\right)(-1.56 \mathrm{~V}$ vs. $\mathrm{Ag} / \mathrm{AgCl}$) with the addition of 20 equiv of acid. Control experiments, in which HOAc is added to $\mathrm{CH}_{3} \mathrm{CN}$ in absence of $\mathbf{1}$, show negligible increase in current, even if significantly more negative potentials are applied. These results validate the catalytic role of $\mathbf{1}$ and support our hypothesis of homogeneous H^{+}reduction with $\mathbf{1}$ as electrocatalyst.

The experimentally determined redox events were further studied by using DFT calculations in model compounds. Complex 1 was modeled with two low-spin Co" centers in agreement with NMR data. Each center contains one unpaired electron, and the [Co"Co"] core is antiferromagnetically coupled to provide a singlet ($S=0$) ground state. ${ }^{27}$ For simplicity, the $t \mathrm{Bu}$ groups on the phenolates are replaced by methyl groups. ${ }^{31}$ The results for relevant species are shown in Figure $\underline{4}$ as calculated spin-density plots with Mulliken spin-density values. The initial singlet [Co"Co"] ${ }^{\text {LS }} 3 d^{7}-^{\text {LS }} 3 d^{7}$ core in 1 is reduced to the doublet [$\mathrm{Co}^{\prime} \mathrm{Co}^{11}{ }^{1}{ }^{\mathrm{HS}} 3 \mathrm{~d}^{8}-{ }^{\text {LS }} 3 \mathrm{~d}^{7}$ core in \mathbf{A}. Species \mathbf{A}, therefore, contains a high-spin $3 \mathrm{~d}^{8} \mathrm{Co}^{1}$ with two unpaired electrons and can be further reduced to the singlet $\left[\mathrm{Co}^{\prime} \mathrm{Co}^{1}\right]$ B with a ${ }^{\mathrm{Hs}} 3 \mathrm{~d}^{8}-\mathrm{HS}^{3} 3 \mathrm{~d}^{8}$ core at a calculated potential of $-1.64 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc}^{+} / \mathrm{Fc}\right)$. The presence of the
monovalent species B was confirmed experimentally by UV/Vis spectroscopy by chemically reducing a sample of [Co"Co"] (1) with 2 equiv of KC_{8} under inert atmosphere. The resulting spectrum is shown in Figure $\underline{\mathbf{2}} \mathrm{b}$ and displays bands typical of previously reported Co^{\prime} species; based on similarities to the spectrum of the Co"containing species, the band at 285 nm is attributed to ILCT processes. Bands at 344,409 , and $700-900 \mathrm{~nm}$ are comparable to those observed for a Co' tetraaza-macrocyclic catalyst ${ }^{32}$ and associated with d-d bands. In an octahedral Co' bis(pyridine-2,6-diimine) complex these broad bands are attributed to $d-\pi^{*}$ charge-transfer processes, $\frac{33}{}$ whereas several shoulders at $500-600 \mathrm{~nm}$ are characteristic for the presence of radical species. Similar shoulders were observed for B between 450 and 650 nm , thus suggesting that ligand reduction may have occurred to some extent. To ascertain experimentally the overpotential at which $\mathbf{1}$ shows electrocatalytic activity, a series of 2 min bulk electrolyses (BE) were performed at applied potentials ranging between -0.7 and -1.6 V (vs. $\mathrm{Ag} / \mathrm{AgCl})$. The experiment was performed in an airtight H -type cell by using a Hg -pool working electrode, $\mathrm{Ag} / \mathrm{AgCl}$ as reference, and a Pt-coil auxiliary electrode placed in an adjacent compartment separated by a frit. The main chamber was filled with catalyst $\mathbf{1}$, TBAPF $_{6}$ (TBA = tetrabutylammonium) electrolyte solution, and HOAc in 20 mL CH 3 CN . The auxiliary chamber was filled with the electrolyte solution only. Figure $\underline{\mathbf{5}}$ a illustrates the total charge consumed by $\mathbf{1}$ in the presence of acid during $B E$; charge consumption remained constant up to $-1.4 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$, after which it increased significantly until $-1.6 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$, concomitant with evolution of H_{2} gas, as confirmed by GC. Figure $\underline{\mathbf{5}}$ b shows a plot of charge consumed versus applied potential. The graph indicates that the onset potential for catalysis is $-1.4 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$.

Figure 4 DFT-calculated spin-density plots (isodensity 0.004 a.u.), reduction potentials, and the Mulliken spin-density (MSD) values showing reduction of [$\left.\mathrm{Co}^{\prime \prime} \mathrm{Co}^{\prime \prime}\right](1)$ to $\left[\mathrm{Co}^{\prime} \mathrm{Co}^{\prime \prime}\right](\mathrm{A})$ to $\left[\mathrm{Co}^{\prime} \mathrm{Co}^{\prime}\right](\mathrm{B}) . \mathrm{H}$ atoms are omitted for clarity.

Figure 5 (a) Charge consumed at variable potentials (vs. $\mathrm{Ag} / \mathrm{AgCl}$) with 2 min . BE ; (b) maximum charge consumed vs. potential (vs. $\mathrm{Ag} / \mathrm{AgCl})$.

This onset potential is comparable to that of the mononuclear cobalt polypyridyl catalyst recently published by Verani and co-workers ${ }^{\underline{24}}$ and investigated under similar conditions that enable comparison. The plot of current versus concentration of HOAc at a potential of $-2.08 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Fc}^{+} / \mathrm{Fc}\right)$ is provided in Figure $\underline{\mathbf{6}}$. The measured current increases linearly with the concentration of HOAc, whereas negligible current increase is observed in absence of 1. An apparent overpotential of 0.63 V was calculated assuming homoconjugation ($E^{\mathrm{Fc}} / \mathrm{Fc}^{\mathrm{Fc}} \mathrm{AcOH}$ in $\mathrm{CH}_{3} \mathrm{CN}=-1.23 \mathrm{~V}$), and a rate of H_{2} generation ${ }^{30}\left(k_{\text {obs }}\right)$ of $6.33 \mathrm{~s}^{-1}$ resulted. A charge consumption plot over 3 h is
shown in Figure ㄱ. The slight curvature observed within the first 10 min is typical for proton reduction and tentatively associated with solvent dissociation. $\frac{25}{}$ The amount of H_{2} produced over the same period of time was determined by BE as already discussed, by using 100 equiv of acid at an applied potential of -1.6 V (vs. $\mathrm{Ag} / \mathrm{AgCl})$.

Figure 6 Squares: CV current at $-2.08 \mathrm{~V}(\mathrm{vs} . \mathrm{Fc} / \mathrm{Fc})$ as a function of HOAc concentration for solutions of $\mathbf{1}(2.0 \mathrm{~mm})$ in $\mathrm{CH}_{3} \mathrm{CN}$; circles: corresponding data measured under identical conditions but in the absence of $\mathbf{1}$.

Figure $\mathbf{7}$ Charge consumption versus time during BE with TBAPF (1.560 g), HOAc ($0.024 \mathrm{~g}, 0.4 \mathrm{mmol}), \mathbf{1}(0.0047 \mathrm{~g}, 0.004$ mmol), and $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ at $-1.6 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$.

A sample of the headspace gas ($100 \mu \mathrm{~L}$) was injected into a GC to quantify the amount of H_{2} produced and repeated in triplicate. A calibration curve (Figure S1 in the Supporting Information) was used to standardize the calculations. An average amount of $0.072 \mathrm{mmol}_{\mathrm{H}_{2}}$ was calculated after background correction, which is associated with a turnover number (TON) of 18, equivalent to approximately 40% conversion rate. The Faradaic efficiency (FE) was calculated at 94% from the maximum charge consumed. BE experiments were performed
under similar conditions as described above by using an incremental concentration of acid, leading to an increase in the calculated TONs. Accordingly, the use of 200 equiv of acid led to a TON of 75 , whereas 300 equiv led to a TON of 97 . In both cases the Faradaic efficiency remained consistent at $>90 \%$. As expected, because the concentration of acid was no longer a limiting factor, high yields were observed and the use of 400 equiv of acid led to the highest TON of 120 with an associated drop in FE to approximately 85%.

The charge versus time plots for these experiments are shown in Figures S2-S4 in the Supporting Information; whereas the first two graphs show an almost linear behavior in which the initial lagging observed in Figure $\underline{6}$ almost disappears, the plot with 400 equiv shows slightly increased activity after the first 10 min followed by a decrease after approximately 2.5 h , which is likely related to slow degradation of the catalyst under such acidic conditions. Considering the near-linearity of the graph in Figure S3, the system seems optimized in the presence
 lack of information on directly measured TONs. However, simple assessment of our system (without considering variables such as proton source and applied potential) reveals that the TON, rate of conversion, and Faradaic

Fate of catalyst 1

The post-catalysis spectrum shown in Figure $\underline{2}$ c displays features similar to those observed in the [Co"Co"] state (Figure $\underline{\mathbf{2}}$ a), thus attesting to the catalytic nature of $\mathbf{1}$ along with a decrease of approximately 10% in the UV bands and of 2% in the 450 nm band. This small discrepancy is explained by slow percolation of the solution between the chambers and through the frit of the electrochemical cell. Alternatively, a fraction of the catalyst may be deactivated, and evaluation of a grafoil sheet electrode was performed by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis to assess the possibility of nanoparticle formation (Figure S5 in the Supporting Information). Notwithstanding evidence for formation of organic nanoparticles, no Co was detected on the surface of the electrode. Thus, UV/Vis, SEM, and EDX analyses support the presence of a catalyst that is molecular in nature.

Mechanism of H^{+}reduction

The proposed catalytic mechanism of H^{+}reduction is shown in Figure 8. Each ${ }^{\text {LS }} 3 \mathrm{~d}^{7}$ ion in [Co"Co"] (1) displays one unpaired electron in the $\mathrm{d} z^{2}$-based singly occupied molecular orbital (SOMO), yielding an antiferromagnetically coupled singlet ($S=0$). The reduction of 1 generates [$\mathrm{Co}^{1} \mathrm{Co}{ }^{\prime \prime}$] (\mathbf{A}) with a $\mathrm{Co}^{1}\left({ }^{H S} 3 \mathrm{~d}^{8}\right)$ and a Co" ${ }^{\text {LS }} 3 \mathrm{~d}^{7}$). The Co'-based $\mathrm{d}^{x^{2}-y^{2}}$ orbital is now occupied by an electron, leading to an overall doublet ($S=1 / 2$) ground state. On further reduction the second Co" center in A accepts an electron to its empty $\mathrm{d}^{2} \mathrm{x}^{2}-y^{2}$ orbital and is transformed into a second ${ }^{\mathrm{HS}} 3 \mathrm{~d}^{8}$ ion in [$\left.\mathrm{Co}^{\prime} \mathrm{Co}^{\prime}\right]$ (B). This is the proposed catalytically active species. The two adjacent $\mathrm{d}^{2}-y^{2}$ SOMOs in \mathbf{B} do not overlap spatially and, therefore, are not coupled with each other. As a consequence, each of these electrons can be transferred onto an incoming H^{+}to reduce it to a hydride (H^{-}). As a result, protonation of \mathbf{B} is favorable by $28 \mathrm{kcal} \mathrm{mol}^{-1}(\Delta G)$. Each of the two ${ }^{\mathrm{HS}} \mathrm{Co}^{1}$ centers transfers one electron from its $\mathrm{d}^{2} x^{2-y^{2}} \mathrm{SOMO}$, and the resulting complex is described as the species [$\mathrm{Co}^{\prime \prime} \mathrm{Co}^{\prime \prime}\left(\mathrm{H}^{-}\right)$] (C) (Figure 8 and Figure S6 in the Supporting Information). The hydride moiety is bound more tightly to one of the Co" ions, rather than symmetrically bridged between the two centers. The shortest $\mathrm{Co}^{\prime \prime}-\mathrm{H}^{-}$distance is calculated at $1.54 \AA$, whereas the other distance has a computed value of $1.85 \AA$. It is noteworthy that the cooperativity between both centers in species B leads to \mathbf{C}, $\left[\mathrm{Co}^{\prime \prime} \mathrm{Co}^{\prime \prime}\left(\mathrm{H}^{-}\right)\right.$], thereby precluding formation of a [$\mathrm{Co}^{\prime} \mathrm{Co}^{\text {III }}\left(\mathrm{H}^{-}\right)$] intermediate. The latter species, containing the trivalent $3 d^{6} C o^{I I I}$ ion, can only be invoked if there is no cooperativity and the two metal centers function independently. Succinctly, protonation of one of the Col centers in B prompts a $2 \mathrm{e}^{-}$transfer in which each of the two Co^{\prime} centers donates an electron to the H^{+}. As a result, the more reactive $\mathrm{Co}^{\prime \prime}\left(\mathrm{H}^{-}\right)$unit is achieved without prior or concurrent formation of the $\mathrm{Co}^{\text {III }}\left(\mathrm{H}^{-}\right)$moiety.

Figure 8 Catalytic mechanism of H_{2} generation by $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$. Protonation of the [$\mathrm{Co}^{\prime} \mathrm{Co}^{\prime}$] intermediate \mathbf{B} causes each Co^{\prime} center to donate $1 \mathrm{e}^{-}$to H^{+}, resulting in the formation of the [$\mathrm{Co}^{1 "} \mathrm{Co}^{\circ}{ }^{\prime \prime}$]-hydride complex \mathbf{C}. Isodensity plots of the orbitals of $\mathbf{1}, \mathbf{A}, \mathbf{B}$, and \mathbf{C} are shown in Figure $\mathrm{S7}$ in the Supporting Information. Free energies $\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]^{35}$ and potentials [V] calculated at the BPW91/SDD/6-31G(d,p) level of theory. ${ }^{36}$

Conclusion

We have investigated both experimentally and theoretically the bimetallic complex $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)(\mathrm{bpy})_{2}\right] \mathrm{ClO}_{4}(1)$. This species supports the catalytic H^{+}reduction to H_{2} in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of a weak acid such as HOAc at an overpotential of 0.63 V . This catalytic activity relies on a $2 \mathrm{e}^{-}$reduction of the parent species [Co" $\mathrm{Co}^{\prime \prime}$] (1) to form a [$\mathrm{Co}^{\prime} \mathrm{Co}^{\prime}$] complex. Each of these Co' centers contributes with the donation of one electron to a single incoming H^{+}, thus forming a reactive $\mathrm{Co}^{\prime \prime}$-hydride. The new bimetallic cooperativity exhibited by this system arises from the close proximity of the cobalt centers and an appropriate orbital topology that avoids the formation of the $\mathrm{Co}^{\text {III }}-\mathrm{H}^{-}$moiety required for proton reduction in monometallic catalysts. The second Co^{\prime} center plays a pivotal role in the catalytic reduction of H^{+}, acting as an electron reservoir to donate the second electron necessary for formation of the $\mathrm{Co}^{\prime \prime}-\mathrm{H}^{-}$unit that favorably accepts another H^{+}and releases H_{2}. Post-catalytic SEM and EDX analyses support the molecular nature of the catalyst. Therefore, the observations resulting from this work lead to considerations on how to optimize topology and orbital overlap to promote the use of a neighboring metal center as electron reservoir. These factors will become pivotal in the development of new and improved bimetallic catalysts.

Experimental Section

Materials and methods

Reagents were used without further purification as purchased from commercial sources. UV/Vis spectra were obtained using a Shimadzu UV-3600 spectrophotometer. Complex 1 was obtained by dissolving the ligand $\mathrm{H}_{3} \mathrm{~L}^{1}(0.066 \mathrm{~g}, 0.10 \mathrm{mmol}), 2,2^{\prime}$-bipyridine (bpy, $\left.0.032 \mathrm{~g}, 0.20 \mathrm{mmol}\right)$, and $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.073 \mathrm{~g}, 0.2 \mathrm{mmol})$ in a 1:1 mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. A detailed synthetic protocol and characterizations have been described recently. ${ }^{27}$

Redox studies

The electrochemical behavior of 1 was investigated with a BAS 50 W potentiostat/galvanostat. CVs were obtained at room temperature in $\mathrm{CH}_{3} \mathrm{CN}$ containing $0.1 \mathrm{~m} \mathrm{TBAPF}_{6}$ as the supporting electrolyte under argon atmosphere. The electrochemical cell employed three electrodes: glassy-carbon (working), platinum wire (auxiliary), and $\mathrm{Ag} / \mathrm{AgCl}$ (reference). The $\mathrm{Fc}^{+} / \mathrm{Fc}$ redox couple [$E^{\circ}=401 \mathrm{mV}$ vs. normal hydrogen electrode (NHE)]
was used as internal standard. BE was performed in a custom-made air-tight H -type cell under inert conditions according to a procedure reported by Verani and co-workers. ${ }^{24}$ The cell was comprised of two compartments separated by a frit. On one side of the frit were placed the Hg -pool working and $\mathrm{Ag} / \mathrm{AgCl}$ reference electrodes, whereas a coiled 30.5 cm Pt wire serving as the auxiliary electrode was placed in the other compartment. BE experiments were performed in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ with TBAPF_{6} as the supporting electrolyte until the calculated final charges were reached. All potentials were measured vs. $\mathrm{Ag} / \mathrm{AgCl}$. During BE, potentials were controlled with a BAS 50W potentiometer, and UV/Vis spectra were collected on a Shimadzu UV-3600 UV/Vis-NIR spectrophotometer at room temperature.

Computational studies

Electronic structure calculations were performed using the BPW91 density functional ${ }^{37}$, 38 as implemented in a development version of Gaussian. ${ }^{39}$ The SDD basis set and effective core potential ${ }^{40}$ were used for Co atoms, and the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set ${ }^{41,42}$ was used for the other atoms. To streamline calculations, a slightly modified model was used in which the tert-butyl substituents of complex 1 were replaced by methyl groups. Geometry optimization was performed in the gas phase, and all optimized structures were confirmed as minima by harmonic vibrational frequency calculations. The energies of the optimized structures were reevaluated by additional single-point calculations on each optimized geometry in $\mathrm{CH}_{3} \mathrm{CN}$ by using the implicit SMD solvation model. ${ }^{\underline{43}}$ The converged wave functions in solvent were tested for self-consistent field (SCF) stability. The free energy in solution phase $G($ sol $)$ was calculated as follows: $G($ sol $)=E_{\text {sCF }}$ (sol)+[zero-point energy(ZPE)+thermal correction-TS](gas). EscF was calculated in the solvent, whereas ZPE, thermal correction, and entropic contributions were calculated in the gas phase. The standard states of 1 m concentration were considered for all reactants and products for calculating the free energies of reactions [ΔG (sol)]. The spin-density plots (isovalue $=0.004$ a.u.) and corresponding orbitals ${ }^{44}$ (isovalue $=0.05 \mathrm{a} . \mathrm{u}$.) of the calculated structures were visualized with GaussView. ${ }^{45}$ The literature value ${ }^{46}$ of $-264.6 \mathrm{kcal} \mathrm{mol}^{-1}$ was used for the free energy of a proton in $\mathrm{CH}_{3} \mathrm{CN}$. The calculation of the reduction potentials (E, V in Volt) of the complexes included ZPE, thermal correction, and entropic contribution. The standard thermodynamic equation $\Delta G(\mathrm{sol})=-n F E$ was used. The calculated potentials were referenced to a value of $E_{1 / 2}=4.38 \mathrm{~V}$ for the $\mathrm{Fc}^{+} / \mathrm{Fc}$ couple calculated under our level of theory.

Catalytic studies

Electrocatalytic studies to determine the amount of H produced by the catalyst, TONs, and FEs were performed as previously described 2^{24} in an H -type cell (Hg -pool; $\mathrm{Ag} / \mathrm{AgCl} \mid \mathrm{Pt}$-coil). The main chamber was filled with catalyst $1\left(0.005 \mathrm{~g}, 4 \times 10^{-6} \mathrm{~mol}\right)$, and the TBAPF 6 electrolyte (1.56 g) and acetic acid ($0.024 \mathrm{~g}, 4 \times 10^{-4} \mathrm{~mol}, 100$ equiv) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$. The small chamber housing the auxiliary electrode was filled with TBAPF $_{6}(0.390 \mathrm{~g})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$. In a typical test, the cell was purged for 20 min followed by sampling the head space gas with a Gow-Mac 400 GC equipped with a thermal conductivity detector and a $2.4 \mathrm{~m} \times 0.31 \mathrm{~cm} \times 5 \AA$ molecular-sieve column operating at a temperature of $60^{\circ} \mathrm{C}$. The amount of H_{2} produced was determined by GC with a calibration curve obtained with known volumes of $99.999+\% \mathrm{H}_{2}$ gas and shown in Figure S 1 in the Supporting Information (see the Supporting Information for sample data and relevant calculations obtained from experiments). A catalyst-free solution was electrolyzed for 3 h and analyzed by GC to provide a blank. The cell was then purged again, and the catalyst was added. Electrolysis ensued for 3 h , and the headspace with H_{2} gas was analyzed. The TON was then calculated after background subtraction as the ratio between mol H_{2} produced per mol catalyst. The FE was calculated from the GC measurements.

Acknowledgements

This research was made possible by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through the Single-Investigator and Small-Group

Research (SISGR)-Solar Energy program grants DE-SC0001907 and DE-FG02-09ER16120 to C.N.V. and H.B.S., including financial support to K.K.K. and S.M. A.T.F. acknowledges support from the NSF (CHE-1056845). K.K.K. also acknowledges WSU-Chemistry for a Thomas C. Rumble Graduate Fellowship.

Conflict of interest

The authors declare no conflict of interest.

References

1 J. A. Turner, Science 2004, 305, 972-974.
2 N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.
3 A. D. Wilson, R. H. Newell, M. J. McNevin, J. T. Muckerman, M. Rakowski DuBois, D. L. DuBois, J. Am. Chem. Soc. 2006, 128, 358-366.
4 P. A. Jacques, V. Artero, J. Pecaut, M. Fontecave, Proc. Natl. Acad. Sci. USA 2009, 106, 20627-20632.
5 L. Chen, M. Wang, F. Gloaguen, D. Zheng, P. Zhang, L. Sun, Inorg. Chem. 2013, 52, 1798-1806.
6 P. H. A. Kankanamalage, S. Mazumder, V. Tiwari, K. K. Kpogo, H. Bernhard Schlegel, C. N. Verani, Chem. Commun. 2016, 52, 13357-13360.
7 P. Connolly, J. H. Espenson, Inorg. Chem. 1986, 25, 2684-2688.
8 B. H. Solis, S. Hammes-Schiffer, J. Am. Chem. Soc. 2011, 133, 19036-19039.
9 B. H. Solis, S. Hammes-Schiffer, Inorg. Chem. 2011, 50, 11252-11262.
10 J. T. Muckerman, E. Fujita, Chem. Commun. 2011, 47, 12456-12458.
11 B. H. Solis, Y. Yu, S. Hammes-Schiffer, Inorg. Chem. 2013, 52, 6994-6999.
12 X. Hu, B. S. Brunschwig, J. C. Peters, J. Am. Chem. Soc. 2007, 129, 8988-8998.
13 S. C. Marinescu, J. R. Winkler, H. B. Gray, Proc. Natl. Acad. Sci. USA 2012, 109, 15127-15131.
14 E. S. Wiedner, R. M. Bullock, J. Am. Chem. Soc. 2016, 138, 8309-8318.
15 E. S. Rountree, D. J. Martin, B. D. McCarthy, J. L. Dempsey, ACS Catal. 2016, 6, 3326-3335.
16 S. Mandal, S. Shikano, Y. Yamada, Y. M. Lee, W. Nam, A. Llobet, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 15294-15297.
17 N. K. Szymczak, L. A. Berben, J. C. Peters, Chem. Commun. 2009, 6729-6731.
18 S. Kal, A. S. Filatov, P. H. Dinolfo, Inorg. Chem. 2014, 53, 7137-7145.
19a N. H. Pilkington, R. Robson, Aust. J. Chem. 1970, 23, 2225-2236;
19b H. Ōkawa, H. Furutachi, D. E. Fenton, Coord. Chem. Rev. 1998, 174, 51-75.
20 C. N. Valdez, J. L. Dempsey, B. S. Brunschwig, J. R. Winkler, H. B. Gray, Proc. Natl. Acad. Sci. USA 2012, 109, 15589-15593.
21 S. M. Laga, J. D. Blakemore, L. M. Henling, B. S. Brunschwig, H. B. Gray, Inorg. Chem. 2014, 53, 12668-12670.
22 C. Di Giovanni, C. Gimbert-Suriñach, M. Nippe, J. Benet-Buchholz, J. R. Long, X. Sala, A. Llobet, Chem. Eur. J. 2016, 22, 361-369.

23 D. Basu, M. M. Allard, F. R. Xavier, M. J. Heeg, H. B. Schlegel, C. N. Verani, Dalton Trans. 2015, 44, 3454-3466.
24 D. Basu, S. Mazumder, X. Shi, H. Baydoun, J. Niklas, O. Poluektov, H. B. Schlegel, C. N. Verani, Angew. Chem. Int. Ed. 2015, 54, 2105- 2110; Angew. Chem. 2015, 127, 2133- 2138.
25 D. Basu, S. Mazumder, X. Shi, R. J. Staples, H. B. Schlegel, C. N. Verani, Angew. Chem. Int. Ed. 2015, 54, 7139-7143; Angew. Chem. 2015, 127, 7245-7249.
26 D. Basu, S. Mazumder, J. Niklas, H. Baydoun, D. Wanniarachchi, X. Shi, R. J. Staples, O. Poluektov, H. B. Schlegel, C. N. Verani, Chem. Sci. 2016, 7, 3264- 3278.
27 D. Wang, S. V. Lindeman, A. T. Fiedler, Inorg. Chem. 2015, 54, 8744-8754.
28 D. J. Martin, B. D. McCarthy, C. L. Donley, J. L. Dempsey, Chem. Commun. 2015, 51, 5290-5293.

29 J. A. S. Roberts, R. M. Bullock, Inorg. Chem. 2013, 52, 3823- 3835.
30 V. Fourmond, P. A. Jacques, M. Fontecave, V. Artero, Inorg. Chem. 2010, 49, 10338-10347.
31 J.-L. Calais, Int. J. Quantum Chem. 1993, 47, 101-101.
32 S. Varma, C. E. Castillo, T. Stoll, J. Fortage, A. G. Blackman, F. Molton, A. Deronzier, M.-N. Collomb, Phys. Chem. Chem. Phys. 2013, 15, 17544-17552.
33B . de Bruin, E. Bill, E. Bothe, T. Weyhermüller, K. Wieghardt, Inorg. Chem. 2000, 39, 2936-2947.
34 P. Tong, W. Xie, D. Yang, B. Wang, X. Ji, J. Li, J. Qu, Dalton Trans. 2016, 45, 18559-18565.
35 When referenced to the experimental acid, acetic acid ($\mathrm{p} K_{\mathrm{a}}=22.3$), protonation of $\mathrm{Co}^{\prime}-\mathrm{Co}^{\prime} \mathbf{B}$ will be slightly uphill by $2.6 \mathrm{kcal} \mathrm{mol}^{-1}$. Similarly, protonation and release of H_{2} from \mathbf{C} will be downhill by 19.2 kcal mol ${ }^{-1}$.
36 J. K. Hurst, M. D. Roemeling, S. V. Lymar, J. Phys. Chem. B 2015, 119, 7749- 7760.
37 A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.
38 J. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244-13249.
39 Gaussian Development Version, Revision H.31, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, P. V. Parandekar, N. J. Mayhall, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
40 M. Dolg, U. Wedig, H. Stoll. H. Preuss, J. Chem. Phys. 1987, 86, 866-872.
41 P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213- 222.
42 M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654- 3665.
43 A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
44 F. Neese, Phys. Chem. Solids 2004, 65, 781-785.
45 R. D. Dennington II, T. A. Keith, J. M. Millam, GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, 2009.
46 C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. A 2006, 110, 16066-16081.

Supporting Information

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Filename	Description
chem201701982-sup-0001-misc information.pdf755.2 KB	Supplementary

Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.

Contents:

1. Catalytic Studies

Examples of calculations
a. Figure S1. Calibration curve used for the determination of the amount of hydrogen

Dependence of TON on Acid Concentration
a. Figure S2. Charge buildup versus time with 200 equivalents of acid (HOAc)
b. Figure S3. Charge buildup versus time with 300 equivalents of acid (HOAc)
c. Figure S4. Charge buildup versus time with 400 equivalents of acid (HOAc)

Fate of the Catalyst:
a. Figure S5. Micrograph of the grafoil sheet electrodes measured by scanning electron microscopy (SEM) and energy dispersive X -ray analysis (EDX)
2. Results from DFT Calculations
a. Figure S6. Spin density plot (isovalue $=0.004 \mathrm{au})$ with Mulliken spin density (MSD) values for [Coll($\mathrm{H}-$)CoII] complex C
b. Figure S7. The corresponding orbital plots (isovalue= 0.05 au) of the SOMOs (singly occupied molecular orbitals) of complexes $1, \mathrm{~A}, \mathrm{~B}$, and C
c. Table S1. The XYZ coordinates of the calculated structures
3. References

1. Catalytic Studies

Example of Calculations:
a. Figure S1. Calibration curve used for the determination of the amount of hydrogen

Sample Calculations:

Blank Peak Area	Catalyst Peak Area	Volume of the Cell (mL)	Volume of Solution (mL)	Volume injected into $\mathrm{GC}(\mu \mathrm{L})$	Number of moles of catalyst ($\mu \mathrm{mol})$
8.0	34.7	46.2	27.4	100	4

$V_{\text {headspace }}=46.2-27.4=18.8 \mathrm{~mL}$
Number of moles of hydrogen in $100 \mu \mathrm{~L}$ of headspace for both blank (nblank (100)) and catalyst
($\mathrm{n}_{\text {catalyst }}(100)$):
$n_{\text {blank }}(100)(8.00+1.88) / 70.13=0.14 \mu \mathrm{~mol}$
$\mathrm{n}_{\text {catalyst }}(100)(34.68+1.88) / 70.13=0.52 \mu \mathrm{~mol}$
The net amount of hydrogen produced by the catalyst in $100 \mu \mathrm{~L}$ of headspace $\mathrm{n}_{\text {net }}(100)$, is equal to the difference between $\mathrm{n}_{\text {blank (100) }}$ and $\mathrm{n}_{\text {catalyst (100) }}$
$\mathrm{n}_{\text {net (100) }}=\mathrm{n}_{\text {catalyst (100) }}-\mathrm{n}_{\text {blank (100) }}=0.52-0.14=0.38 \mu \mathrm{~mol}$
The total net amount of hydrogen that was produced $n_{\text {net (total) }}$ is obtained by adjusting the injecting volume to that of the total headspace

$$
\mathrm{n}_{\text {net (total) }}=\frac{\mathrm{n}_{\text {net }(100)} \times V_{\text {headspace }}}{V_{\text {injected }}}=71.56 \mu \mathrm{~mol}
$$

$$
\mathrm{TON}=\frac{n_{\text {net }(\text { total })}}{n_{\text {catalyst }}}=71.56 / 4=17.89
$$

$$
\begin{aligned}
\mathrm{n}_{\text {net (total) }} & =\frac{\mathrm{n}_{\text {net }(100)} \times V_{\text {headspace }}}{V_{\text {injected }}}=71.56 \mu \mathrm{~mol} \\
\mathrm{TON} & =\frac{n_{\text {net (total) }}}{n_{\text {catalyst }}}=71.54 / 4=17.89
\end{aligned}
$$

Dependence of TON on Acid Concentration:

Bulk electrolysis with varying acid equivalents (200, 300, and 400) was performed to investigate the catalytic performance of complex 1 and the potential role of two cobalt centers under the increasingly acidic conditions. The TONs of 75,97 , and 120 were observed after 3 h for 200,300 , and 400 equiv. of acid, respectively. Respective FEs were measured to be approximately 92, 91, and 85\% (Figures S2, S3, and S4). Despite linear increase of charge consumption with acid concentration during bulk electrolysis, $\mathrm{H}+$ conversion rate decreased
upon addition of 400 equiv. of acid. This could be due to the phenomenon of homoconjugation,[1] where acetic acid and its conjugate base form a stable adduct through hydrogen bonding in CH 3 CN .
a. Figure S1. Calibration curve used for the determination of the amount of hydrogen

b. Figure S3. Charge buildup versus time with 300 equivalents of acid

$$
\begin{gathered}
Q_{\text {blank }}=6 \mathrm{C} \text { and } \mathrm{Q}=375 \mathrm{C} \\
\text { TON }=97, \% \mathrm{FE}=91
\end{gathered}
$$

c. Figure S4. Charge buildup versus time with 400 equivalents of acid

Fate of the Catalyst:

d. Figure S5. Micrograph of post-catalytic grafoil sheet electrodes measured by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX)

2. Results from DFT Calculations

a. Figure S6. Spin density plot (isovalue $=0.004 \mathrm{au}$) with Mulliken spin density (MSD) values for [Co॥(H-)Co॥] complex C
(C)

MSD: $+0.85 \quad-0.73$
b. Figure S7. The corresponding orbital plots (isovalue= 0.05 au) of the SOMOs (singly occupied molecular orbitals) of complexes $\mathbf{1}, \mathbf{A}, \mathbf{B}$, and \mathbf{C}

c. Table S1. The XYZ coordinates of the calculated structures

Complex 1

C	-3.951477000	-1.891537000	-5.683427000
C	-1.807016000	-0.739353000	-4.948893000
C	-3.143563000	-1.107098000	-4.673090000
C	-1.061485000	0.010015000	-4.036197000
C	2.099288000	-3.170152000	-3.579661000
C	0.514639000	3.992578000	-3.848998000
C	2.759769000	-1.944622000	-3.408098000
C	2.737539000	5.221416000	-3.708622000
C	-4.324957000	4.777346000	-2.867479000
C	-3.677739000	5.953272000	-2.459893000
C	-0.377411000	3.007615000	-3.418425000
C	-3.704631000	-0.705685000	-3.451762000

C	0.936086000	-3.419010000	-2.845266000
C	1.759857000	4.180988000	-3.208076000
C	-1.631463000	0.420849000	-2.814755000
C	-3.948918000	3.566872000	-2.277559000
C	-2.965367000	0.059090000	-2.522814000
C	-2.691630000	5.873696000	-1.472255000
C	2.220955000	-1.012316000	-2.516419000
C	-0.052453000	2.175708000	-2.328713000
C	0.461069000	-2.440704000	-1.953768000
C	2.075731000	3.358336000	-2.116495000
C	-2.376551000	4.622780000	-0.912044000
C	1.184414000	2.357734000	-1.671148000
C	-1.413988000	-3.820237000	-0.928108000
C	-0.717974000	-2.608821000	-1.081881000
C	-4.629095000	0.197210000	-0.808628000
C	-2.455075000	-3.906993000	0.000655000
C	-1.397555000	4.419042000	0.173743000
C	-0.787988000	5.466252000	0.886035000
C	2.446864000	1.603262000	0.215847000
C	-2.769742000	-2.779109000	0.769861000
C	-2.049737000	-1.599159000	0.560363000
C	-5.191291000	0.555112000	0.447694000
C	-6.514176000	0.102609000	0.748541000
C	0.047211000	5.173508000	1.967994000
C	-0.380142000	2.836495000	1.569615000
C	-4.449073000	1.299390000	1.433094000
C	2.752646000	0.814688000	1.359556000
C	0.243770000	3.833268000	2.325735000
C	-7.115186000	0.356885000	1.971033000
C	-8.518673000	-0.104721000	2.291310000
C	1.879203000	-0.235071000	1.818501000
C	3.937484000	1.124931000	2.097945000
C	-5.065111000	1.545387000	2.710033000
C	-6.356552000	1.080918000	2.937277000
C	2.228042000	-0.936990000	3.025105000
C	4.280137000	0.440764000	3.253438000
C	1.318133000	-2.031770000	3.521989000
C	3.397046000	-0.588791000	3.693786000
C	5.535871000	0.754368000	4.034798000
C	-4.293597000	2.308774000	3.756790000
H	-4.169304000	-1.284834000	-6.578057000
H	-3.405289000	-2.783646000	-6.028617000
H	-1.349058000	-1.042364000	-5.894431000
H	-4.912588000	-2.225002000	-5.266738000
H	2.484335000	-3.920378000	-4.273097000
H	0.246875000	4.621721000	-4.702309000
H	-0.032202000	0.289260000	-4.266107000
H	-3.937216000	6.916613000	-2.903291000
H	3.166861000	4.929891000	-4.681664000

H	-5.106729000	4.792710000	-3.628685000
H	2.246699000	6.196313000	-3.855574000
H	3.675326000	-1.710369000	-3.953740000
H	-1.329757000	2.868801000	-3.932396000
H	0.403611000	-4.362737000	-2.968324000
H	-4.741513000	-0.979495000	-3.245432000
H	3.572681000	5.366409000	-3.008382000
H	-4.417514000	2.624034000	-2.565089000
H	-2.171137000	6.774895000	-1.146236000
H	-1.124606000	-4.696398000	-1.508831000
H	2.692818000	-0.041536000	-2.354540000
H	3.046566000	3.490225000	-1.634464000
H	-5.250488000	-0.456835000	-1.431675000
H	-0.989018000	6.502970000	0.615176000
H	-2.997046000	-4.845351000	0.134544000
H	-7.058221000	-0.458004000	-0.019238000
H	3.131982000	2.436851000	0.021823000
H	-3.558249000	-2.801131000	1.523020000
H	0.519242000	5.979516000	2.533437000
H	-2.258190000	-0.694859000	1.133252000
H	4.585108000	1.926453000	1.726876000
H	-0.257169000	1.779777000	1.809254000
H	0.868107000	3.551993000	3.174536000
H	-6.815444000	1.288193000	3.910203000
H	3.652865000	-1.138840000	4.605981000
Co	-2.250355000	1.763026000	-0.417932000
Co	0.134366000	0.047288000	-0.497465000
N	-0.923875000	1.160753000	-1.809047000
N	1.098860000	-1.244316000	-1.803110000
N	-2.998657000	3.480574000	-1.323189000
N	-3.436380000	0.544583000	-1.275141000
N	-1.062065000	-1.500601000	-0.357505000
N	1.410298000	1.454425000	-0.599288000
N	-1.163212000	3.111913000	0.502590000
O	-3.232132000	1.750827000	1.234646000
O	0.768454000	-0.573029000	1.204929000
H	6.092727000	1.589282000	3.585538000
H	5.304587000	1.027285000	5.077623000
H	6.212673000	-0.115134000	4.075257000
H	1.713938000	-2.490155000	4.439194000
H	0.307659000	-1.646633000	3.734734000
H	1.195301000	-2.820618000	2.762581000
H	-3.996502000	3.302434000	3.384719000
H	-4.890473000	2.442418000	4.669835000
H	-3.360585000	1.787285000	4.025860000
H	-8.537912000	-0.750382000	3.184708000
H	-9.185286000	0.748483000	2.499669000
H	-8.955949000	-0.673039000	1.457738000

Complex A

C	-4.154663000	-1.710038000	-5.781181000
C	-1.897384000	-0.806544000	-5.032106000
C	-3.265551000	-1.025840000	-4.764453000
C	-1.090922000	-0.138566000	-4.107685000
C	1.953436000	-3.274462000	-3.552647000
C	0.576171000	3.860282000	-4.009580000
C	2.680916000	-2.084560000	-3.387450000
C	2.658661000	5.299178000	-3.726022000
C	-4.038342000	4.926390000	-2.942650000
C	-3.415015000	6.106681000	-2.490079000
C	-0.270386000	2.826066000	-3.615038000
C	-3.779196000	-0.578523000	-3.538953000
C	0.799897000	-3.471702000	-2.788923000
C	1.751943000	4.170558000	-3.284399000
C	-1.608340000	0.334047000	-2.881732000
C	-3.713307000	3.718722000	-2.329390000
C	-2.976948000	0.081391000	-2.577592000
C	-2.506067000	6.017503000	-1.434677000
C	2.216619000	-1.137949000	-2.470064000
C	0.028530000	2.041843000	-2.472956000
C	0.402934000	-2.482185000	-1.870554000
C	2.048313000	3.401629000	-2.152378000
C	-2.235088000	4.768187000	-0.844282000
C	1.215919000	2.333484000	-1.750433000
C	-1.493021000	-3.776861000	-0.774467000
C	-0.768118000	-2.589773000	-0.981301000
C	-4.582305000	0.111147000	-0.835582000
C	-2.534928000	-3.794978000	0.156932000
C	-1.335541000	4.565179000	0.296771000
C	-0.813916000	5.610351000	1.083267000
C	2.499392000	1.600207000	0.133541000
C	-2.821252000	-2.625458000	0.874488000
C	-2.071547000	-1.473404000	0.615185000
C	-5.155607000	0.416512000	0.438507000
C	-6.445488000	-0.133307000	0.717145000
C	-0.025691000	5.315684000	2.197091000
C	-0.326824000	2.976788000	1.689922000
C	-4.469294000	1.177991000	1.464184000
C	2.793222000	0.842025000	1.306114000
C	0.213108000	3.965249000	2.512452000
C	-7.085669000	0.041952000	1.934935000
C	-8.458878000	-0.529134000	2.212142000
C	1.885849000	-0.148642000	1.823857000
C	4.002110000	1.124994000	2.010405000
C	-5.137110000	1.339759000	2.737504000
C	-6.397785000	0.789470000	2.934674000
C	2.225715000	-0.807932000	3.057303000

C	4.338109000	0.477025000	3.191168000
C	1.270324000	-1.831928000	3.616666000
C	3.420988000	-0.488199000	3.694921000
C	5.623076000	0.774042000	3.932571000
C	-4.428692000	2.122027000	3.814445000
H	-4.220401000	-1.129224000	-6.716602000
H	-3.766496000	-2.706212000	-6.051708000
H	-1.464971000	-1.151533000	-5.976172000
H	-5.177832000	-1.843169000	-5.399953000
H	2.276711000	-4.032482000	-4.269363000
H	0.318907000	4.450649000	-4.894372000
H	-0.038200000	0.043171000	-4.333882000
H	-3.632785000	7.070560000	-2.955022000
H	3.059747000	5.126645000	-4.739278000
H	-4.764211000	4.943337000	-3.758167000
H	2.121758000	6.262270000	-3.756162000
H	3.590395000	-1.889660000	-3.958843000
H	-1.181332000	2.621595000	-4.179225000
H	0.205840000	-4.378116000	-2.914942000
H	-4.844738000	-0.723371000	-3.344039000
H	3.515542000	5.418620000	-3.046207000
H	-4.165931000	2.777120000	-2.646768000
H	-1.997568000	6.913099000	-1.073118000
H	-1.222606000	-4.684200000	-1.316028000
H	2.737650000	-0.191377000	-2.311900000
H	2.952301000	3.640218000	-1.587340000
H	-5.165594000	-0.610070000	-1.429283000
H	-1.049056000	6.647426000	0.837455000
H	-3.102842000	-4.711728000	0.330569000
H	-6.940235000	-0.708921000	-0.074564000
H	3.224943000	2.385129000	-0.111851000
H	-3.61735000	-2.588191000	1.618768000
H	0.379977000	6.118123000	2.817241000
H	-2.265549000	-0.534380000	1.137093000
H	4.675734000	1.884188000	1.597069000
H	-0.160021000	1.917584000	1.893113000
H	0.812964000	3.678355000	3.377886000
H	-6.885556000	0.937944000	3.905583000
H	3.666092000	-1.008003000	4.628324000
Co	-2.220517000	1.911879000	-0.410328000
Co	0.148831000	0.070102000	-0.505380000
N	-0.808461000	1.042871000	-1.940834000
N	1.108642000	-1.323112000	-1.721761000
N	-2.832314000	3.615329000	-1.301743000
N	-3.433322000	0.554599000	-1.326658000
N	-1.081037000	-1.443235000	-0.303684000
N	1.442590000	1.465143000	-0.656456000
N	-1.075114000	3.246436000	0.590040000
O	-3.285368000	1.698396000	1.311921000

O	0.757269000	-0.472757000	1.238415000
H	6.208451000	1.554991000	3.424543000
H	5.428983000	1.120240000	4.962051000
H	6.263354000	-0.121054000	4.013691000
H	1.661843000	-2.276190000	4.543713000
H	0.286915000	-1.383474000	3.833544000
H	1.084433000	-2.639829000	2.890514000
H	-4.200557000	3.145301000	3.474634000
H	-5.036231000	2.181081000	4.729913000
H	-3.457485000	1.664857000	4.065480000
H	-8.452225000	-1.209362000	3.081373000
H	-9.193607000	0.263447000	2.436167000
H	-8.838766000	-1.096893000	1.349312000

Complex B

C	-4.319398000	-1.430997000	-5.828205000
C	-2.058631000	-0.501166000	-5.107525000
C	-3.413942000	-0.768152000	-4.811295000
C	-1.232903000	0.141483000	-4.184266000
C	2.015408000	-3.413404000	-3.697098000
C	0.776486000	3.864086000	-3.987597000
C	2.650371000	-2.157433000	-3.550427000
C	3.100169000	4.903495000	-3.867525000
C	-4.169841000	5.050811000	-2.940678000
C	-3.550721000	6.245163000	-2.502449000
C	-0.187653000	2.958501000	-3.543495000
C	-3.891011000	-0.391241000	-3.548603000
C	0.893486000	-3.683511000	-2.915094000
C	2.033193000	3.961719000	-3.349829000
C	-1.710542000	0.551015000	-2.913014000
C	-3.817586000	3.851720000	-2.330288000
C	-3.067838000	0.241177000	-2.588490000
C	-2.617793000	6.167671000	-1.469095000
C	2.125985000	-1.244169000	-2.642069000
C	0.045826000	2.101931000	-2.437351000
C	0.416183000	-2.721987000	-2.000152000
C	2.264858000	3.141482000	-2.237273000
C	-2.312329000	4.923457000	-0.879815000
C	1.296195000	2.230956000	-1.755650000
C	-1.393036000	-4.151153000	-0.932595000
C	-0.735680000	-2.916302000	-1.120908000
C	-4.572911000	0.109082000	-0.765724000
C	-2.446017000	-4.247669000	-0.023743000
C	-1.369058000	4.736610000	0.222062000
C	-0.794696000	5.790325000	0.964335000
C	2.410181000	1.632416000	0.248987000
C	-2.822076000	-3.096758000	0.700554000

C	-2.138732000	-1.904962000	0.463236000
C	-5.119769000	0.394951000	0.530205000
C	-6.347048000	-0.242134000	0.876980000
C	0.050699000	5.506076000	2.036343000
C	-0.290133000	3.160798000	1.583488000
C	-4.444721000	1.223345000	1.509916000
C	2.676911000	0.890078000	1.448531000
C	0.302306000	4.156251000	2.359647000
C	-6.950684000	-0.087785000	2.119758000
C	-8.265437000	-0.755284000	2.461227000
C	1.816446000	-0.173732000	1.927908000
C	3.798379000	1.291679000	2.231551000
C	-5.071890000	1.362605000	2.807479000
C	-6.281965000	0.729948000	3.072858000
C	2.154141000	-0.779633000	3.198693000
C	4.125629000	0.690557000	3.441743000
C	1.258926000	-1.879155000	3.712167000
C	3.275294000	-0.352837000	3.902781000
C	5.333636000	1.115822000	4.248350000
C	-4.371833000	2.213237000	3.837218000
H	-4.384164000	-0.849108000	-6.764496000
H	-3.956322000	-2.436585000	-6.104728000
H	-1.647141000	-0.797246000	-6.078480000
H	-5.342957000	-1.546646000	-5.439415000
H	2.388017000	-4.152740000	-4.410237000
H	0.553565000	4.506018000	-4.846640000
H	-0.190152000	0.341614000	-4.437212000
H	-3.789365000	7.205543000	-2.965821000
H	3.520208000	4.564298000	-4.831823000
H	-4.910838000	5.054825000	-3.743366000
H	2.699910000	5.917917000	-4.035722000
H	3.535583000	-1.895257000	-4.134485000
H	-1.151557000	2.898805000	-4.051771000
H	0.371128000	-4.637115000	-3.019071000
H	-4.945846000	-0.563617000	-3.315766000
H	3.938161000	4.991291000	-3.158679000
H	-4.262387000	2.902124000	-2.636569000
H	-2.110109000	7.070315000	-1.121929000
H	-1.060646000	-5.034839000	-1.481678000
H	2.578946000	-0.260131000	-2.500037000
H	3.241688000	3.191184000	-1.747470000
H	-5.099508000	-0.686965000	-1.318368000
H	-1.031437000	6.826404000	0.712661000
H	-2.957778000	-5.200979000	0.131799000
H	-6.828014000	-0.873781000	0.119324000
H	3.038147000	2.529855000	0.119617000
H	-3.635277000	-3.117392000	1.428258000
H	0.496722000	6.315730000	2.619776000
H	-2.400897000	-0.988089000	0.994104000

H	4.422892000	2.108897000	1.848770000
H	-0.116030000	2.103346000	1.791596000
H	0.953003000	3.877075000	3.190204000
H	-6.737067000	0.865720000	4.062393000
H	3.510168000	-0.841092000	4.857288000
Co	-2.268407000	2.055261000	-0.442937000
Co	0.133192000	-0.188209000	-0.608247000
N	-0.906158000	1.187091000	-1.946340000
N	1.034588000	-1.490515000	-1.868995000
N	-2.913306000	3.757596000	-1.319630000
N	-3.501240000	0.655562000	-1.311481000
N	-1.126601000	-1.788372000	-0.431279000
N	1.475610000	1.375513000	-0.648113000
N	-1.099936000	3.419565000	0.527203000
O	-3.310031000	1.821974000	1.300068000
O	0.758479000	-0.592903000	1.299506000
H	5.841097000	1.976277000	3.784535000
H	5.061130000	1.408892000	5.277955000
H	6.079114000	0.304909000	4.338754000
H	1.609322000	-2.260290000	4.684388000
H	0.220733000	-1.525548000	3.824058000
H	1.212318000	-2.718247000	2.998432000
H	-4.215993000	3.238846000	3.464091000
H	-4.946226000	2.259789000	4.775852000
H	-3.365391000	1.820708000	4.058064000
H	-8.180301000	-1.409350000	3.347500000
H	-9.057815000	-0.019245000	2.688463000
H	-8.625716000	-1.377122000	1.626754000

Complex C

C	-4.153755000	-1.825119000	-5.626349000
C	-2.099237000	-0.411265000	-5.108478000
C	-3.339148000	-0.954179000	-4.693899000
C	-1.334881000	0.390739000	-4.261920000
C	2.018149000	-2.992001000	-3.757397000
C	0.879487000	4.027705000	-3.823643000
C	2.585981000	-1.722593000	-3.553693000
C	3.244593000	4.918739000	-3.523313000
C	-4.283331000	4.629950000	-3.112538000
C	-3.525162000	5.792990000	-2.904228000
C	-0.162778000	3.170809000	-3.461507000
C	-3.785415000	-0.661121000	-3.398345000
C	0.898917000	-3.351719000	-3.004784000
C	2.099365000	4.017437000	-3.113589000
C	-1.789465000	0.702639000	-2.954924000
C	-4.030878000	3.513769000	-2.307786000
C	-3.041597000	0.169795000	-2.532276000

C	-2.559307000	5.795176000	-1.893913000
C	2.006071000	-0.867571000	-2.615475000
C	-0.040777000	2.275410000	-2.374977000
C	0.364613000	-2.443942000	-2.072100000
C	2.222907000	3.140642000	-2.025705000
C	-2.382862000	4.639073000	-1.110136000
C	1.169234000	2.286503000	-1.619696000
C	-1.423379000	-3.963402000	-1.097494000
C	-0.785390000	-2.714929000	-1.206560000
C	-4.589552000	0.231563000	-0.711071000
C	-2.467712000	-4.131537000	-0.186742000
C	-1.434984000	4.546490000	0.017645000
C	-0.919662000	5.672957000	0.683862000
C	2.167125000	1.600624000	0.410220000
C	-2.841049000	-3.038812000	0.613476000
C	-2.177444000	-1.821999000	0.455661000
C	-5.067849000	0.536213000	0.598459000
C	-6.355060000	0.045100000	0.974715000
C	-0.101779000	5.498128000	1.803567000
C	-0.378481000	3.118515000	1.535052000
C	-4.295705000	1.302038000	1.545645000
C	2.498348000	0.788534000	1.533487000
C	0.165161000	4.194416000	2.243498000
C	-6.892884000	0.261189000	2.235581000
C	-8.256058000	-0.264378000	2.628555000
C	1.881923000	-0.497206000	1.805345000
C	3.500729000	1.291945000	2.423342000
C	-4.852723000	1.517676000	2.858081000
C	-6.108521000	1.003382000	3.163768000
C	2.331182000	-1.219562000	2.980896000
C	3.920746000	0.594713000	3.543879000
C	1.700579000	-2.557481000	3.270676000
C	3.310845000	-0.671675000	3.795456000
C	4.985951000	1.129520000	4.475101000
C	-4.046236000	2.305107000	3.859926000
H	-4.473027000	-1.272045000	-6.526402000
H	-3.576462000	-2.696989000	-5.977820000
H	-1.723219000	-0.635775000	-6.111572000
H	-5.061060000	-2.205117000	-5.133414000
H	2.440944000	-3.685501000	-4.487449000
H	0.749806000	4.705578000	-4.672769000
H	-0.369063000	0.772227000	-4.596159000
H	-3.678078000	6.679194000	-3.524301000
H	3.513881000	4.776619000	-4.582971000
H	-5.055772000	4.584820000	-3.882848000
H	2.983424000	5.983798000	-3.401109000
H	3.464818000	-1.395464000	-4.112406000
H	-1.099490000	3.181125000	-4.022532000
H	0.436331000	-4.330258000	-3.141983000

H	-4.732417000	-1.094408000	-3.067292000
H	4.144962000	4.728330000	-2.920643000
H	-4.586688000	2.582632000	-2.437898000
H	-1.935231000	6.674966000	-1.728214000
H	-1.086649000	-4.801741000	-1.709150000
H	2.412854000	0.126439000	-2.427039000
H	3.181801000	3.094946000	-1.503325000
H	-5.285190000	-0.337237000	-1.341159000
H	-1.192632000	6.674781000	0.349273000
H	-2.969478000	-5.096770000	-0.090719000
H	-6.924977000	-0.527901000	0.233981000
H	2.723576000	2.547721000	0.357151000
H	-3.639989000	-3.118200000	1.352334000
H	0.299135000	6.363711000	2.335922000
H	-2.432473000	-0.948343000	1.052371000
H	3.951590000	2.264543000	2.191874000
H	-0.207187000	2.084387000	1.834764000
H	0.783974000	4.000992000	3.121087000
H	-6.512594000	1.183816000	4.166769000
H	3.632287000	-1.239093000	4.677149000
Co	-2.156774000	1.755096000	-0.387516000
Co	-0.017012000	-0.105532000	-0.494714000
N	-1.067959000	1.395984000	-1.983001000
N	0.915051000	-1.199775000	-1.885942000
N	-3.107203000	3.505962000	-1.325342000
N	-3.410080000	0.556034000	-1.224083000
N	-1.181248000	-1.637568000	-0.448174000
N	1.265311000	1.378230000	-0.539905000
N	-1.140447000	3.278031000	0.430767000
O	-3.122003000	1.816788000	1.284691000
O	0.963758000	-1.026852000	1.065829000
H	5.342270000	2.119156000	4.151100000
H	4.612254000	1.232643000	5.508591000
H	5.862771000	0.460541000	4.521158000
H	2.108014000	-3.000457000	4.191787000
H	0.607439000	-2.464636000	3.376481000
H	1.864973000	-3.262438000	2.438976000
H	-3.824794000	3.317614000	3.484268000
H	-4.580590000	2.395774000	4.817216000
H	-3.069771000	1.829178000	4.047563000
H	-8.199782000	-0.931904000	3.505546000
H	-8.948211000	0.552689000	2.895724000
H	-8.717948000	-0.833731000	1.807867000
H	-0.945698000	0.653413000	0.467688000

4. References

[1] J. A. S. Roberts, R. M. Bullock, Inorg Chem 2013, 52, 3823-3835.

