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Abstract 
Recent advancements in additive manufacturing (or rapid prototyping) technologies allow the fabrication of 
end-use components with defined porous structures. For example, one area of particular interest is the 
potential to modify the flexibility (bending stiffness) of orthopedic implants through the use of engineered 
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porosity (i.e., design and placement of pores) and subsequent fabrication of the implant using additive 
manufacturing processes. However, applications of engineered porosity require the ability to accurately predict 
mechanical properties from knowledge or characterization of the pore structure and the existence of robust 
equations characterizing the property–porosity relationships. As Young’s modulus can be altered by variations in 
pore shape as well as pore distribution, numerous semi-analytical and theoretical relationships have been 
proposed to describe the dependence of mechanical properties on porosity. However, the utility and physical 
meaning of many of these relationships is often unclear as most theoretical models are based on some idealized 
physical microstructure, and the resulting correlations often cannot be applied to real materials and practical 
applications. This review summarizes the evolution and development of relationships for the effective Young’s 
modulus of a porous material and concludes that verifiable equations yielding consistently reproducible results 
tied to specific pore structures do not yet exist. Further research is needed to develop and validate predictive 
equations for the effective Young’s modulus over a volume porosity range of 20–50 %, the range of interest over 
which existing equations, whether based on effective medium theories or empirical results, demonstrate the 
largest disparity and offers the greatest opportunity for beneficial modification of bending stiffness in 
orthopedic applications using currently available additive manufacturing techniques. 

Introduction 
Research into the mechanical properties of porous materials has focused on the characterization of a particular 
material or methodology to interpret the observed performance of porous media. While this research has 
intrinsic value, the need to apply this research to the prediction of mechanical properties for the purpose of 
design has not received the same attention. 

Most theoretical equations for calculating effective moduli have been derived by treating a representative 
volume of a porous solid as a special case of two-phase materials, evaluating them mathematically or 
empirically, and extending the conclusions to the porous solid [1]. Exact dilute-limit formulas may be derived by 
evaluating the effect of a single pore, small enough to have no effect on the other pores within the matrix, on 
the moduli of the porous material. These exact dilute-limit relationships, however, have limited applicability to 
characterization of elastic moduli of real composites/porous solids that violate the requisite theoretical 
conditions (e.g., non-interaction among the perturbing stress fields due to the individual pores). As such, 
effective medium theories have been developed to extend the stress and strain distributions of the isolated 
single-pore solutions to account for interactions between the inclusion phases [2]. Other approaches rely on 
discrete sets of empirical data, quantifying relationships based on regression of experimental results for an 
assumed inherent porosity range. 

O’Kelly et al. [3] characterize the theoretical approaches into either composite theory, which assumes a two-
phase material, with one phase having zero stiffness, or cellular solids and minimum solid area (MSA) 
approaches, which assume a single phase permeated with voids. Herakovich and Baxter [4] take a broader view 
and observe that there are two fundamentally different approaches to the study of porous media: those of the 
mechanics community and those of the materials community. The mechanics community has tended to consider 
a specific pore shape (often spherical) and then develop analytical solutions for mechanical properties as a 
function of pore volume fraction. In contrast, the materials community has tended to obtain experimental 
results for mechanical properties as a function of volume porosity and then determine the “best-fit” curve 
relating the properties to the pore geometry or method of fabrication. These different approaches yield 
divergent results and, in some instances, formulas which are in direct contradiction [5]. 

Recent developments in additive manufacturing facilitate the creation of structures with a predictable and 
precisely defined porosity in terms of pore size, shape, orientation, and arrangement. Application of this 
technology to specific design requirements requires robust predictive models that include these variables in the 



characterization of porous media. Rather than present existing mechanical property–porosity relationships in 
terms of the differing perspectives of the mechanics and materials communities as noted by Herakovich and 
Baxter [4], this review summarizes the relationships posed by investigators in both communities in terms of the 
equation type (linear, power, exponential, or other). Details regarding the implicit assumptions and valid 
porosity range, as relevant to future engineered porosity applications in additive manufacturing, are 
summarized. 

Linear equations 
Dewey [6] derived dilute-limit expressions for the elastic constants of materials containing non-rigid fillers from 
consideration of a single sphere (radius = R) within an isotropic medium subjected to a displacement at a large 
distance (≫R) from the sphere. Accordingly, these expressions are valid for “very dilute suspensions” for which 
surface effects may be ignored. Dewey’s model was derived to include the effects of gas pressure within pores 
of elastomeric materials. Although algebraic errors and inconsistencies in the evaluation of bulk and shear 
moduli in Dewey’s analysis preclude its accurate use as published [7], the basic form of the equation for Young’s 
modulus appears correct: 

𝐸𝐸p = 𝐸𝐸0(1− 𝑎𝑎𝑎𝑎) (1) 

where E p is Young’s modulus of the porous body, E 0 is the modulus of a non-porous body of the same 
material, a is a constant dependent on Poisson’s ratio of the matrix material, and P is the volume porosity. 

Fryxell and Chandler [8] compared their experimental results for sintered beryllium oxide and found that the 
linear equation (1) “describes the data well enough for most practical purposes” for a volume porosity less than 
17 %. Hasselman and Fulrath [9] demonstrated the validity of the Dewey equation up to 2.5 % porosity for glass 
with spherical voids. Their theoretical value for the constant a as a function of ν 0, the Poisson’s ratio of the non-
porous material, was based on prior analyses of an isolated spherical void within an elastic solid [5, 10] (i.e., the 
exact dilute-limit result for a statistically isotropic distribution of spherical voids) and takes the form: 

𝑎𝑎 = 3(9 + 5𝜈𝜈0)(1 − 𝜈𝜈0)/[2(7− 5𝜈𝜈0)] (2) 

The results noted by Hasselman and Fulrath showed “good [visual] agreement between theory and 
experiment.” Rossi [11] noted that the coefficient a approximates the stress concentration about a spherical 
cavity for compressive and shear stress states and is solely a function of the Poisson’s ratio of the matrix 
material. He expanded the theoretical applicability of the linear equation to include oblate and prolate 
spheroids but cautioned that his approach is “nonrigorous and is intended only as an engineering solution to the 
problem” of predicting the elastic moduli of porous constructs. 

Power relationships 
Bert [12] expanded Rossi’s work to include stress concentration factors for different void geometries and added 
an exponent for the maximum porosity possible, Q, given a specific pore arrangement: 

𝐸𝐸p = 𝐸𝐸0[1− (𝑃𝑃/𝑄𝑄)]𝐾𝐾𝐾𝐾 (3) 

where 

𝐾𝐾 = 0.75 + (1.25𝑏𝑏/𝑐𝑐) (4) 

In this equation, c is the void length parallel to the loading direction and b is the void width perpendicular to the 
loading direction. Although empirical results are not provided, Bert maintains that Eq. (3) is more accurate than 
earlier equations for solids with less than 20 % volume porosity. 



Like Dewey, Mackenzie [10] also studied the elastic properties of porous solids, assuming that the solid material 
is homogeneous and isotropic with isolated voids of different sizes distributed randomly throughout the volume 
of the material. He states that because voids have a comparatively large effect on compressibility and only a 
small effect on the shear modulus, his results can be extended to different void shapes and sizes, provided that 
extremes are excluded. Per Chung [13] and Wagh et al. [14], Mackenzie’s semi-empirical equation has the form: 

𝐸𝐸p = 𝐸𝐸0(1− 𝑑𝑑𝑑𝑑 + 𝑔𝑔𝑃𝑃2) (5) 

where the “slope constants” d and g “depend upon the shape of the pores, assuming that all of the pores are 
closed pores” [13]. As Mackenzie’s theoretical derivation assumed non-interaction between spherical voids and 
included both the shear and bulk moduli, it is expected that Eq. (5) can be interpreted as a power series 
in P which would yield the dilute-limit solution if truncated after the linear term. Mackenzie adds that “it is not 
clear how the numerical constants [in Eq. (5)]… will depend on the particular shape [of void] chosen… but it 
seems likely that the[se] formulae … will give the correct order of magnitude in most cases.” [10]. 

Experimental results of Spinner et al. [15] confirmed the validity Eq. (5) for polycrystalline thoria with volume 
porosity up to 40 %. Spinner et al. also noted that although the Mackenzie equation includes a second-order 
term, at low porosities this relationship is equivalent to the dilute-limit solution of Hashin [5] as zero porosity is 
approached. 

Although he did not investigate the change in elastic moduli, Bal’shin [16] concluded that the strength of a 
brittle porous specimen, such as sintered copper, can be described with an equation of the form: 

𝑆𝑆p = 𝑆𝑆0(1− 𝑃𝑃)ℎ (6) 

where S p is the ultimate tensile strength of the porous body, S 0 is the corresponding strength of the non-porous 
material, and h is an empirical constant. Bal’shin noted that the value of the constant h ranged from 3 to 6 
depending on the “characteristics” of the original material and the time and temperature of sintering, but did 
not include data on the variation in the value of h, as pointed out by Knudsen [17]. McAdam [18] derived an 
equation similar in form to Eq. (6) for the Young’s modulus of sintered ferrous alloys. For porosities up to 40 %, 
his empirical data indicated that the Young’s modulus could be described by an equation of the form: 

𝐸𝐸p = 𝐸𝐸0(1− 𝑗𝑗𝑗𝑗)𝑖𝑖  (7) 

with the empirically determined exponents i = 3.4 and j = 1. 

Phani and collaborators [19–23] also compared empirical results for porous materials, including thoria, uranium 
dioxide, gypsum, alumina, and silicon nitride, to the value of Young’s modulus predicted by Eq. (7), concluding 
that the value of i “possibly lies between 2 and 3 for a relatively ordered and less open pore structure,” and is 
valid for porosity less than 40 % [21]. The constant j is the reciprocal of the critical porosity, i.e., the porosity at 
which the structure becomes unstable and Young’s modulus falls to zero. The variability in the value of i versus 
that of McAdam in Eq. (7) is attributed to inherent differences in the nature of the porosity [22]. The value 
of i increases as the pores depart from being spherical and become more interconnected and it depends on 
“pore geometry, grain size and the interconnection of grains” [19]. Wagh et al. [14, 24] confirm these findings 
for ceramics, adding that the exponent i depends on the “tortuosity of the [pore] structure.” Maitra and Phani 
[25] confirmed and extended the earlier work of Phani and concluded that the value of i is 2 for closed spherical 
pores and 4 for random orientation of pores; i fell into a range of 3–4 in their evaluation of 12 polycrystalline 
materials. 

Others have correlated the value of the exponent i to the type and extent of stress concentrations that develop 
around pores [26]. Ji et al. [27] proposed an equation similar to (7) to describe the mechanical properties of 



porous materials provided that the value of the exponent, which depends on the “geometrical shape, spatial 
arrangement, orientation and size distribution of pores,” can be determined from experimental data. 
Accordingly, this limits the predictive capability of this equation as it relies on the existence of previous empirical 
determinations. In most cases, these data are graphically presented and values for i are fit visually. 

Exponential equations 
Ryshkewitch [28] showed that strength varies logarithmically with porosity in sintered alumina and offered one 
of the most widely used equations to describe the effects of porosity on mechanical properties [22]. Duckworth 
[29] generalized the Ryshkewitch relationship as: 

𝑆𝑆p = 𝑆𝑆0exp(−𝑘𝑘𝑘𝑘) (8) 

where k is a material-dependent constant and other variables are as defined previously. Duckworth noted 
that k “has a value of about 7 for all experimental data on hand…[it] also appears to be independent of pore 
size,” but this equation is reportedly valid only for porosity up to ~50 %. Knudsen [17] noted that the Duckworth 
Eq. (8) is “very similar to the relation proposed by Bal’shin” (6) and that since k ≈ 1.33h, the results of Eqs. (6) 
and (8) can be made to approximate each other with slight alterations in the ratio of k to h. Knudsen assumed 
that strength was proportional to the contact or load-bearing area for different grain packing arrangements and 
showed that strength could be expressed by this exponential relationship with values of k ranging from 6 to 9 for 
different structures [7, 17]. The analysis by Knudsen became the basis for later work by Rice [30, 31] which yields 
an analogous exponential relationship, based on the MSA, to predict Young’s modulus. 

Spriggs [32] extended the Duckworth Eq. (8) characterizing the effect of porosity on strength to the modulus of 
elasticity for aluminum oxide with porosities up to 37 %: 

𝐸𝐸p = 𝐸𝐸0exp(−𝑚𝑚𝑚𝑚) (9) 

and presented supporting data for m ranging from 2.7 to 4.3; these results are consistent with later work by 
Knudsen [33]. While deviation from calculated values for Young’s modulus became significant for porosity 
greater than 17 %, Spriggs demonstrated that the constant m is dependent on material processing techniques 
and “perhaps the type of materials and method of modulus measurement” [32]. 

The above studies suggest that the effective moduli, pore shape, and volume fraction, as well as fabrication 
method are coupled [4]. However, Eq. (9) does not satisfy the boundary condition that E p goes to zero 
as P approaches 1 (i.e., the matrix material is completely displaced by the voids in the material), demonstrating 
that these empirically developed equations are valid for a limited porosity range. Hasselman [34] maintains that 
“not satisfying the boundary conditions will affect the actual values of E p and m obtained from the experimental 
data” and thus “any conclusions based on the result obtained from the Spriggs equation cannot be regarded as 
entirely valid.” Work by Phani et al. [23] confirmed that Eq. (9) shows large disagreement with experimental 
data for porosities greater than 60 %. However, Herakovich and Baxter [4] acknowledged the limited 
applicability of this Eq. (9) in noting that this relationship provides a “good approximation for effective 
properties up to 40 % porosity.” 

Due to these boundary condition issues, Hasselman [34] proposed a form of a modulus-porosity relationship 
motivated by theoretical work done by Hashin [5] on moduli bounds for two-phase heterogeneous materials, 
setting the properties of the second phase to zero. If voids are considered to be the second phase, Hashin’s 
general equation for the upper bound (the lower bound is zero for the case of voids) can be rewritten in 
simplified form as: 

𝐸𝐸p = 𝐸𝐸0(1 + [𝐴𝐴𝐴𝐴/(1 − 𝐴𝐴𝐴𝐴 − 𝑃𝑃)]) (10) 



Hasselman proposed that the constant A be selected based on experimental data. Hasselman states that the 
advantage of this alternative equation is that different values of the constant A can be selected to approximate 
the behavior over different porosity intervals. 

Wang [35] confirmed that the Hashin–Hasselman Eq. (10) is valid for isolated closed pores up to about 20 % 
porosity. To extend its applicability, Wang [36] proposed a variation of the Spriggs relationship (9): 

𝐸𝐸p = 𝐸𝐸0exp[−(𝑛𝑛𝑛𝑛 + 𝑞𝑞𝑃𝑃2)] (11) 

where n and q are “nonnegative numbers dictated by the shape of the theoretical curves.” Wang presents data 
that suggest that this relationship is applicable to both open and closed pores up to ~30 % porosity. Panakkal et 
al. [37] confirmed the validity of this equation for predicting Young’s modulus of sintered iron up to 22 % 
porosity. For higher porosities, Wang [36] suggested inclusion of additional higher order terms in the exponent. 
Phani [19] notes that the use of such equations becomes cumbersome and the material constants lose their 
potential physical significance. Because neither the Spriggs (9) nor the Wang (11) equation satisfy the condition 
that E p goes to zero as P approaches 1, use of these equations to evaluate Young’s modulus by extrapolating 
fitted experimental data can result in discrepancies of approximately one order of magnitude between the 
predicted and observed values [25]. 

While Rice [7] acknowledges the mathematical limitations inherent in the Spriggs Eq. (9) noted by Hasselman 
and others, he adds that in practice inhomogeneous pore distributions, unusual pore structures, or particle 
packing arrangements with a critical porosity (i.e., the transition from isolated and closed to an open and 
interconnected porous structure) can result in complete loss of strength as P approaches a critical value of 
porosity, usually well below 1. Thus, the fact that the Spriggs Eq. (9) does not satisfy the boundary conditions 
makes this mathematical requirement moot. For simple cubic stacking of identical spherical pores (Fig. 1a), the 
critical porosity occurs when P = 0.52. For other arrangements of spherical pores of uniform size, this transition 
from closed cells to an interconnected structure occurs at different porosity levels. For orthorhombic stacking 
(Fig. 1b), the critical porosity is P = 0.60; for a rhombohedral pore structure (Fig. 1c), the critical porosity 
is P = 0.74. 

Fig. 1 

 
Regular arrangements of spherical porosity; a cubic, b orthorhombic, and c rhombohedral (top layer of pores 
intentionally shown smaller for clarity) 

For porosity levels beyond the applicable range of the Spriggs (9) equation (i.e., porosity >40 %), Rice [38] 
recognized that the role of pores and matrix material can be reversed leading to a theoretical equation 
applicable to larger values of porosity: 

𝐸𝐸p = 𝐸𝐸0[1− exp(−𝑟𝑟{1 − 𝑃𝑃})] (12) 

where r is empirically determined to have a value of approximately 0.5. Rice notes that this function is a 
continuation of the relationship for a simple cubic array of nonintersecting pores in a solid matrix as first derived 
by Eudier [39] in 1962: 

𝐸𝐸p = 𝐸𝐸0[1− 𝜋𝜋(3𝑃𝑃/4𝜋𝜋)2/3] = 𝐸𝐸0(1 − 1.21𝑃𝑃2/3) (13) 

https://link.springer.com/article/10.1007/s10853-013-7237-5/figures/1


These two functions are equivalent at P = π/6 ≈ 0.52 if r is assumed to equal 0.5. The determination of r is again 
based on empirical data; the relationship between m in the original Spriggs Eq. (9) and r in Eq. (13) is not 
defined. The analysis by Eudier is consistent with later studies by Rice [30, 31] where he proposes that the ratio 
of the effective moduli to the solid (non-porous) moduli is directly proportional to the ratio of the minimum 
contact area to the total cross-sectional area of periodic structures, the basis of the MSA model. 

The Eudier Eq. (13) predates similar relationships noted by Martin and Hayes [40] as well as the more recent 
theoretical work by Herakovich and Baxter [4] who applied the generalized method of cells to study the 
influence of pore geometry on effective elastic properties. This method uses a “cubical” combination of 
rectangular subcells to approximate the shape of a spherical void and they conclude that for cubic packing of 
spherical pores: 

𝐸𝐸p = 𝐸𝐸0(1− 1.15𝑃𝑃2/3) (14) 

The difference in coefficients in Eqs. (13) and (14) is due in part to this cubical approximation. 

Analyses by Rice [30] incorporate the MSA models introduced by Knudsen [17] to describe relative strength as a 
function of volume fraction porosity. Rice concludes that the exponential relationship of Spriggs’ Eq. (9), and the 
analogous Eq. (12) for larger values of porosity, accurately characterizes Young’s modulus as a function of 
volume porosity. Rice maintains that these equations are reasonable approximations of actual models of stacked 
pores within a matrix, the exponents in these equations have been experimentally determined and that a single 
parameter, m in Eq. (9) and r in Eq. (12), can be readily correlated with pore character. However, Roberts and 
Garboczi [41] are critical of the MSA model as this method uses “purely geometrical reasoning to predict the 
elastic moduli based upon the weakest points within the structure.” They maintain that the microstructure that 
corresponds to the MSA predictions “is not exactly known” and that “MSA models do not provide quantitative 
agreement” with the moduli of the microstructures studied. They add that while “semiempirical relations 
generally provide a reasonable means of describing data, extrapolating results, and comparing data among 
materials… they lack a rigorous connection with microstructure, [and thus] offer neither predictive nor 
interpretive power.” Roberts and Garboczi [41] maintain that Young’s modulus is related to the porosity through 
the empirical equation: 

𝐸𝐸p = 𝐸𝐸0[1− (𝑃𝑃/𝑡𝑡)]𝑠𝑠 (15) 

where the constants s and t are empirically determined parameters (e.g., by fitting simulation results or 
experimental data) and are dependent on the microstructure of the solid material. With appropriate correlation 
parameters, their study demonstrates that this equation can be applied to porous ceramics (P < 0.40 typically) 
with different morphologies including randomly placed spherical pores, solid spheres, and ellipsoidal pores and 
may be used as an interpretive tool when the microstructures are unknown. 

Additional property–porosity relationships 
Paul [42] notes that the simplest material property–porosity relationship that satisfies the boundary conditions 
is a special case of the “rule of mixtures” for two-phase solids, which is based on the assumption that both 
materials contribute to the stiffness of the composite in proportion to their respective moduli and fractional 
volumes: 

𝐸𝐸p = 𝐸𝐸1𝑃𝑃 + 𝐸𝐸2(1 − 𝑃𝑃) (16) 

where E 1 and E 2 are the Young’s moduli of the constituent materials of the composite and P is the volume 
fraction of material 1. Equation (16) provides an upper bound on the elastic modulus E p in cases where both 



constituent materials (phases) have the same Poisson’s ratio [42]. When material 1 is a void, then E 1 = is 
zero, P becomes the volume porosity and Eq. (16) then reduces to: 

𝐸𝐸p = 𝐸𝐸0(1− 𝑃𝑃) (17) 

which is a special case of the Dewey Eq. (1). 

Paul also derived an approximate solution for E p based upon a model of a cube-shaped inclusion when normal 
uniform stress is applied at the boundary: 

𝐸𝐸p = 𝐸𝐸0(1− 𝑃𝑃2/3)/(1− 𝑃𝑃2/3 + 𝑃𝑃) (18) 

Although empirical results are not quantified in Ref. [42], Paul concludes that this equation “seems to correlate 
[visually] the experimental data [for cobalt inclusions] quite well.” Ishai and Cohen [43] used the same model 
(i.e., a cubic inclusion within a cubic matrix) with a uniform normal displacement applied at the boundary to 
obtain: 

𝐸𝐸p = 𝐸𝐸0(1− 𝑃𝑃2/3) (19) 

which describes experimental data for porous epoxies with volume porosity less than 30 %. They suggest that 
the approximate lower and upper limits of the effective Young’s modulus given by Eqs. (18) and (19), 
respectively, yield a much narrower band than that given by more rigorous theoretical solutions. Their 
experimental results indicate that Eq. (19) more closely describes the data than the theoretical solutions of Paul 
and Hashin [43]. 

Martin and Haynes [40] further modified this relationship to include a factor u, a constant dependent upon “the 
average void properties of the model (variable for different types of porosity)”: 

𝐸𝐸p = 𝐸𝐸0(1− 𝑢𝑢𝑃𝑃2/3) (20) 

This relationship was “very convincingly confirmed [visually]” with values of u between 1.3 and 2.5 for alumina, 
bone, and gypsum. However, they acknowledge that empirically derived equations are a “blind alley… in regard 
to the insight it gives the user…” 

Hashin [5] recognized that while the bounds proposed by Paul have the advantage of being exact, they are 
generally too broadly separated to give a good estimate of the normalized Young’s modulus, defined 
as E porous/E solid, of most composite materials. Rice [7] along with Boccaccini and Fan [44] attribute to Hashin [5] 
the equation for the upper bound: 

𝐸𝐸p ≤ 𝐸𝐸0(1 − 𝑃𝑃)/(1 + 𝑤𝑤𝑤𝑤) (21) 

where 

𝑤𝑤 = [(1 + 𝜈𝜈0)(13− 15𝜈𝜈0)]/2(7− 5𝜈𝜈0) (22) 

for the case in which the voids are spherical. Hashin [5] also proposed an equation for a lower bound on the 
effective modulus but acknowledged that “in such extreme cases as empty cavities,…[these] bounds are not 
close enough to give a good estimate of the effective moduli” since the gap between the bounds increases with 
the difference in the elastic properties of the two phases. Hashin [45] notes that these bounds are of practical 
value for a phase stiffness ratio <10 and can obviously not provide good estimates for extreme differences in 
stiffness such as an empty phase (or porous medium). Because the range of the Hashin bounds makes them of 
limited practical utility for porous solids applications, Ramakrishnan and Arunachalam [46] applied a “correction 
factor” to the bulk and shear moduli and proposed a relationship for Young’s modulus that satisfies “all of the 



limiting conditions of zero porosity and a totally porous solid”. They proposed the following relationship for 
porous solids with spherical voids distributed randomly: 

𝐸𝐸p = 𝐸𝐸0(1− 𝑃𝑃)2/(1 + 𝑦𝑦𝑦𝑦) (23) 

where 

𝑦𝑦 = 2 − 3𝜈𝜈0 (24) 

and noted that this equation is restricted “exclusively [to] porous solids and [is not] a special case of two phase 
materials” [2]. This equation was compared to experimental data for MgO, MgAl2O3, and Sm2O3 with porosity 
values ranging from 5 to 40 %, resulting in discrepancies in predicted moduli of <20 %, comparable to the scatter 
in the experimental data itself. These data were chosen as these fully dense materials exhibit a broad range of 
Poisson’s ratios (ν = 0.18–0.324). Mondal et al. [47] applied Eq. (23) to closed-cell aluminum foam with 
porosities ranging from 30 to 80 %, demonstrating close agreement with the experimental data over the entire 
range of porosity with a maximum variation between calculated and experimental results of approximately 10 at 
30 % porosity. 

Wang and Tseng [1] extended the Hashin Eqs. (21) and (22) by considering the interaction effects between 
pores. The resulting equations are complicated second-order functions of the bulk modulus, Poisson’s ratio, 
shear modulus, and volume porosity that predicts values for Young’s modulus between the upper bound of the 
Hashin model and the Ramakrishnan model and agrees visually with experimental data up to ~40 % porosity. 

To assess the effect of pore variables on mechanical properties, Boccaccini [48] derived an equation for the 
Young’s modulus of a porous body from the pore content, shape, and orientation based on an analytical model 
for composite materials by Mazilu and Ondracek [49]. This equation was then extended to the full porosity 
range, resulting in the relationship 

𝐸𝐸p = 𝐸𝐸0(1− 𝑃𝑃2/3)1.21𝑆𝑆 (25) 

where 

𝑆𝑆 = (𝑧𝑧/𝑥𝑥)1/3�1 + [(𝑧𝑧/𝑥𝑥)−2 − 1]cos2𝜑𝜑 (26) 

and z/x is the mean axial ratio (polar or rotational axis/equatorial diameter) of the spheroidal pores, φ is the 
angle between the axes of symmetry of the spheroids and the stress direction; cos2 φ is an orientation factor. 
The ratio z/x = 1 for spheres; for oblate spheroids z/x < 1 and z/x > 1 for prolate spheroids [49]. Although this 
equation was proposed to be valid across the entire porosity range, the equation has not been verified 
experimentally for porosities greater than 40 % [50]. 

To better compare the various relationships that claim to quantify or predict mechanical properties (e.g., 
Young’s modulus) as a function of porosity, the equations detailed in the preceding paragraphs are summarized 
in Table 1 and Fig. 2. The normalized modulus (E p/E 0) versus volume porosity curves depicted in Fig. 2 are based 
on parameter values noted by the respective researcher with supplemental curves shown for those relationships 
that specify a range of parameter values. 



Table 1 Summary of relationships for normalized Young’s moduli of porous materials (E p/E 0) 

General equation form Researcher Years Ref % P Comment 
Linear equations      
E p/E 0 = 1 − aP Dewey 1947 [6]      

Gatto 1950 [7]   With a = 2.36 or 2.636 per Rice  
Fryxell and Chandler 1964 [8] 2–17 With a ≈ 1.9  
Hasselman and 
Fulrath 

1964 [9] <2.5 Attributes calculation of m to Dewey, MacKenzie and 
Hashin; a = 3(9 + 5ν 0)(1 − ν 0)/[2(7 − 5ν 0)]  

Rossi 1968 [11] ≤10 Same as the Hashin eqn at low 
porosity; a = (1 − ν 0)(27 + 15ν 0)/[2(7 − 5ν 0)] 

Power equations      
E p/E 0 = (1 − jP)i Bal’shin 1949 [16] unk Only if j = 1 (and i ranges from 3 to 6); for strength not 

modulus  
McAdam 1951 [18] 0–40 If j = 1 and i = 3.4  
Phani et al. 1986–88 [19–23] 5–40 1 ≤ j ≤ 3.85 for spherical particles; i ranges from 2 to 3  
Wagh et al. 1993 [24] 0–60 j = 1; presents empirical data with i range from 2 to 4  
Maitra and Phani 1994 [25] 0–65 Restates Phani et al.; j = 1 and i ranges from 2 to 4 

E p/E 0 = 1 − 𝑢𝑢𝑃𝑃2/3 Eudier 1962 [39] 0–50 Only if u = 1.21  
Ishai and Cohen 1967 [43] 0–30 Only if u = 1  
Martin and Haynes 1971 [40] 0–50 u ranges from 1.3 to 2.5  
Herakovich and 
Baxter 

1999 [4] 0–50 u = 1.15 

E p/E 0 = [1 − (P/Q)]KQ Bert 1985 [12] 0–20 K is the stress concentration factor (K = 2 for spheres) 
and Q is the maximum porosity possible 

E p/E 0 = (1 − 𝑃𝑃2/3)1.21S Boccaccini 1997 
1999 

[44] 
[51] 

0–40 S = (𝑧𝑧/𝑥𝑥)1/3 (1 + [(z/x)−2 − 1] cos2𝜑𝜑)1/2 where z/x is the 
mean axial ratio (polar axis/equatorial diameter) of the 
spheroidal pores 

E p/E 0 = (1 − 𝑃𝑃2/3)/(1 − 
𝑃𝑃2/3 + P) 

Paul 1960 [42] – For inclusions of cubic shape 

E p/E 0 = (1 − dP + gP 2) MacKenzie 1950 [10] –    
Chung 1963 [13] – Cites MacKenzie/Gatto as source for this eqn  
Spinner et al. 1963 [15] 0–40 Presents data for 2.7 ≤ d ≤ 3.3 and 1.3 ≤ g ≤ 1.5 

E p/E 0 = [1 − (P/t)]S Roberts and 
Garboczi 

2000 [41] 0–50 t and s are “empirical correlation parameters” 

Exponential equations      



E p/E 0 = exp(−mP) Duckworth/Ryshke
witch 

1953 [28, 29] 0–50 m “has a value of about 7 for all experimental data on 
hand… appears to be independent of pore size”; for 
strength not modulus  

Knudsen 1959 [17] 5–31 For strength not modulus  
Spriggs 1961 [32] 0–37 For open and closed pores; m ranges from 2.7 to 4.3  
Knudsen 1962 [33] 0–40 Presents data to support m = 3.95  
Rice 1977 [7] 0–40 Restates Knudsen 

E p/E 0 = 1 − exp(−r{1 − P}) Rice 1976 [38] >50 For pores; r ≈ 0.5 
E p/E 0 = exp[−(nP + qP 2)] Wang, J.C. 1984 [35, 36] 0–32    

Panakkal et al. 1990 [37] 0–22   
Other equations      
E p/E 0 = (1 − P)/(1 + wP) Hashin 1962 [5] – w = [(1 + ν 0)(13 − 15ν 0)]/2(7 − 5ν 0) for spherical 

voids; w ≈ 1.0 for metals  
Wang, L. and Tseng 2003 [1] 0–50 Same eqn as Hashin if inter-pore interaction is neglected 

E p/E 0 = 1 + [AP/(1 − AP − P
)] 

Hasselman 1962 [34] 0–16 A = empirical constant; summarizes data for A = −4 

E p/E 0 = (1 − P)2/(1 + yP) Ramakrishnan 1990 
1993 

[46] 
[2] 

5–40 y = 2 − 3ν 0 
 

Mondal et al. 2007 [47] <80 For closed-cell foams 
 



Fig. 2 

 
A graphical comparison of normalized modulus (E p/E 0) as a function of volume porosity for the various porosity 
equations (Color figure online) 

With the exception of Rossi [11] and Boccaccini [48], the task of detailing and quantifying the influence of pore 
structure and arrangement within the matrix material on effective moduli has been largely ignored or received 
scant attention to date. 

Conclusions 
Despite the extensive body of research represented by the property–porosity relationships summarized herein, 
most of these equations are limited in predictive ability. In addition, as noted by Rice, “few investigators 
studying the dependence of elastic properties on porosity present anything more than density, i.e., average 
porosity data,” when pore shape can significantly alter these relationships and invalidate the results [7]. 
Moreover, most experimental studies of porous materials do not specify accurate quantitative descriptions of 
the porosity structure for rigorous validation of theoretical approaches [48]. These limitations adversely affect 
the utility of a microstructure-property correlation and its ability to predict the property from microstructural 
measurements for design purposes [51]. 

Although the development of equations to predict mechanical properties, specifically Young’s modulus, of 
porous materials has been investigated often over the past six decades, there remains a lack of definitive 
correlation between microstructure of a porous body and the resulting moduli. While these equations provide a 
means of describing data and comparing results for different materials, the equations are unable to predict 
moduli to reasonable degree of engineering certainty. Wide disparity in the predicted Young’s moduli of porous 
materials that may result as implicit in each equation are theoretical, analytical, and/or empirical assumptions. 
The application of these equations to the fabrication of end-use materials and products that incorporate 
engineered porosity requires a more robust relationship between microstructure, porosity characteristics, and 
the associated mechanical behavior. With such capabilities currently available, the results of the present review 
suggest that future research might include: (1) solid modeling of specific non-random ordering of pores of 
defined size, shape, orientation, and arrangement within a physical construct; (2) subsequent finite element 
analysis of these solid models that incorporate the predicted engineering moduli; (3) fabrication of physical 
constructs incorporating various ordered porous microstructures; and (4) experimental testing of the physical 
constructs with comparison to finite element analyses to assess the accuracy of the predictive equations in 
capturing changes in the ordered microstructure. 

The recent advances in additive manufacturing and the resulting ability to fabricate end-use components which 
incorporate engineered porosity with deliberate, porous microstructure design require validated predictive 

https://link.springer.com/article/10.1007/s10853-013-7237-5/figures/2


equations for Young’s modulus over a porosity range of 20–50 % as the relationships presented in the literature 
yield widely disparate results over this range. This review of current data and porosity-property relationships 
indicates that predictive equations which link pore geometry, orientation, and pore arrangement 
characterizations with fundamental mechanical properties over a wide porosity range do not yet exist. 
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