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On congruence lattices of nilsemigroups

Alexander L. Popovich∗ and Peter R. Jones

Abstract

We prove that the congruence lattice of a nilsemigroup is modular if and only if the
width of the semigroup, as a poset, is at most two, and distributive if and only if its width
is one. In the latter case, such semigroups therefore coincide with the nil ∆-semigroups. It
is further shown that if a finitely generated nilsemigroup has modular congruence lattice,
then the semigroup is finite.

Studying congruence lattices is a well-established direction in semigroup theory. Surveys of
this area have been given in [13] and [14]. One of the natural questions here is to characterize
semigroups with distributive or modular congruence lattices. This problem has been solved for
several classes of semigroups.

Of course the congruence lattice of every group is modular. The characterization of abelian
groups whose congruence lattices are distributive is a corollary of the famous result of Ore [16].
Non-abelian groups with distributive congruence lattices had been studied by Pazderski [17] and
Maj [12]. The case of semilattices had been considered by Dean and Oehmke [4] and Hamilton
[8], who showed that the congruence lattice of a semilattice is modular if and only if it is
distributive, and if and only if the semilattice itself is a tree. Fountain and Lockley [5] classified
the Clifford semigroups with either modular or distributive congruence lattice and the same
authors [6] determined the bands with distributive congruence lattice. Auinger [1] studied strict
inverse semigroups with distributive or modular congruence lattices. Bonzini and Cherubini [2]
studied the case of inverse ω-semigroups. Regular semigroups with the minimal condition for
idempotents and having distributive or modular congruence lattices were characterized by Jones
[10]. Hamilton [9] studied the case of commutative cancellative semigroups. The ∆-semigroups
– semigroups whose congruence lattices form a chain – have been particularly well studied (see,
for instance, [15]).

In the present paper we are interested in the class of nilsemigroups. Recall that a semigroup
with zero is called a nilsemigroup if, for each of its elements x, there exists a positive integer
n such that xn = 0. A little is already known about congruence lattices of nilsemigroups. It
follows from [11] that the congruence lattice L of a nilsemigroup is strictly semimodular, i.e. it
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satisfies the following property: for every a, b, c ∈ L, a � b implies a∨ c � b∨ c or a∨ c = b∨ c,
where � is the covering relation (see [7]). As is noted below, it is easy to see that the class of
congruence lattices of nilsemigroups satisfies no nontrivial lattice identity.

Other than in the study of ∆-semigroups, until now nothing has been known in general about
nilsemigroups with distributive or modular congruence lattices. We reduce the distributive case
to that of ∆-semigroups and then characterize the modular case in terms of the width of the
underlying poset of the semigroup.

Let S be a nilsemigroup. It is a well-known fact that S is J -trivial. Thus the natural
partial order on the J -classes reduces to a partial order on S itself, given by

y 6 x iff there exist s, t ∈ S1 such that y = sxt.

Let (X,6) be any poset. The notation a ‖ b indicates that a and b are incomparable under
6. A subset A ⊆ X is called an antichain [a chain] if elements of A are pairwise incomparable
[pairwise comparable] under 6. The width of (X,6) is the greatest cardinality, if it exists, of
any antichain in X.

For the elementary background on semigroups and lattices needed here we refer the reader
to [3] and [7] respectively. A lattice (L,∧,∨) is distributive if a∧ (b∨ c) = (a∧ b)∨ (a∧ c) for all
a, b, c ∈ L. Among several characterizations of modularity of L is the following: if a 6 c, then
(a ∨ b) ∧ c = a ∨ (b ∧ c), for all a, b, c ∈ L.

Denote the congruence lattice of a semigroup S by (ConS, ∩ ,∨), or just ConS.
The main results of the paper are the following:

Theorem 1. Let S be a nilsemigroup. Then the following are equivalent:
1) ConS is distributive;
2) The poset (S,6) is a chain;
3) ConS is a chain.

Theorem 2. Let S be a nilsemigroup. Then the following are equivalent:
1) ConS is modular but not distributive;
2) The poset (S,6) has width 2.

According to Theorem 1, a nilsemigroup has distributive congruence lattice if and only if
it is a ∆-semigroup. In the finite case, it follows from earlier work on such semigroups that
the semigroup must be cyclic. Following Proposition 2, we include the proof of a slightly more
general statement, for completeness.

In the infinite case, the commutative ∆-semigroups were completely described by Tamura
[21] and Schein [19, 20]. Specializing to the case of nilsemigroups, the following complete
description is obtained. Here the semigroups Q and R are the Rees quotients of the semigroup
R+ of positive real numbers, under addition, modulo the ideals [1,∞) and (1,∞), respectively.

Corollary 1. An infinite, commutative nilsemigroup has distributive congruence lattice if and
only if it is isomorphic to a subsemigroup G of Q or of R with the property that whenever x ∈ G
and x+ y ∈ G\0, then y ∈ G.
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Corollary 2. Let S be a nilsemigroup such that ConS is modular. If S is finitely generated,
then it is finite. If S is not cyclic, then it is generated by two elements a and b, say, and the
poset {a2, ab, ba, b2} has width at most two.

Examples of infinite nilsemigroups with congruence lattices that are modular but not dis-
tributive are easily constructed. For instance, the 0-direct union of any two infinite, totally
ordered, nilsemigroups is a nilsemigroup of width two. Corollary 1 provides a wealth of candi-
dates from which to build.

The following elementary fact is a part of semigroup folklore.

Lemma 1. Let S be a nilsemigroup, a, b ∈ S and a 6= 0. Then a > ab and a > ba.

Lemma 2. Let S be a nilsemigroup, θ ∈ ConS, (a, b) ∈ θ and a > b. Then (a, 0) ∈ θ.

Proof. Since a > b, then b = sat for some s, t ∈ S1 and either s 6= 1 or t 6= 1. By assumption,
there exists n such that sn = 0 or tn = 0, respectively. Then

(b, sbt) = (sat, sbt) ∈ θ, (sbt, s2bt2) ∈ θ, . . . , (sn−1btn−1, 0) ∈ θ.

By transitivity, (a, 0) ∈ θ.

Denote by Partn the full partition lattice of a set with n elements. It is well known that
Partn is non-distributive for n > 3 and non-modular for n > 4. Moreover, the class of all such
finite partition lattices satisfies no proper lattice identity [18]. Observe that the congruence
lattice of any n-element null (or ‘zero’) semigroup is Partn itself. Since such semigroups are
nilsemigroups, it follows that the class of congruence lattices of finite nilsemigroups satisfies no
nontrivial lattice identity.

Proposition 1. Let S be a nilsemigroup for which (S,6) contains an antichain of size n. Then
ConS has a sublattice isomorphic to Partn+1.

Proof. Let A be an n-element antichain in (S,6) and

K = {x ∈ S | x < a for some a ∈ A}.

It follows from Lemma 1 that K is an ideal of S. Consider the Rees quotient T = S/K. The
set I = A ∪ {0} forms an (n + 1)-element ideal in T . Let π be a partition of I. If (x, y) ∈ π,
then for every t ∈ T , tx = xt = yt = ty = 0. Therefore the congruence generated by π has
the form π ∪ ∆T , where ∆T denotes the equality relation on T . Thus we have the mapping
f : Partn+1 → ConT defined by π 7→ π ∪∆T . It is easy to verify that f is a lattice embedding.
Therefore Partn+1 is isomorphic to a sublattice of ConT , which in turn is isomorphic to a filter
of ConS. So Partn+1 is isomorphic to a sublattice of ConS.

In view of the properties of partition lattices cited earlier, that (1) implies (2) in Theorems 1
and 2 is immediate. We now turn to the converses. In the case of distributivity, this is already
included in the proof of [15, Theorem 1.56]. Since it is easy, we include a proof for completeness.
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Proposition 2. Let S be a nilsemigroup such that (S,6) is a chain. Then the ideals of S are
totally ordered and every congruence is a Rees ideal congruence. Hence ConS is a chain.

Proof. That the ideals are totally ordered is clear. Now let θ ∈ ConS and denote by I the
θ-class of 0. Clearly I is an ideal of S. If a ∈ S and the θ-class of a is not a singleton, then by
Lemma 2, a ∈ I. That is, θ is the Rees ideal congruence modulo I.

In the introduction, it was noted that every finite nilsemigroup, whose congruence lattice
is a chain, is cyclic. Again, we include the proof for completeness and for comparison with the
modular case. In fact we show that any finitely generated nilsemigroup S such that (S,6) is a
chain must be finite cyclic. For suppose that x1 > x2 > · · · > xk is an irredundant generating
set for S, with k > 1. Since x2 < x1, x2 = sx1t for some s, t ∈ S1, not both 1. But then s
and t, if not 1, must be power of x1 and so the same is true of x2 itself, contradicting the
assumption. Thus S is cyclic. But if S is infinite, it has the finite cyclic groups as quotients
and therefore their congruence lattices as filters in ConS. Hence S is finite cyclic. (Finiteness
is also a consequence of Corollary 2.)

The converse argument in the case of modularity is somewhat more complex.

Proposition 3. The congruence lattice of any nilsemigroup S such that (S,6) has width two
is modular.

Proof. Let ρ, θ, τ be congruences on S such that ρ ⊆ τ . Let (a, b) ∈ (ρ ∨ θ) ∩ τ . It must be
shown that (a, b) ∈ ρ ∨ (θ ∩ τ).

There is a sequence a = x0, x1, . . . , xk, xk+1 = b such that (xi, xi+1) ∈ ρ ∪ θ for each i. We
may proceed by induction on k, the case k = 1 being obvious. In fact, since ρ ⊆ τ , it may be
assumed that a θ x1 and xk θ b, so that k ≥ 2. It may, further, be assumed that each pair
(xi, xi+1) belongs to exactly one of ρ and θ.

First suppose one of a and b is zero, say b = 0. It follows from Lemma 2 that the θ-class of
xk is an ideal of S. Observe next that if xi < a for any i, 1 6 i 6 k, then (by the same lemma)
a τ xi τ 0 and the induction hypothesis applies. Now consider xk−1 ρ xk. If these elements
are comparable, then xk−1 ρ 0 and the induction hypothesis applies. Otherwise, by the width
hypothesis, a is comparable with, and thus necessarily less than, one of the two. If a < xk, then
a θ 0 (and so (a, 0) ∈ θ ∩ τ). So a < xk−1. Write a = sxk−1t for some s, t ∈ S1, not both 1.
(We shall omit mention of this qualification in similar situations below and in the next proof.)
Then a ρ sxkt θ 0 provides a shorter sequence and the induction hypothesis again applies.

In the general case, suppose a and b are comparable. By Lemma 2, (a, 0), (b, 0) ∈ (ρ∨ θ)∩ τ
and so the previous case completes the argument.

Otherwise a ‖ b. Suppose a and x1 are comparable and, also, that xk and b are comparable.
Then a θ 0 θ b and so (a, b) ∈ θ ∩ τ . Without loss of generality, it may therefore be assumed
that a ‖ x1 and, by the width hypothesis, x1 and b are therefore comparable.

Suppose that x1 > b. Note that since (x1, b) ∈ ρ∨ θ, then by Lemma 2, (b, 0) ∈ ρ∨ θ. Thus
if it should happen that a τ 0 or b τ 0, then the proof of that special case applies. If x1 and x2
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are comparable, then x1 ρ 0 and so x1 ρ b, resulting in a shorter sequence. So x1 ‖ x2 and, by
the width hypothesis, x2 and a are comparable.

If x2 < a, then, since we may write b = sx1t, we have b ρ sx2t < x2 < a. From a τ b it then
follows that a τ 0.

Alternatively, x2 > a and we may write a = qx2r ρ qx1r < x1. Since a ‖ x1, a 6= qx1r. Thus
if a and qx1r are comparable, then by Lemma 2, a ρ 0 and so a τ 0. Otherwise, a ‖ qx1r and,
by the width hypothesis, qx1r and b are comparable. If they are distinct, then b τ a τ qx1r
implies b τ 0. If b = qx1r, then a ρ b. This concludes the analysis in the case that x1 > b.

Now suppose x1 < b, x1 = sbt, say, and consider xk. If xk and b are comparable, then b θ 0
and so b θ x1 θ a. So we may assume xk ‖ b. Then after applying the analysis for the case
x1 > b to the case xk > a, it remains to consider xk < a. Now a θ x1 = sbt θ sxkt < xk < a.
Thus a θ 0 and a θ xk θ b. This completes the proof.

Now we show how Theorems 1 and 2 imply Corollary 2.

Proof. Since S is finitely generated, then it has an irredundant generating set B = {a1, . . . , an}.
Suppose ai < aj for some i, j. Then there exist s, t such that ai = sajt. By irredundancy, any
expression for sajt as a product from B must involve ai, which by Lemma 1 implies ai = 0,
contradicting irredundancy. Thus B is an antichain under 6. By Theorems 1 and 2, |B| = 1 or
|B| = 2. If |B| = 1, then S is a cyclic nilsemigroup, which is finite. Let |B| = 2 and B = {a, b},
for convenience of notation. Then every element of S can be written as ak0bl1ak1bl2 . . . aknbln+1

for some ki, li > 0 for 1 6 i 6 n, and k0, ln+1 > 0.
Suppose that ab = ba. Then every element of S can be represented as akbl for suitable k, l.

Since an = bm = 0 for some n,m, then S can contain only finitely many elements.
Otherwise, without loss of generality we assume ab 66 ba. Thus ab 6= 0. Let a2 > ab. Then

there exist s, t such that ab = sa2t. By Lemma 1, ab = ap for some p. Then every element of
S can be written as b`ak for suitable k, `, which, as before, means that S is finite. The case
b2 > ab is similar.

Now let a2 6> ab, b2 6> ab. Suppose that ba < ab. Then ba = sabt. If s and t (if not 1) are
not respectively powers of a and of b, then by Lemma 1, ba = 0. In either event, we can write
every element of S in the form akb`, so S is finite.

Finally, let ab ‖ ba. We can assume that a2 6> ba and b2 6> ba (if not, then we have the
same arguments for ba as we had before for ab). Since S has width two, then a2 6 c and b2 6 d
for c, d ∈ {ab, ba}. Without loss of generality we may suppose that a2 < ab and a2 6< b2. Now
either a2 = 0 or from a2 = sabt it then follows from Lemma 1 that a2 = aibaba . . . baj for some
i, j ∈ {0, 1}.

Similarly, b2 = uabv or b2 = ubav and either b2 = 0 or, using the alternatives for a2 just
stated, b2 = afbaba . . . bag for some f, g ∈ {0, 1}. Therefore, in all cases every element of S can
be written in the latter form and, since (ab)n = 0 for some n, S is finite.

The authors are grateful to Vladimir Repnitskii, for his attention to the paper, and to the
referee for suggestions that improved its exposition.
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