
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Biomedical Engineering Faculty Research and 
Publications Biomedical Engineering, Department of 

4-2015 

Cardiovascular Magnetic Resonance Imaging-Based Cardiovascular Magnetic Resonance Imaging-Based 

Computational Fluid Dynamics/Fluid-Structure Interaction Pilot Computational Fluid Dynamics/Fluid-Structure Interaction Pilot 

Study to Detect Early Vascular Changes in Pediatric Patients with Study to Detect Early Vascular Changes in Pediatric Patients with 

Type 1 Diabetes Type 1 Diabetes 

Margaret M. Samyn 
Marquette University 

Ronak Jashwant Dholakia 
Stony Brook University 

Hongfeng Wang 
Marquette University, hongfeng.wang@marquette.edu 

Jennifer Co-Vu 
University of Florida College of Medicine 

Ke Yan 
Medical College of Wisconsin 

See next page for additional authors Follow this and additional works at: https://epublications.marquette.edu/bioengin_fac 

 Part of the Biomedical Engineering and Bioengineering Commons 

Recommended Citation Recommended Citation 
Samyn, Margaret M.; Dholakia, Ronak Jashwant; Wang, Hongfeng; Co-Vu, Jennifer; Yan, Ke; Widlansky, 
Michael E.; LaDisa, John F. Jr.; Simpson, Pippa; and Alemzadeh, Ramin, "Cardiovascular Magnetic 
Resonance Imaging-Based Computational Fluid Dynamics/Fluid-Structure Interaction Pilot Study to 
Detect Early Vascular Changes in Pediatric Patients with Type 1 Diabetes" (2015). Biomedical Engineering 
Faculty Research and Publications. 360. 
https://epublications.marquette.edu/bioengin_fac/360 

https://epublications.marquette.edu/
https://epublications.marquette.edu/bioengin_fac
https://epublications.marquette.edu/bioengin_fac
https://epublications.marquette.edu/bioengin
https://epublications.marquette.edu/bioengin_fac?utm_source=epublications.marquette.edu%2Fbioengin_fac%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=epublications.marquette.edu%2Fbioengin_fac%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/bioengin_fac/360?utm_source=epublications.marquette.edu%2Fbioengin_fac%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Margaret M. Samyn, Ronak Jashwant Dholakia, Hongfeng Wang, Jennifer Co-Vu, Ke Yan, Michael E. 
Widlansky, John F. LaDisa Jr., Pippa Simpson, and Ramin Alemzadeh 

This article is available at e-Publications@Marquette: https://epublications.marquette.edu/bioengin_fac/360 

https://epublications.marquette.edu/bioengin_fac/360


 

Marquette University 

e-Publications@Marquette 
 

Biomedical Engineering Faculty Research and Publications/College of 
Engineering 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 
published version may be accessed by following the link in the citation below. 

 

Pediatric Cardiology, Vol. 35 (2015): 851-861. DOI. This article is © Springer and permission has been 
granted for this version to appear in e-Publications@Marquette. Springer does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission 
from Springer.  

 

Cardiovascular Magnetic Resonance Imaging-
Based Computational Fluid Dynamics/Fluid–
Structure Interaction Pilot Study to Detect 
Early Vascular Changes in Pediatric Patients 
with Type 1 Diabetes 
 

 
Margaret M. Samyn 
Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 
Department of Biomedical Engineering, Marquette University, Milwaukee, WI 
Ronak Dholakia 
Stony Brook University Medical Center, Stony Brook, NY 
Hongfeng Wang 
Department of Biomedical Engineering, Marquette University, Milwaukee, WI 
Jennifer Co-Vu 
Congenital Heart Center and Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 

https://doi.org/10.1007/s00246-014-1071-7
http://epublications.marquette.edu/


Ke Yan 
Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 
Michael E. Widlansky 
Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 
John F. LaDisa 
Department of Biomedical Engineering, Marquette University, Milwaukee, WI 
Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 
Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 
Pippa Simpson 
Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 
Ramin Alemzadeh  
Division of Pediatric Endocrinology, University of Illinois at Chicago, Chicago, IL 
 

Abstract 
We hypothesized that pediatric patients with type 1 diabetes have cardiac magnetic resonance (CMR) 
detectable differences in thoracic aortic wall properties and hemodynamics leading to significant local 
differences in indices of wall shear stress, when compared with age-matched control subjects without diabetes. 
Pediatric patients with type 1 diabetes were recruited from Children’s Hospital of Wisconsin and compared with 
controls. All underwent morning CMR scanning, 4-limb blood pressure, brachial artery reactivity testing, and 
venipuncture. Patient-specific computational fluid dynamics modeling with fluid–structure interaction, based on 
CMR data, determined regional time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI). 
Twenty type 1 diabetic subjects, median age 15.8 years (11.6–18.4) and 8 controls 15.4 years (10.3–18.2) were 
similar except for higher glucose, hemoglobin A1c, and triglycerides for type 1 diabetic subjects. Lower flow-
mediated dilation was seen for those with type 1 diabetes (6.5) versus controls (7.8), p = 0.036. For type 1 
diabetic subjects, the aorta had more regions with high TAWSS when compared to controls. OSI maps appeared 
similar. Flow-mediated dilation positively correlated with age at diabetes diagnosis (r = 0.468, p = 0.038) and 
hemoglobin A1c (r = 0.472, p = 0.036), but did not correlate with aortic distensibility, TAWSS, or OSI. TAWSS did 
not correlate with any clinical parameter for either group. CMR shows regional differences in aortic wall 
properties for young diabetic patients. Some local differences in wall shear stress indices were also observed, 
but a longitudinal study is now warranted. 

Introduction 
Cardiovascular disease afflicts greater than 83 million Americans, with coronary heart disease (CHD) affecting 
more than 15 million Americans [11]. Traditional risk factors for the development of atherosclerosis include 
diabetes, dyslipidemia, hypertension, obesity, smoking, and sedentary lifestyle [29]. Type 1 diabetes is 
associated with a fivefold to sevenfold increase in risk of death from coronary heart disease. Patients with type 1 
diabetes have been shown to have endothelial dysfunction, the inciting event for atherosclerosis [14]. 
Endothelial dysfunction and arterial stiffness are independent predictors of cardiovascular events; improved 
endothelial function can decrease cardiovascular events [12, 15, 40]. The reduced endothelial function seen in 
individuals with diabetes allows for premature integration of lipid laden macrophages in the vessel walls. In 
addition, the hyperglycemic environment seen in diabetic patient results in qualitative changes in low density 
lipoprotein (LDL) particle size, oxidation, and glycation—all of which are implicated in early increases in carotid 
artery intimal media thickness and endothelial dysfunction [31, 41]. 



A special feature of CMR imaging is its ability for tissue discrimination. Clinically, magnetic resonance imaging 
has been reported in adults to detect atherosclerotic plaques in the thoracic and abdominal aorta with detection 
of thoracic aortic plaque associated with co-existent coronary artery disease (CAD) [38]. A study of adults with 
pre-existing plaques revealed time-averaged wall shear stress (TAWSS) flow patterns in a rotating pattern down 
the thoracic aorta that correlated with the areas of atherosclerotic plaque [46]. A better understanding of the 
relationship between endothelial shear stress and arterial remodeling and stiffening is needed, as arterial 
stiffening seems to lie at the heart of atherosclerotic plaque development [44]. While some adult studies exist, 
magnetic resonance imaging studies examining the vascular health of pediatric subjects, prior to the 
development of overt atherosclerotic plaque, are not found in the literature. 

The purpose of our pilot, prospective study was to determine the feasibility of CMR imaging for evaluation of 
early vascular changes in a pediatric cohort with type 1 diabetes, who are at increased risk of developing 
atherosclerosis. We hypothesized that pediatric patients with type 1 diabetes would have CMR detectable 
differences in thoracic aortic wall properties and hemodynamics leading to local differences in indices of wall 
shear stress, as quantified by patient-specific computational fluid dynamics (CFD) modeling with fluid–structure 
interaction, when compared with age-matched control subjects without diabetes. Correlation between CMR 
data and brachial artery reactivity measures of endothelial function, as well as with other atherosclerotic risk 
factors, was investigated. 

Materials and Methods 
Recruitment 
Twenty children with type 1 diabetes, aged 12–18 years, were recruited from Children’s Hospital of Wisconsin 
(CHW) Diabetes Clinic, affiliated with the Medical College of Wisconsin. Children with type 1 diabetes were 
either on multiple daily insulin consisting of bedtime insulin glargine® and pre-meal aspart® insulin or continuous 
subcutaneous insulin infusion with insulin aspart®. In addition, eight age-matched control subjects were 
recruited consecutively from among those patients having clinically indicated CMR scans. Inclusion criteria 
included pre-pubescent to post-pubescent children/adolescents between 10 and 18 years of age and at least a 
2-year history of diabetes. Exclusion criteria included known history of contraindication to CMR examination 
(i.e., pregnancy as determined by beta human chorionic gonadotrophin (β-hCG), presence of a pacemaker or 
defibrillator, or claustrophobia), hypercholesterolemia, metabolic syndrome, hypertension, microvascular 
complications, congenital heart disease (for diabetic study recruits), and family history of hypercholesterolemia 
or premature cardiovascular disease. Furthermore, control subjects were excluded if taking any lipid lowering, 
oral hypoglycemic, or antihypertensive medications for more than 1 week. The study protocol was approved by 
the CHW institutional review board. Informed consent and assent were obtained from the study 
parents/guardians and subjects. 

Study Evaluations 
Evaluations included early morning (0630 AM, fasting) CMR scanning using a Siemens 1.5 T Symphony® (Siemens 
Medical Systems, USA) magnet, with same-day 4-limb blood pressure (BP) assessment (DASH 3000 Vital Signs 
Monitor, GE Healthcare, Waukesha WI) and morning (0800) brachial artery reactivity testing with high-
resolution ultrasound (GE Pro Logiq 500, Waukesha WI). Subjects underwent same-day venipuncture for fasting 
laboratory assessment (i.e., glucose, hemoglobin A1c, insulin, lipid profile, fibrinogen, homocysteine, high-
sensitivity c reactive protein (hs-CRP)) by previously described analytical methods [3]. In addition, chart review 
allowed extraction of key clinical data including primary and secondary diagnoses, age at diabetes diagnosis, and 
medication use for type 1 diabetic subjects. 



Data Collection 
Standard CMR scanning was performed using a Siemens 1.5 T Symphony magnet with study supervised by a 
qualified pediatric cardiologist, using clinically available pulse sequence software (Siemens Medical Solutions 
USA, Malvern, PA) with standard calculation of ventricular volumes and flow (Medis®, Leiden, The Netherlands). 
For this study, the subjects did not receive gadolinium dye, but rather CMR three-dimensional (3D) steady state-
free precession (SSFP) images of the arch were obtained from a respiratory navigated sequence (bandwidth 590, 
matrix 256 × 173, TE 1.86, TR 298, NEX 1, acceptable window 2.5 mm). Phase contrast velocity encoded cine 
imaging (FOV 256 × 192, slice thickness 5–6 mm, bandwidth 390, TE 3.26–4.1, TR 27.75–46, ETL 1, NEX 3) of flow 
volume was determined for the ascending and descending aorta, as well as for each brachiocephalic vessel to be 
used in later CFD modeling. Care was taken during flow assessment to select similar flow imaging planes for 
each subject; thus, a plane perpendicular to AAo flow, at the level of the pulmonary arterial bifurcation, was 
prescribed for AAo flow assessment and similarly a separate plane for the DAo flow assessment was undertaken 
at the level of branch PAs. Aortic distensibility was calculated from measured BP and cross-sectional phase 
contrast magnitude images of the ascending aorta, descending thoracic aorta, and descending thoracic aorta at 
the diaphragm, using the formula [43]: 

Aorticdistensibility =
[(Aorticcrosssectionalarea)max−  (Aorticcrosssectionalarea)min]

[(Aorticcrosssectionalarea)min × pulsepressure]
. 

Reactive hyperemia (i.e., flow-mediated dilation, FMD) was assessed for each subject after being in the supine 
position for 10 min at a stable room temperature [3, 4]. The methods for determining, analyzing, and reporting 
the FMD percentage (FMD%) in the brachial artery, as a surrogate of endothelial function, were performed using 
mobile equipment (MicroMaxx, Sonosite, Bothell, WA) and analyzed by our research laboratory as previously 
described [17, 20]. 

Anonymized age-matched control and type 1 diabetic subjects’ CMR data for a randomly selected pilot sub 
group (7 controls, 9 subjects with type 1 diabetes) were used to create subject-specific CFD models with fluid–
structure interaction as described previously using SimVascular software package (https://simtk.org) and 
discretized using MeshSim (Simmetrix, Clifton Park, NY) [22]. Pulsatile flow waveforms from the measured 
ascending aortic CMR phase contrast data were applied as the inlet boundary condition for each CFD model 
using fully developed parabolic profiles [22]. To replicate the resistance to blood flow from vessels beyond CMR 
data, three-element Windkessel representations were imposed as outlet boundary conditions for each vascular 
branch using a coupled-multidomain method [42] as previously described [22]. This method provides an intuitive 
representation of the arterial tree beyond model outlets and can be described by three parameters with 
physiologic meaning: characteristic (i.e., regional) resistance (R c), arterial capacitance (C), and distal resistance 
(R d). Please see Table 1 for Windkessel parameters. The total arterial capacitance for each patient was 
determined from inflow (i.e., CMR phase contrast) and BP measurements assuming a characteristic-to-total 
resistance ratio of 6 % [24]. The total arterial capacitance was then distributed among outlets according to their 
blood flow distributions [37] as measured by CMR phase contrast data of each aortic branch. Once the 
capacitance terms for each branch were assigned, the terminal resistance for each branch was calculated from 
mean BP (via DASH 3000) and flow (via CMR phase contrast) and distributed between the characteristic and 
distal resistance parameters by adjusting Rc:terminal resistance ratios (6–10 %) to replicate measured BP using 
the pulse pressure method [36]. This approach results in flow distributions and BP values within 5 % of the 
measured values. 

Table 1 Range of Windkessel and arterial parameters for the collection of CFD models in each group 
 

Control T1DM 
Young’s modulus   



E (dyn/cm2) 3.99E+06–3.57E+07 3.23E+06–1.17E+07 
Innominate artery   
 R c (dynes/cm5) 429–489 320–939 
 C (cm5/dyn) 1.22E−04–1.42E−04 1.23E−04–3.99E−04 
 R d (dynes/cm5) 4,250–6,500 4,520–9,260 
Left common carotid artery   
 R c (dynes/cm5) 687–1,720 702–1,390 
 C (cm5/dyn) 3.91E−05–1.15E−04 4.94E−05–1.52E−04 
 R d (dynes/cm5) 10,800–19,600 11,800–15,200 
Left subclavian artery   
 R c (dynes/cm5) 662–1,830 500–1,480 
 C (cm5/dyn) 6.11E−05–1.26E−04 6.19E−05–1.62E−04 
 R d (dynes/cm5) 6,400–23,000 6,813–15,000 
Descending aortic outlet   
 R c (dynes/cm5) 99–231 101–232 
 C (cm5/dyn) 2.67E−04–8.76E−04 2.84E−04–8.16E−04 
 R d (dynes/cm5) 894–4,580 1,530–4,710 

E, Young’s modulus; R c, characteristic resistance; C, arterial capacitance; R d, distal resistance 

 

Coupled blood flow and vessel wall dynamics were solved using a coupled-momentum method [7] formulation 
and parameters discussed in detail elsewhere [22]. Briefly, CFD models were initially pre-stressed by loading the 
vessel wall with the diastolic pressure, assuming that the geometry given by the collective SSFP images 
approximates a diastolic (i.e., reference) configuration. Literature values for aortic thickness (0.15 cm), density 
(1.0 g/cm3), and Poisson’s ratio (0.5) were selected and Young’s modulus, E, was adjusted iteratively until the 
ascending aortic (AAo) mean luminal displacement was within 5 % of the values from CMR phase contrast 
magnitude measurements. Please see Table 1 for the range of E used. This approach was previously found to 
provide reasonable wall displacement in simulations when compared to spatially equivalent locations from CMR 
phase contrast [22]. 

Time-dependent CFD simulations with fluid–structure interaction were performed using an in-house stabilized 
finite element method with an embedded commercial linear solver LESLIB (Altair Engineering, Troy, MI) to solve 
the conservation of mass (continuity), balance of fluid momentum (Navier–Stokes), and vessel wall 
elastodynamics equations [7]. Meshes contained >3 million tetrahedral elements and localized refinement was 
performed using an adaptive technique to deposit more elements in regions prone to flow disruption [28, 34], 
which has been previously described in detail elsewhere [21]. Simulations were run for 4–6 cardiac cycles until 
the flow rate and pressure fields yielded periodic solutions. For comparison with distensibility calculations, mean 
TAWSS and oscillatory shear index (OSI) values were then calculated within circumferential bands, where the 
thickness of the phase contrast imaging slice intersected the AAo and descending (DAoT) aorta [22, 25]. TAWSS 
and OSI values were also extracted longitudinally along the inner and outer curvatures of the thoracic aorta, as 
well as along its anatomic right and left sides [23]. The location of the left subclavian artery (LSCA) was taken as 
the zero point for quantification, with all other aortic locations noted relative to this; aortic regions distal to the 
LSCA were given positive location designation and locations proximal (i.e., closer to the aortic valve) received a 
negative designation in terms of location [23]. 



Statistical Analyses 
Medians and ranges are given for continuous demographic variables. Scatter plots and Pearson’s correlation 
coefficients were used for the analyses of correlation between two measurements. A Mann–Whitney test was 
used to compare the controls and subjects with type 1 diabetes. 

We did not adjust for multiple testing since the power of the study is low and adjustment would increase 
considerably an already high chance of a type II error. 

Results 
Twenty-eight subjects (age 15.7 years (11.6–18.4), 20 with type 1 diabetes age 15.8 years (11.6–18.4), and 8 
controls (age 15.4 years (10.3–18.2)) were recruited from the Children’s Hospital of Wisconsin. Subjects were of 
similar age, gender, and body habitus with no significant difference in resting BP (Table 2). Similarly, there were 
no differences in heart rate, cardiac output, or cardiac index between groups. Control subjects underwent 
clinical CMR scanning for the following indications: pectus excavatum (1 patient), to rule out arrhythmogenic 
right ventricular dysplasia (ARVD) (3 patients, with study negative for ARVD in all 3), very small ventricular septal 
defect (1 patient), repaired tetralogy of Fallot (1 patient), repaired pulmonary stenosis (1 patient), and 
anomalous origin of the right coronary artery from the left sinus of Valsalva (1 patient). Subjects with type 1 
diabetes had disease for 9.4 (2.2–13.5) years, and all were taking insulin at time of recruitment. Two patients 
with diabetes were using levothyroxine and none were on lipid lowering medication at recruitment. Control 
subjects were not receiving chronic medications. Significant differences were seen between the controls and 
diabetic subjects for glucose, HgbA1c, and triglyceride level, but not for other venous blood values (Table 3). 

Table 2 Demographics 

  Type 1 diabetic subjects (n = 20)a Control subjects (n = 8)a 
Age (years) 15.8 (11.6–18.4) 15.4 (10.3–18.2) 
Gender 10 male (50 %) 5 male (62.5 %) 
Age at diabetes diagnosis (years) 6.3 (1.1–11.1) Not applicable 
Diabetes duration (years) 9.4 (2.2–13. 5) Not applicable 
Body mass index (kg/m2) 21.1 (14.0–34.0) 22.4 (17.3–34.3) 
Body surface area (m2) 1.72 (1.14–2.10) 1.74 (1.24–2.26) 
Right arm systolic BP (mmHg) 114 (103–139) 118 (101–127) 
Right arm diastolic BP (mmHg) 68 (59–77) 68 (56–78) 
Heart rate (beats/min) 49 (37–58) 51 (39–74) 

aData displayed as median and ranges; no significant differences seen (p > 0.05) 

Table 3 Traditional Venous blood coronary artery disease risk factors and brachial artery measures of vascular 
health 

  Type 1 diabetic subjects 
(n = 20)a 

Control subjects 
(n = 8)a 

p* 

Total cholesterol (mg/dL) 162 (125–348) 158 (140–263) NS 
LDL (mg/dL) 88 (58–240) 90 (67–203) NS 
HDL (mg/dL) 56 (41–74) 58 (44–68) NS 
Triglycerides (mg/dL) 87 (45–298) 48 (34–118) 0.003 
Glucose (mg/dL) 140 (76–366) 84 (80–98) 0.001 
Insulin level (µU/mL) 4.0 (1–24) 3 (1–15) NS 



HgbA1c (mmol/mol) 62 (44–119) 33 (31–40), n = 7 < 0.001 
Fibrinogen (mg/dL) 296 (216–464) 239 (203–365) NS 
hs-CRP (mg/L) 0.5 (0.1–22.4) 0.3 (0.1–2.4) NS 
Homocysteine (µmol/L) 4.9 (3.4–9.1), n = 19 6.0 (4.5–7.1), n = 7 NS 
FMD % (EKG) 6.5 (1.9–13.6) 7.8 (6.6–9.7), n = 7 0.036 
Distensibilityb AAo 9.3 (4.3–17.2) n = 19 5.8 (3.1–9.5) 0.006 
Distensibilityb DAoT 10.5 (4.0–20.0) 7.9 (4.6–17.5) NS 
Distensibilityb DAoD 12.6 (7.4–22.9), n = 19 9.5 (5.1–

15.6), n = 6 
NS 

AAo ascending aorta, DAo T descending mid thoracic aorta, DAo D descending aorta at diaphragm, NS not 
significant 
* p > 0.05 
aData displayed as median and ranges 
bDistensibility was expressed as 10−3 mmHg−1 
 

Brachial artery reactivity data showed a significant difference for FMD% between control and diabetic subjects 
(p = 0.036) (Table 3). There was also a significant difference between control and diabetic subjects’ ascending 
aortic distensibility (p = 0.006), but not distensibility in other regions of the aorta. FMD% positively correlated 
with age at diabetes diagnosis (r = 0.468, p = 0.038) and HgbA1c (r = 0.472, p = 0.036), and negatively with years 
post diagnosis (r = −0.547, p = 0.013). Brachial artery reactivity testing (FMD) did not correlate significantly with 
aortic distensibility or the TAWSS and OSI results for this pilot study, though interesting qualitative differences in 
TAWSS and OSI are apparent throughout the thoracic aorta (color images, Figs. 1, 2). Although no significant 
differences in global TAWSS or OSI were viewed for selected AAo or DAoT imaging planes, a trend toward 
significance existed for DAoT TAWSS, with diabetic patients having higher TAWSS than controls (p = 0.072) 
(Table 4). OSI distributions appeared similar between groups at this stage. Looking at a more granular level, for 
control subjects, the aorta had more local regions with low TAWSS (blue on color images), when compared to 
type 1 diabetic patients. Specifically, along right, left, outer and, to a lesser degree, the inner curvatures of the 
aorta, median TAWSS at each location for diabetics (denoted by the red line on the graphs) tended to be higher 
than median TAWSS for the controls (black line). These differences reached significance at two locations, one 
along the outer curvature (location 1.25) and another along the anatomic right side (location 1.5) of the aorta 
(Fig. 1). For OSI, significant differences are also seen in the area distal to the take-off of the LSCA (Fig. 2) at 
locations 1.5 and 2.0 along the outer curvature, and locations near 0.5 along the anatomic left side of the aorta. 
For this small sub group with CFD modeling, though, neither global nor regional aortic TAWSS correlated with 
any clinical or laboratory value for either the control or diabetic subjects. There was a significant correlation 
between control subjects’ total cholesterol and global DAoT OSI (r = 0.767, p = 0.044). After excluding one 
diabetic outlier (where hs-CRP = 22), there was a trend toward a negative correlation between hs-CRP and AAo 
distensibility (r = −0.459, p = 0.064), but not distensibility in other areas, suggesting regional differences in aortic 
wall properties. 



 
Fig. 1 Collective time-averaged wall shear stress (TAWSS) distributions from CFD (top) and ensemble-averaged, 
longitudinal TAWSS distributions comparing CFD models for seven control subjects (black) and nine age- and 
gender-matched type 1 diabetic subjects (red) along the outer, anatomic right, anatomic left, and inner 
curvatures of the aorta (bottom). The x-axis denotes location along the arch divided by the diameter at the 
outlet of each patient’s model. This approach accounts for differences in aortic dimensions resulting from 
differences in size between patients and was used to normalize the longitudinal locations among all patients. 
The left subclavian artery (LSCA) was then taken as the zero point for quantification, with all other aortic 
locations noted relative to this. Hence, aortic regions distal to the LSCA have a positive location designation and 
locations proximal (i.e., closer to the aortic valve) have a negative designation in terms of their location. 
Statistically different values exist when compared to control subjects (*p < 0.05). Data are expressed as medians 
with bars representing lower and upper quartiles 

 
Fig. 2 Collective oscillatory shear index (OSI) distributions from CFD (top) and ensemble-averaged, longitudinal 
aortic OSI distributions comparing CFD models for seven control subjects (black) and nine age- and gender-

https://link.springer.com/article/10.1007/s00246-014-1071-7/figures/1
https://link.springer.com/article/10.1007/s00246-014-1071-7/figures/2


matched type 1 diabetic subjects (red) along the outer, anatomic right, anatomic left, and inner curvatures of 
the aorta (bottom). The x-axis denotes location along the arch divided by the diameter at the outlet of each 
patient’s model. This approach accounts for differences in aortic dimensions resulting from differences in size 
between patients and was used to normalize the longitudinal locations among all patients. The LSCA was then 
taken as the zero point for quantification, with all other aortic locations noted relative to this. Hence, aortic 
regions distal to the LSCA have a positive location designation and locations proximal (i.e., closer to the aortic 
valve) have a negative designation in terms of their location. Statistically different values exist when compared 
to control subjects (*p < 0.05). Data are expressed as medians with bars representing lower and upper quartiles 
 

Table 4 Novel measures of vascular health from CFD modeling 

  Type 1 diabetes subjects 
(n = 9)a 

Control subjects 
(n = 7)a 

p* 

TAWSS AAo (dynes/cm2) 20.4 (6.1–38.8) 16.8 (7.5–35.4) 0.832 
TAWSS DAoT (dynes/cm2) 28.6 (8.6–39.0) 17.9 (10.2–28.4) 0.072 
OSI AAo 0.16 (0.13–0.28) 0.18 (0.10–0.23) 0.916 
OSI DAoT 0.12 (0.06–0.16) 0.15 (0.10–0.19) 0.244 

A Ao ascending aorta, DAo T descending mid thoracic aorta 
* No significant differences seen (p > 0.05) 
aData displayed as median and ranges 

Discussion 
Endothelial dysfunction is considered a key event in the development of atherosclerosis. Measures of 
endothelial dysfunction have included brachial artery reactivity testing, pulse wave velocity assessment by radial 
artery tonometry, and intimal-medial thickening assessment by ultrasound [14]. Impaired FMD response, by 
brachial artery reactivity testing, has been shown to detect endothelial dysfunction in subjects with 
hyperlipidemia (being especially affected by elevated total cholesterol), hypertension, and/or diabetes—
traditional cardiovascular risk factors for CAD [5, 10, 18]. The impaired brachial artery reactivity seen in our 
cohort is similar to what has been seen by others. Babar et al. showed that pre-adolescent children with type 1 
diabetes, and mean diabetes duration of 4 years, displayed evidence of low-intensity vascular inflammation and 
attenuated FMD measurements [3]. The positive correlations seen in the present research between FMD and 
subject age at diabetes diagnosis, years with diabetes, and HgbA1c, are congruent with the literature [13]; 
vascular health worsens with duration of poor glucose control. Furthermore, early autonomic derangements 
have been observed in patients with type 1 diabetes and are believed to be functional and irreversible [33]. 
Although we did not assess the role of sympathetic nervous system (SNS) activity on FMD, increased SNS activity 
has not been shown to blunt FMD response [6]. 

The novelty of our pilot research is in the application of CMR to this young cohort of patients with type 1 
diabetes to look at early vascular changes. No literature exists for the study of CMR CFD modeling with fluid–
structure interaction for young diabetic patients. Functional assessment of thoracic aortic properties such as 
aortic stiffness by CMR has been validated [27, 32]. Aquaro et al. [2], studying 85 healthy subjects (ages 15 to 
greater than 60 years) by CMR, showed that there is progressive impairment of the elastic properties of the 
aortic wall with aging (i.e., maximum rate of systolic distension and distensibility decrease progressively through 
with age (p < 0.001) and pulse wave velocity increased). Others have applied this technique to the study of 
patients with chronic renal disease, where increased arterial stiffness has been associated with mortality in 
patients with chronic kidney disease. Aortic distensibility, measured by CMR using the methods employed here, 



was an independent predictor of combined vascular events and mortality in this study of chronic renal patients. 
Furthermore, AD predicted all cause mortality [26]. 

Our pilot study is unique in its use of CMR to study the central vasculature in a young diabetic population at risk 
for premature atherosclerosis, showing that it is feasible to characterize differences in their central vasculature 
when compared with controls. Regional TAWSS derived from patient-specific CFD modeling appeared 
qualitatively different for type 1 diabetic subjects when compared with controls (Fig. 1). Vascular changes 
appear heterogeneous in the youthful cohorts studied here; in this early phase, the impact of regional TAWSS 
may not be detected by the more global measure of CMR aortic distensibility measured at one or two aortic 
locations (AAo and DAoT). This altered vascular TAWSS may become more widespread throughout the aorta with 
patient aging, the subject of future, powered, longitudinal study. 

Low TAWSS is thought, from studies of adult subjects, to promote atherogenesis, as is elevated OSI, an index of 
directional changes in wall shear stress. The importance of these parameters and their serial change with aging, 
though, is not known. In our study of young type 1 diabetic patients, it appears that regional differences in 
TAWSS exist when compared with controls and that higher TAWSS is seen in the ascending aorta, reaching 
significance for several locations the transverse arch. In theory this could be explained by differences in CFD 
simulation boundary conditions, but cardiac output, cardiac index, flow distributions to aortic branches, heart 
rate and the portion of the period spent in systole did not differ between groups. Many cardiovascular risk 
factors, including type 1 diabetes, induce physiological outward arterial remodeling (dilation) that begins in 
response to overall higher initial laminar shear stress (Glagov phenomenon). As the vessels become inflamed, 
remodeling becomes excessive, and the result is adverse shear stress in larger arteries [30]. In our study of 
young patients, it is possible we are seeing this early remodeling, where wall shear stress is still high and the 
aorta, which has begun to stiffen, has yet to dilate. Moreover, extension of the endothelial dysfunction observed 
in this pilot study could prevent myogenic dilation in response to elevated TAWSS. Chronic and sustained 
increased TAWSS may further contribute to endothelial dysfunction, which also progresses with age. Serial data, 
while not part of the current study, may show that TAWSS changes with age, such that at the point of 
adulthood, when plaque is apparent, TAWSS levels have transitioned and are low. 

Mean ascending aortic distensibility for our type 1 diabetic cohort (9.8 ± 2.7 × 10−3 mmHg−1) differed from 
controls (6.2 ± 2.4 × 10−3 mmHg−1, p = 0.006). At first glance, this implies a paradoxically more compliant aorta 
for the diabetic cohort; yet upon further review, all values for diabetic subjects fall well within published normal 
range, where for ages 15–20 years, females have aortic distensibility 13.2 ± 3.4 × 10−3 mmHg−1 (range 8.3–16.3) 
and males 8.1 ± 2.9 × 10−3 mmHg−1 (range 6.5–12.7) [2, 43]. Published variability in this measure shows a mean 
difference (±standard error, SE) of 3 % (±7 %) with 95 % confidence interval (CI) for limits of agreement of ±69 % 
[8]. Thus, the differences in AAo distensibility seen here are not clinically meaningful. The diabetic cohort’s CFD 
modeling, though, shows that there already appear to be regional differences in TAWSS, supporting the notion 
that CFD modeling may be a more sophisticated method to assess regional vascular changes than is 
distensibility. 

When compared with aortic distensibility in adult diabetic patients (ages 48–64 years), where distensibility of 
the aorta was lowest (~3.8–4 × 10−3 mmHg−1) versus adult controls without disease 
(~5 × 10−3 mmHg−1), p = 0.011, our diabetic subjects’ aortic distensibility, though, appears better—as would be 
expected for this younger group [35]. Arterial distensibility decreases with age, with increased wall stiffness of 
the proximal aorta seen with increased age [1]. The decreasing aortic elasticity, observed with aging, has been 
related to normal structural wall changes during aging, including increased intimal-medial thickness beginning 
after birth and to the cycles of contraction and expansion of the vasculature in response to cardiac systole which 
fragments elastic fibers in the wall, transferring of stress stiff collagen fibers [43]. 



Correlations seen here between reduced aortic distensibility and elevated venous biomarkers (elevated 
homocysteine, HgbA1c, and hs-CRP) speak to the biochemical milieu which invokes inflammatory mechanisms 
involved in the development of endothelial dysfunction. The regional nature of these correlations between 
aortic distensibility and venous biomarkers is not unexpected, given the heterogeneous vascular changes seen 
on CFD modeling. From a basic science perspective, hyperhomocysteinemia has been shown to induce smooth 
muscle cell proliferation, endothelial dysfunction, collagen synthesis, and deterioration of elastic material of the 
arterial wall [39]. Elevated plasma homocysteine has been shown to increase the risk of atherothrombosis, 
especially in individuals with impaired glucose tolerance [16] and pediatric type 1 diabetic populations with 
micro albuminuria [47]. The role of elevated hs-CRP in all stages of atherogenesis, including endothelial 
dysfunction, atherosclerotic plaque formation, plaque maturation, plaque destabilization, and eventual rupture, 
is well known [48]. Subjects with type 1 diabetes and control subjects had similar homocysteine and hs-CRP in 
our pediatric pilot study suggesting early disease (or perhaps reflecting small sample size). 

Limitations 
This was a prospective, pilot study funded by an investigational grant; thus, subject enrollment was limited by 
available funding. Control subjects were chosen from those with clinically indicated CMR scans, rather than 
imaging “healthy children.” Careful attention was paid, though, to avoid those with congenital heart disease 
affecting the aorta; in fact, in four controls, no cardiac disease existed at all, as ARVD was not found (3) and 
pectus chest wall deformity did not affect the heart (1). One patient with repaired tetralogy of Fallot (a 13-year-
old male) served as a control subject early in the course of this study. His left ventricular outflow tract was 
normal and he had only trace aortic regurgitation with aortic dimensions just slightly above the normal range 
[19]. The authors subsequently recognized that subsequent such subjects should not be permitted as controls. 
Furthermore, the cross-sectional nature of the study allows characterization of the population, but limits 
comment on the longitudinal significance of aortic distensibility and regional TAWSS and OSI. 

CMR images for selected three-dimensional SSFP whole heart acquisitions were performed with the patient 
breathing comfortably and with acquisition navigated off the position of the diaphragm; as such, these were 
time-consuming (10–15 min acquisition time) acquisitions, leading to slight degradation in image quality for the 
descending aorta near the diaphragm, truncating some CFD models (Figs. 1, 2). Three-dimensional data acquired 
with gadolinium (Gd) dye (used for clinically indicated scans in controls) preserved image quality. As Gd does not 
have Food and Drug Administration approval for cardiac imaging, it was not used for diabetic subjects, but only 
for cases where its use was clinically indicated (controls). While this difference in technique for acquisition of the 
3D aortic data set is a study limitation, others have shown that there is no significant difference in the 
orthogonal measurements of the aortic diameter between those made on images from the 3D SSFP and those 
made from the contrast enhanced MRA sequences [9]. 

Assumptions exist with CFD modeling which relies on definition of inlet and outlet boundary conditions, as 
discussed in detail elsewhere (17). CFD results were considered mesh independent when TAWSS at several 
regions in the aorta changed <1 % between successive simulations. Thus, while it is possible that the results 
presented may differ for much larger meshes, it is unlikely that the key observations would be altered. Inclusion 
of the AoV with CFD simulations has been shown to impact hemodynamics, but was not employed [45], because 
valvular imaging was not conducted when the imaging data was collected. 

In conclusion, while global measures of aortic distensibility obtained by CMR show no clinically meaningful 
differences when young diabetic patients are compared with controls (with both having aortic distensibility 
within the normal range), CFD determined regional TAWSS and OSI data appear qualitatively different. For outer 
and right curvatures of the transverse aorta (just proximal to the origin of the LSCA), TAWSS and OSI were 
significantly different for diabetics versus controls. CFD modeling, thus, shows promise as a method of 



elucidating the early regional vascular changes in the aortic wall, when exposed to biochemical stresses of type 1 
diabetes. Longitudinal CMR studies of children and young adults are warranted to better understand these 
vascular changes and the cardiac burden imposed by type 1 diabetes. 
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