
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Biological Sciences Faculty Research and 
Publications Biological Sciences, Department of 

2012 

Inhibitory Effects of Arabidopsis Inhibitory Effects of Arabidopsis EARLI1  Against Against Botrytis cinerea 

and and Bradysia difformis 

Zhen Du 
Northwest University, Xi’an 

Dan Xu 
Northwest University, Xi’an 

Lan Li 
Northwest University, Xi’an 

Yao Shi 
Northwest University, Xi’an 

Michael Schläppi 
Marquette University, michael.schlappi@marquette.edu 

See next page for additional authors 

Follow this and additional works at: https://epublications.marquette.edu/bio_fac 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Du, Zhen; Xu, Dan; Li, Lan; Shi, Yao; Schläppi, Michael; and Xu, Zi-Qin, "Inhibitory Effects of Arabidopsis 
EARLI1 Against Botrytis cinerea and Bradysia difformis" (2012). Biological Sciences Faculty Research and 
Publications. 122. 
https://epublications.marquette.edu/bio_fac/122 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213086606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/bio_fac
https://epublications.marquette.edu/bio_fac
https://epublications.marquette.edu/biology
https://epublications.marquette.edu/bio_fac?utm_source=epublications.marquette.edu%2Fbio_fac%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=epublications.marquette.edu%2Fbio_fac%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/bio_fac/122?utm_source=epublications.marquette.edu%2Fbio_fac%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Zhen Du, Dan Xu, Lan Li, Yao Shi, Michael Schläppi, and Zi-Qin Xu 

This article is available at e-Publications@Marquette: https://epublications.marquette.edu/bio_fac/122 

https://epublications.marquette.edu/bio_fac/122


 

Marquette University 

e-Publications@Marquette 

 

Biological Sciences Faculty Research and Publications/College of Arts and 

Sciences 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 

published version may be accessed by following the link in the citation below. 

 

Plant Cell, Tissue and Organ Culture (PCTOC), Vol. 110 (September 2012): 435-443. DOI. This article is © 

Springer and permission has been granted for this version to appear in e-Publications@Marquette. 

Springer does not grant permission for this article to be further copied/distributed or hosted elsewhere 

without the express permission from Springer.  

 

Inhibitory effects of 
Arabidopsis EARLI1 against Botrytis 
cinerea and Bradysia difformis 
 

Zhen Du 
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 
Institute of Life Sciences, Northwest University, Xi’an, 710069, Shaanxi, People’s Republic of China 
Provincial Key Laboratory of Biotechnology, Institute of Life Sciences, Northwest University, Xi’an, 
710069, Shaanxi, People’s Republic of China 

Dan Xu 
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 
Institute of Life Sciences, Northwest University, Xi’an, 710069, Shaanxi, People’s Republic of China 
Provincial Key Laboratory of Biotechnology, Institute of Life Sciences, Northwest University, Xi’an, 
710069, Shaanxi, People’s Republic of China 

Lan Li 
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 
Institute of Life Sciences, Northwest University, Xi’an, 710069, Shaanxi, People’s Republic of China 

https://doi.org/10.1007/s11240-012-0164-3
http://epublications.marquette.edu/


Provincial Key Laboratory of Biotechnology, Institute of Life Sciences, Northwest University, Xi’an, 
710069, Shaanxi, People’s Republic of China 

Yao Shi 
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 
Institute of Life Sciences, Northwest University, Xi’an, 710069, Shaanxi, People’s Republic of China 
Provincial Key Laboratory of Biotechnology, Institute of Life Sciences, Northwest University, Xi’an, 
710069, Shaanxi, People’s Republic of China 

Michael Schläppi 
Department of Biological Sciences, Marquette University, Milwaukee, WI 

Zi-Qin Xu  
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 
Institute of Life Sciences, Northwest University, Xi’an, 710069, Shaanxi, People’s Republic of China 
Provincial Key Laboratory of Biotechnology, Institute of Life Sciences, Northwest University, Xi’an, 
710069, Shaanxi, People’s Republic of China 
 

Abstract 
The aim of this study is to understand the function of EARLI1 in plants subjected to different biotic stresses 

using EARLI1 overexpressing (OX) and T-DNA knockout (KO) transgenic Arabidopsis lines. Higher levels of 

expression of EARLI1 in OX lines were confirmed by RT-PCR and Northern blot analysis. The full-

length EARLI1 mRNA could not be detected by RT-PCR in KO lines, while only a shorter transcript could be found 

by RNA gel blotting. In wild-type Col-0 plants (Wt), EARLI1 could be induced by Botrytis cinerea and H2O2, 

indicating this gene might be involved in plant defense system against pathogens. Trypan blue staining of the 

infected leaves showed that overexpression of EARLI1 could inhibit the growth of B. cinerea and disruption 

of EARLI1 in KO lines led to vigorous propagation of the necrotrophic fungus. In addition, KO plants were 

attacked earlier and more frequently than the wild-type Col-0 plants by fungus gnat (Bradysia difformis). In vivo 

expression in Saccharomyces cerevisiae demonstrated that the secreted form of EARLI1 could suppress the cell 

viability by increasing the permeability of the plasma membrane. As a protein localized to cell wall, EARLI1 might 

play as a component of a receptor and function in resistant response of plants to biotic stresses by sensing 

environment changes and delivering the signals to intracellular regulation network. 

Introduction 
EARLI1 (EARLY ARABIDOPSIS ALUMINIUM-INDUCED GENE1, AT4G12480) encodes a HyPRP (hybrid proline-rich 

protein) protein containing a N-terminal signal peptide, a middle proline-rich domain (PRD) and a C-terminal 

eight-cysteine-motif (8CM) (Richards and Gardner 1995; Dvořáková et al. 2007). Screening of GENEVESTIGATOR 

database, a publicly available online resource of microarray analyses (http://www.genevestigator.ethz.ch), 

indicated EARLI1 and other three HyPRP genes (AZI1, AT4G12490 and AT4G12500) had a significant degree of 

co-expression, they could be induced by environmental stress factors such as low temperature, salt and drought. 

Because the nucleotide sequences of these four genes and the aminoacid sequences they encoded share high 

similarity, EARLI1, AZI1 (AT4G12470), AT4G12490 and AT4G12500 had been classified as EARLI1 subfamily of the 

HyPRP family (Zhang and Schläppi 2007). In EARLI1 subfamily, EARLI1 and AZI1 are more closely related paralogs 

in comparison with AT4G12490 and AT4G12500. 

The inducible expression of EARLI1 by low temperature had been investigated comprehensively. EARLI1 could be 

stably activated by vernalization, and the high transcription level could be maintained when the Arabidopsis 



plants subjected to cold treatment were transferred to room temperature (Wilkosz and Schläppi 2000). 

Overexpression of EARLI1 in transgenic Arabidopsis plants resulted in reduced electrolyte leakage during 

freezing damage (Bubier and Schläppi 2004). Moreover, EARLI1 showed a similar expression profile with DEA1 of 

tomato under cold environmental conditions, these two closely related HyPRP genes from distantly related 

species appeared to have a conserved function (Weyman et al. 2006). 

The EARLI1 protein belongs to the lipid transfer protein (LTP) family too. LTPs were considered to be associated 

with the deposition of cutin and play important roles in plant resistance to pathogen infection (Arondel et 

al. 2000). Enhanced resistance to B. cinerea was observed in Arabidopsis plants overexpressing EARLI1, AZI1 and 

AT4G12490 (Chassot et al. 2007). In the present work, overexpressing and T-DNA knockout lines of Arabidopsis 

were utilized to investigate the resistance of EARLI1 against the infection of B. cinerea and infestation of fungus 

gnat, our results comfirmed that EARLI1 functioned in defense system of plants under biotic stresses. 

Materials and methods 

Plant materials and culture conditions 
Seeds of Arabidopsis ecotype Columbia-0 (Col-0) were adopted as initial materials. EARLI1 overexpressing plants 

were prepared using floral dip method (Bechtold et al. 1993; Clough and Bent 1998). Homozygous T-DNA 

knockout plants of EARLI1 were screened from T4 generation of SAIL_86_A06 line (Nottingham Arabidopsis 

Stock Center, England). 

As EARLI1 has no introns, its coding sequence was amplified directly from genomic DNA of wild-type Col-0 plants 

by PCR. A BamH I site and an EcoR I site were introduced into the 5′ end of the forward primer 5′-

GGATCCTTAAAACAAACTTTTG-3′ and the reverse primer 5′-GAATTCCTTCAAGCACATTGGAAG-3′, respectively. To 

construct an effective plant expression vector, digested PCR product was inserted behind the Mac promoter and 

in front of the mas (mannopine synthase gene) terminator in pPZP211 (Gleave 1992). Mac is a chimeric 

promoter combining CaMV (cauliflower mosaic virus) 35S and mas elements, including the mas region from 

−301 to +65 and the 35S enhancer region from −941 to −90, and giving a transcription activity of 3–5 times in 

comparison with double 35S promoter (Comai et al. 1990). Agrobacterium strain ABI harbouring pPZP211-

EARLI1 were used to transform wild-type Col-0 plants by floral dip method (Clough and Bent 1998). T1 seeds 

were selected on 1/2 MS (Murashige and Skoog 1962) medium containing 50 mg/L kanamycin (Kan). Kan 

resistant seedlings were transplanted into humus/vermiculite/perlite (2:1:1) and grown to maturation under 

long-day photoperiods (16 h day/8 h night). Homozygous transgenic lines were screened by Kan selection and 

PCR in T3 generation. Col-0 plants transformed with empty vector were used as control. Three independent 

overexpressing lines were analyzed in subsequent experiments. 

Seeds of T-DNA knockout line SAIL_86_A06 in Col-0 background were provided by Nottingham Arabidopsis Stock 

Center. SAIL_86_A06 possesses Basta resistance because pCSA110 used in preparation of T-DNA lines contains 

a bar gene encoding phosphinothricin N-acetyl transferase. The insertion site of T-DNA in SAIL_86_A06 line is 

located at 7,406,602 bp of the fourth chromosome of Arabidopsis and the coding sequence of EARLI1 was 

disrupted. In the present work, homozygous mutants were screened from seedlings of the T4 generation by two 

parallel PCR, one PCR contained left border primer of T-DNA and the forward primer of EARLI1 flanking the 

insertion site, the other contained the forward primer and the reverse primer of EARLI1 flanking the insertion 

site. The sequences of these primers are 5′-TAGCATCTGAATTTCATAACC-3′, 5′-TTTCTTCGCCCTTAACATCA-3′ and 

5′-AAGCCAGACGGAACCTTTC-3′, respectively. With the forward primer and the reverse primer of EARLI1, a 

462 bp fragment should be amplified from genomic DNA of heterozygous T-DNA lines and wild-type plants, but 

not from genomic DNA of homozygous mutants because EARLI1 in two homologous chromosomes were all 

disrupted by T-DNA. With the forward primer of EARLI1 and left border primer of T-DNA, an expected band of 



300 bp should be amplified from homozygous and heterozygous plants, wild-type plants could not produce this 

product owing to the absence of the T-DNA insert. Genomic DNA was extracted with CTAB (cetyltrimethyl 

ammonium bromide) method (Stewart and Via 1993). 

Expression analyses of EARLI1 
RT-PCR (reverse transcription-PCR) and RNA gel blot were used in expression analyses of EARLI1 in wild-type Col-

0, EARLI1 overexpressing and EARLI1 T-DNA knockout plants. Seeds of different materials were sown on 1/2 MS 

medium to germinate. After 2 weeks, total RNA was extracted with E.Z.N.A. Total RNA Kit II (Omega Bio-Tek Inc., 

Doraville, GA, USA), DNA was eliminated with RNase-Free DNase I. The first strands of cDNAs were synthesized 

with RevertAid™ First Strand cDNA Synthesis Kit (Fermentas, USA). The forward primer and the reverse primer 

of EARLI1 used in RT-PCR was 5′-TTTCTTCGCCCTTAACATCA-3′ and 5′-AAGCCAGACGGAACCTTTC-3′, respectively, 

and the expected PCR product was 462 bp in length. A 428 bp fragment of Arabidopsis housekeeping 

gene ACT8 was amplified simultaneously as internal reference with primer pairs of 5′-

ATGAAGATTAAGGTCGTGGCA-3′ and 5′-TCCGAGTTTGAAGAGGCTAC-3′. In Northern blot analysis, the above-

mentioned PCR products were used as templates in probe preparation with DIG (digoxigenin) High Prime DNA 

Labeling and Detection Starter Kit II (Roche, Swissland). RNA was fractionated in 1.2 % formaldehyde gel. 

Hybridization signals were detected with substrates of alkaline phosphatase, NBT (nitroblue tetrazolium) and 

BCIP (5-bromo-4-chloro-3-indolyl phosphate). 

Response of transgenic lines to infection with B. cinerea 
Seeds of wild-type Col-0, EARLI1 overexpressing and EARLI1 T-DNA knockout lines were sterilized with 0.1 % 

HgCl2 for 7 min, rinsed with autoclaved distilled water for 5 times and sown on plates containing 1/2 MS 

medium supplemented with 1 % sucrose and 0.8 % agar. Plates were placed at 4 °C for 2 days to break seed 

dormancy. After that, the seeds were grown for 2 weeks at 22 °C and 12 h day/12 h night photoperiod in 

illumination incubator. Two-week-old seedlings were transplanted into vermiculite: perlite (3:1) and grown 

under the same conditions. Three-week-old plants were used in inoculation with B. cinerea. 

Botrytis cinerea Pers.ex of Garlic Sprout was grown on 1 × PDA (potato/dextrose/agar) medium. Conidia were 

harvested in water, filtered through glass wool to remove hyphae, and diluted to 5 × 104 conidia/mL with 1/4 

PDB (potato/dextrose) liquid medium (Chassot et al. 2007). Leaves of wild-type Col-0, EARLI1 overexpressing 

and EARLI1 T-DNA knockout plants were inoculated with 5 μL droplets of conidial suspension. The infected 

plants were covered with a transparent lid to keep 90 % humidity. The presence of lesions on leaf surface was 

monitored after 1 week. 

48 h after B. cinerea infection, leaves were stained with 0.4 % trypan blue for 2–3 min in boiling water. The 

samples were allowed to sit at room temperature for 1 h, and then the chlorophyll was removed with 80 % 

ethanol. The stained materials were immersed in fresh ethanol and mounted with 20 % glycerol. Growth of 

hyphae was observed under light microscope. In Northern blot analysis, total RNA was extracted from systemic 

leaves distal to the localized infection leaf of wild-type Col-0 plants 2 days after inoculation with B. cinerea or at 

different time point after H2O2 treatment. 

Response of transgenic lines to Infestation with Bradysia difformis 
Seeds of wild-type Col-0, EARLI1 overexpressing and EARLI1 T-DNA knockout lines were sown in pots filled with 

vermiculite and watered with nutrient solution in 1 week intervals. Three-week-old plants were transferred to 

illumination incubator infested by fungus gnat, and the injury situation was checked after 1 week. Data of three 

replicates were statistically analyzed using the Student’s t test. Damaged and healthy leaves were fixed in FAA 

fixative containing 3.7 % formaldehyde (v/v), 5 % acetic acid (v/v) and 50 % ethanol, rinsed with water, 



dehydrated in an alcohol series, critical-point dried in CO2, mounted on aluminum stubs, sputter-coated with 

gold and checked with a Hitachi S2570 scanning electron microscope. 

The effect of EARLI1 on plasma membrane permeability of yeast cells 
Saccharomyces cerevisiae strain W303-1A MATa (leu2-3,112; trp1-1; can1-100; ura3-1; ade2-1; his3-11,15) was 

used in analysis of the effect of EARLI1 on plasma membrane permeability. The full-length open reading frame 

of EARLI1 was amplified by PCR from genomic DNA of wild-type Col-0 and ligated into pESC-URA contains a 

galactose inducible GAL1 promoter (Stratagene, La Jolla, CA, USA). EARLI1 transformed yeast cells growing in SC-

URA medium containing 2 % sucrose with an OD600 of 0.2 were precipitated and resuspended in SC-URA medium 

containing 2 % galactose. Analysis of plasma membrane permeabilization was carried out by addition of SYTOX 

Green with a final concentration of 0.2 μM after 3 h of galactose induction. The fluorescence of SYTOX Green 

was observed under OLYMPUS FLUOVIEW FV1000 laser scanning confocal microscope (excitation wavelengths, 

450–490 nm; emission wavelength, 500 nm). Yeast cells transformed with empty pESC-URA was used as control. 

Results 

Identification of homozygous EARLI1 overexpressing and T-DNA knockout plants 
EARLI1 overexpressing plants could grow vigorously on 1/2 MS medium containing 50 mg/L Kan because they 

harboured a bacterial neomycin phosphotransferase gene NPTII. In contrast, the cotyledons of the wild-type Col-

0 seedlings would turn white and the growth of their roots would be restrained on medium supplemented with 

50 mg/L Kan. In the present work, seeds of different T2 plants were sown on 1/2 MS medium containing 

50 mg/L Kan, the segregation ratio of Kan resistance in T3 generation was statistically analyzed to discriminate 

homozygous and heterozygous transgenic plants. All of the offsprings of homozygous transgenic plants were 

resistant to Kan (Fig. 1). 

 
Fig. 1 Screening for homozygous overexpressing lines of EARLI1. a Homozygous overexpressing line grown on 

1/2 MS medium containing 50 mg/L Kan. b Wild-type Col-0 plants grown on 1/2 MS medium containing 50 mg/L 

Kan. c Homozygous overexpressing line and wild-type Col-0 plants grown on the same plate containing 50 mg/L 

Kan. EARLI1, homozygous EARLI1 overexpressing line; CK, wild-type Col-0 plants 

Homozygous EARLI1 knockout seedlings were identified by PCR from progenies of SAIL_86_A06 line in T3 

generation. As shown in Fig. 2a, only a 462 bp fragment could be amplified from genomic DNA of plant 1 with 

the forward primer and the reverse primer of EARLI1, it suggested that this plant was a wild-type plant. In plant 

3, a 462 bp band and a 300 bp band could be amplified with two primer combinations respectively, it suggested 

that this plant was a heterozygous mutant. In plant 2, no PCR product could be amplified with the forward 

primer and the reverse primer of EARLI1, but the 300 bp fragment could be amplified with the forward primer 

of EARLI1 and left-border primer of T-DNA, this plant was verified as a homozygous mutant of EARLI1 (Fig. 2a). 

Seeds of homozygous T-DNA knockout lines were used in analysis of the mutation effect of EARLI1 on resistant 

response of Arabidopsis against biotic stresses subsequently. 

https://link.springer.com/article/10.1007/s11240-012-0164-3/figures/1


 
Fig. 2 Expression analysis of EARLI1 in wild-type Col-0, overexpressing and T-DNA knockout 

plants. a Identification of homozygous T-DNA knockout mutant. Lanes 1, 2 and 3, PCR with EARLI1 upstream and 

downstream primers; Lanes 1′, 2′ and 3′, PCR with EARLI1 upstream primer and T-DNA left border primer. b RNA 

gel blot analysis of EARLI1. c RT-PCR analysis of EARLI1. Col-0-RT, wild-type Col-0 plants grown at room 

temperature; Col-0-CT, wild-type Col-0 plants grown at 4 °C for 3 h; OX-RT, overexpressing transgenic 

Arabidopsis plants of EARLI1 grown at room temperature. KO-CT, homozygous T-DNA knockout plants 

of EARLI1 grown at 4 °C for 3 h 

Expression analysis of EARLI1 in homozygous overexpressing and T-DNA knockout plants 
RNA gel blotting was used in expression analysis of EARLI1 in wild-type Col-0, homozygous overexpressing and 

homozygous T-DNA knockout plants. As shown in Fig. 2b and c, transcription of EARLI1 was undetectable in wild-

type Col-0 plants grown at room temperature. However, EARLI1 expression could be induced if the wild-type 

Col-0 plants were incubated at 4 °C for 3 h. In homozygous overexpressing plants grown at room 

temperature, EARLI1 was expressed constitutively and the hybridization band was slightly higher than that of 

the wild-type Col-0 plants subjected to cold treatment, because the transcript of EARLI1 overexpressing 

construct was different from that of native EARLI1 in length. In homozygous T-DNA knockout lines, a smaller 

band in comparison with the transcript of EARLI1 in wild-type Col-0 plants could be detected after cold 

treatment, it represented the incomplete transcript of EARLI1 owing to interruption by T-DNA. RT-PCR analysis 

also showed that the transcription level of EARLI1 was very weak in wild-type Col-0 plants, and no product could 

be amplified from homozygous T-DNA knockout lines because the primers used in PCR were located in upstream 

and downstream of T-DNA insertion site respectively (Fig. 2b, c). 

Expression of EARLI1 could be induced by B. cinerea infection and H2O2 treatment 
Wild-type Col-0 plants were infected with B. cinerea or treated with 100 mmol/L H2O2, RNA was isolated at 0, 24 

and 48 h after inoculation with B. cinerea or 0, 1, 2, 4, 8, 12 and 24 h after treatment with H2O2. As shown in 

Fig. 3, EARLI1 could be induced effectively by B. cinerea. In treatment with H2O2, transcription level 

https://link.springer.com/article/10.1007/s11240-012-0164-3/figures/2


of EARLI1 was gradually increased from 1 h and peaked in 4 h. After that, the abundance of EARLI1 mRNA 

decreased abruptly and returned to normal level from 8 to 24 h (Fig. 3). It suggested that H2O2 could activate the 

expression of EARLI1 in a short time, but the upregulation of EARLI1 by H2O2 could not be maintained for more 

than 8 h. 

 
Fig. 3 Inducible expression of EARLI1 by B. cinerea and H2O2 in wild-type Arabidopsis plants. a Infection with B. 

cinerea; b treatment with 100 mmol/L H2O2 

Resistance of EARLI1 to B. cinerea 
Different infection degrees were observed in wild-type Col-0, EARLI1 overexpressing and homozygous T-DNA 

knockout plants. One week after inoculation with B. cinerea, the leaves of T-DNA knockout plants were damaged 

significantly and the lesion area was larger than that of wild-type leaves. In contrast, the symptom 

of EARLI1 overexpressing plants was slight (Fig. 4). Hyphae of B. cinerea could be found on leaf surface of 

homozygous T-DNA knockout plants by trypan blue staining 48 h after inoculation (Fig. 5c, d), but not on leaf 

surface of wild-type Col-0 (Fig. 5a) and EARLI1 overexpressing plants (Fig. 5b). All these results suggested 

that EARLI1 could inhibit the growth of B. cinerea. 

 
Fig. 4 Infection degree of Arabidopsis leaves by B. cinerea. earli1-1 KO, leaf of homozygous T-DNA knockout line; 

Col-0, leaf of wild-type Col-0 plants; EARLI1 OX, leaf of EARLI1 overexpressing line 

https://link.springer.com/article/10.1007/s11240-012-0164-3/figures/3
https://link.springer.com/article/10.1007/s11240-012-0164-3/figures/4


 
Fig. 5 Hypha staining of B. cinerea with trypan blue 48 h after inoculation. a leaf of wild-type Col-0 plant; b leaf 

of EARLI1 overexpressing plant; c, d, leaves of homozygous T-DNA knockout plants of EARLI1 

Inhibition of EARLI1 to fungus gnat damage 
In illumination incubator infested by fungus gnat, homozygous T-DNA knockout plants of EARLI1 were damaged 

earlier than wild-type Col-0 and EARLI1 overexpressing plants. Compared to wild-type Col-0 plants (Fig. 6a), the 

arrangement of the upper epidermal cells in leaves of EARLI1 overexpressing plants was irregular and the cell 

wall of them was thickened obviously (Fig. 6b). The upper epidermis of EARLI1 homozygous T-DNA knockout 

lines was not smooth, cells were unevenly arranged in different height (Fig. 6c). In order to determine whether 

the injury in leaf surface was the result of fungus infection or came from insect infestation, the damaged leaves 

were checked with scanning electron microscope (SEM). SEM observation showed that there were many holes 

in leaf surface of EARLI1 T-DNA knockout lines, indicating the damage in leaves was derived from insect biting 

rather than fungus infection (Fig. 6d). Statistics analysis by Student t test to the data came from three repetitive 

experiments revealed that about 40 ± 2.6 % of the knockout mutant plants were infested by fungus gnat, while 

only 5 ± 0.6 % of wild-type Col-0 plants and 3 ± 0.2 % of EARLI1 overexpressing plants were damaged after 

2 weeks growth in illumination incubator. Further growth for 9 days in the same environment led to 80 ± 4.9 % 

of T-DNA knockout plants, 45 ± 3.6 % of wild-type Col-0 plants and 20 ± 3.1 % of overexpressing transgenic 

plants to be destroyed. 

https://link.springer.com/article/10.1007/s11240-012-0164-3/figures/5


 
Fig. 6 Adaxial epidermis of Arabidopsis leaf under scanning electron microscope. a Leaf of wild-type Col-0 

plant, Bar = 70 μm; b leaf of EARLI1 overexpressing plant, Bar = 70 μm; c leaf of EARLI1 homozygous T-DNA 

knockout plant, Bar = 200 μm; d leaf of EARLI1 homozygous T-DNA knockout plant damaged by fungus 

gnat, Bar = 70 μm 

Influence of EARLI1 to plasma membrane permeability of yeast cells 
EARLI1 had remarkable effect on permeability of the plasma membrane of yeast cells. When SYTOX Green was 

added 3 h after galactose induction, a lot of yeast cells transformed by pESC-EARLI1 were permeable to SYTOX 

Green (Fig. 7c, d). In contrast, only a few yeast cells transformed by empty pESC-URA showed SYTOX Green 

fluorescence (Fig. 7a, b). It suggests that EARLI1 might repress the growth of fungus by increasing membrane 

permeability. 

 
Fig. 7 Influence of in vivo expressed EARLI1 on plasma membrane permeability of S. cerevisiae cells. a Yeast cells 

containing pESC-URA after 3 h galactose induction under dark field; b SYTOX Green fluorescence of yeast cells 

containing pESC-URA after 3 h galactose induction; c Yeast cells containing pESC-EARLI1 after 3 h galactose 

induction under dark field; d SYTOX Green fluorescence of yeast cells containing pESC-EARLI1 after 3 h galactose 

induction. Bar = 50 μm. (Color figure online) 

https://link.springer.com/article/10.1007/s11240-012-0164-3/figures/6
https://link.springer.com/article/10.1007/s11240-012-0164-3/figures/7


Discussion 
EARLI1 encodes a secreted HyPRP which also is classified into inhibitor/seed storage/lipid transfer protein 

family. PRP is one kind of the five structural protein types localized in cell wall and accumulates massively when 

plants are subjected to physical injury (Kleis-San Francisco and Tierney 1990). PRPs may decide on the special 

structure of cell wall during plant growth and development, they also may play defense functions under physical 

damage or pathogen infection (Bradley et al. 1992). HyPRPs form a subclass of PRP and widely exist in higher 

plants, they contain multiple structures, including the signal peptide in N-terminus, hydrophilic PRD in the 

middle and hydrophobic 8CM in C-terminus. Owing to their bimodular architecture, HyPRPs have been defined 

as secretory cell wall proteins (José-Estanyol et al. 2004). 

HyPRPs showed spatial and temporal expression patterns, they could be regulated by development stages, plant 

hormones and external environments. For example, strawberry FaHyPRP was specifically expressed in fruit 

(Blanco-Portales et al. 2004). The transcripts of maize ZmHYPRP1 only accumulated in embryonic parenchyma 

cells and could not be found in mature plant organs except ovary before pollination (José-Estanyol et al. 1992). 

Alfalfa MsPRP2 could be induced by salt (Deutch and Winicov 1995). Soybean SbPRP could be regulated by 

salicylic acid, endogenous circadian rhythm and various stresses (He et al. 2002). 

In order to clarify the function of the HyPRP gene EARLI1 in resistant response of Arabidopsis to biotic stresses, 

homozygous T-DNA knockout mutants were screened from progenies of the heterozygous SAIL_86_A06 line in 

T3 generation. In three PCR primers, two primers were designed based on the upstream and downstream 

sequence of EARLI1 flanking the T-DNA insert, the third primer was designed according to the left border of T-

DNA. In homozygous mutant, no product could be amplified with upstream and downstream primers of EARLI1, 

but a fragment with a certain size could be amplified with upstream primer of EARLI1 and left border primer of 

T-DNA. In heterozygous mutant, two different fragments could be amplified with upstream and downstream 

primers of EARLI1 or upstream primer of EARLI1 and left border primer of T-DNA, respectively. In wild-type 

plants, only the combination of upstream and downstream primers of EARLI1 could produce PCR fragment. 

In the present work, B. cinerea Pers.ex of Garlic Sprout was used as a stimulus in expression analyses 

of EARLI1. Botrytis genus includes many phytopathogenic fungi with a wide host range and a necrotrophic life 

style (Khan et al. 2011). B. cinerea is thought to promote programmed cell death in plant cells surrounding the 

lesion by making use of the plant defense response known as hypersensitive response (HR) (Mur et al. 2008; 

Noda et al. 2010), which is characterized by accumulation of hydrogen peroxide. Production of reactive oxygen 

species (ROS) such as hydrogen peroxide is one of the earliest responses of plant tissues to the attack of 

pathogens and elicitors (Zhang et al. 2010b). This rapid generation and striking transient release of ROS has been 

defined as “oxidative burst” and has been thought to play important roles in peroxidase-catalyzed crosslinking of 

proteins in cell wall during pathogen infection (Wang et al. 2007). The results of RNA gel blotting showed 

that EARLI1 could be activated by B. cinerea and hydrogen peroxide. It suggests the function of EARLI1 is related 

with ROS. As a structural protein located in cell wall (Zhang and Schläppi 2007), EARLI1 is probably involved in 

sensing of biotic stress factors. 

Production of H2O2 and other ROS is also associated with the growth of plants (Zhang et al. 2010a; Cui et 

al. 2010; Sun et al. 2010). In Arabidopsis, the transcription of hundreds of genes could be influenced by 

H2O2 based on data derived from microarray analyses (Desikan et al. 2001). In this work, the effect of 

H2O2 on EARLI1 expression was analyzed 0 to 24 h after treatment. Transcription of EARLI1 was enhanced along 

with time within 4 h and declined rapidly after 8 h, indicating EARLI1 functioned in the regulation process of 

plant response to external oxidative stress. 

EARLI1 was also classified as a member of LTP family. Many LTPs were specifically located in epidermis and 

related to transfer of cutin and wax to surface of plant tissues (Carvalho and Gomes 2007; Yeats and Rose 2008). 



Some LTPs were involved in biotic stress and play a role in plant defense system (Aberg et al. 2008; Kirubakaran 

et al. 2008). Overexpression of pepper CALTPI in Arabidopsis led to enhanced resistance to B. cinerea (Jung et 

al. 2005). Similarly, transgenic Arabidopsis plants overexpressing AZI1, EARLI1, AT4G12490 also showed 

resistance to B. cinerea (Chassot et al. 2007). Our results demonstrated that overexpression of EARLI1 could 

promote the resistance of Arabidopsis to B. cinerea and fungus gnat, and in vivo expression of EARLI1 in yeast 

cells could increase the permeability of plasma membrane. 
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