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Abstract 
Aortic flow and pressure result from the interactions between the heart and arterial system. In this work, we 
considered these interactions by utilizing a lumped parameter heart model as an inflow boundary condition for 
three-dimensional finite element simulations of aortic blood flow and vessel wall dynamics. The ventricular 
pressure–volume behavior of the lumped parameter heart model is approximated using a time varying elastance 
function scaled from a normalized elastance function. When the aortic valve is open, the coupled multidomain 
method is used to strongly couple the lumped parameter heart model and three-dimensional arterial models 
and compute ventricular volume, ventricular pressure, aortic flow, and aortic pressure. The shape of the velocity 
profiles of the inlet boundary and the outlet boundaries that experience retrograde flow are constrained to 
achieve a robust algorithm. When the aortic valve is closed, the inflow boundary condition is switched to a zero 
velocity Dirichlet condition. With this method, we obtain physiologically realistic aortic flow and pressure 
waveforms. We demonstrate this method in a patient-specific model of a normal human thoracic aorta under 
rest and exercise conditions and an aortic coarctation model under pre- and post-interventions. 

Introduction 
Computational simulations of blood flow are used to study the cardiovascular system in a variety of 
applications31 including the study of the hemodynamics of healthy and diseased blood vessels,3,18,30 the 
design and evaluation of vascular medical devices,15,28 the planning of vascular surgeries, and the prediction of 
the outcomes of the surgeries.16,26,32 With advances in computing power and numerical methods, such 
simulations are being extensively used for applications where experimental data are limited or unavailable. 

However, due to the complex characteristics of the cardiovascular system, many challenges remain in 
quantifying realistic velocity and pressure fields. One of these challenges is the development of boundary 
conditions. Previously, we showed how the velocity and pressure fields of the same computational domain can 
change significantly depending on the choice of outflow boundary conditions.35 Outflow boundary conditions 
affect flow distribution, the range of the computed pressure, reflection and attenuation of the pressure wave, 
and the shape of the flow and pressure waveforms. In an effort to develop appropriate outflow boundary 
conditions, alternate methods to couple the computational domain with reduced-order zero-dimensional and 
one-dimensional analytic and numerical models have been proposed.5,16,19,35 We developed a new method, 
the coupled multidomain method, to couple outflow boundaries with simple analytic models such as a 
resistance, impedance, or 3-element Windkessel model, and obtained physiologically realistic flow rate and 
pressure fields in complex models.35 

In contrast to developments made in the area of outflow boundary conditions, little progress has been reported 
for the development of an inflow boundary condition despite the fact that proximal to the inflow boundary, 
there is also an upstream part of the cardiovascular system that interacts with the computational domain. 
Conventionally, a flow or pressure waveform obtained from experiments is utilized as an inflow boundary 
condition. In consequence, the bidirectional interactions between the downstream computational domain and 
the upstream portion of the cardiovascular system are ignored. Furthermore, when using prescribed flow or 
pressure waveforms, the utilized inflow boundary condition is only valid for one particular physiologic condition. 



To simulate a different physiologic condition, a different inflow boundary condition must be assigned. Without 
experimental data available for different physiologic conditions, a different flow or pressure waveform needs to 
be constructed based on available literature data. 

Fundamentally, aortic blood flow and pressure result from the interactions between the heart and arterial 
system. The aortic flow and pressure change as the cardiac properties change and vice versa. To study how the 
changes in cardiac properties and arterial system influence each other, the inflow boundary condition should 
model the interactions between them. For example, to treat a failing heart, physicians can either provide the 
patient with an inotrope to enhance the contractility of the heart or vasodilators, which reduce the afterload of 
the heart.1 These treatment options will change both the aortic flow and pressure and the cardiac properties 
due to the interactions between them. To predict the outcome of the treatment satisfactorily, it is essential to 
understand the interactions between the heart and arterial system. 

A variety of heart models ranging from lumped parameter to three-dimensional models have been developed to 
simulate the relaxation, filling, contraction, and ejection phases of the heart.10,11,17,21,24,29 In particular, 
lumped parameter heart models approximate global characteristics of the heart using simple hydraulic models 
of a resistance, capacitance, inductance, pressure source, and diode, resulting in time-varying ordinary 
differential equations of flow and pressure. Several previous studies have utilized these lumped parameter heart 
models to calculate aortic flow and pressure using lumped parameter, one-dimensional and three-dimensional 
models of the aorta.6,16,17,24 However, for previous work with three-dimensional aortic models, the coupling 
between the computational domain and lumped parameter heart model was explicit and the simulations were 
computed with the assumption of rigid vessel walls. 

In this paper, we used the coupled multidomain method35 to implicitly couple a lumped parameter heart 
model24 to a subject-specific three-dimensional finite element model of the aorta. We utilized an augmented 
Lagrangian method to enforce constraints on the shape of the velocity profiles on the inlet boundary and outlet 
boundaries that experience retrograde flow.12 Using this implicit coupling method along with the constraints on 
the velocity profile shape, we greatly increased the realism of three-dimensional aortic blood flow simulations 
coupled to a lumped parameter heart model. We also incorporated deformable wall properties of the blood 
vessels using the coupled momentum method.4 

This paper is organized as follows. First, we present a method for strongly coupling a lumped parameter heart 
model to a three-dimensional finite element model of the aorta. We then demonstrate this method by applying 
it to simulations of blood flow in a subject-specific thoracic aorta model to study changes in cardiac properties 
and aortic flow and pressure for rest and light exercise conditions. Finally, we demonstrate the utility of this 
method by applying it to compute the reduction in cardiac load when comparing the pre-intervention and post-
intervention hemodynamic conditions of a subject-specific thoracic aorta model with an aortic coarctation. 

Methods 
Three-Dimensional Finite Element Simulations of Blood Flow and Vessel Wall Dynamics 
Blood flow in the large vessels of the cardiovascular system can be represented as a Newtonian fluid.18 The 
vessel walls can be approximated using a linear elastic model within the physiologic range of pulse pressure. The 
governing equations for the fluid consist of the incompressible Navier–Stokes equations, whereas the motion of 
the vessel wall is governed by the elastodynamics equations. Initial and boundary conditions as well as fluid–
solid interface conditions are required for the fluid and solid domains. In the method described herein, we 
assume a fixed fluid mesh and small displacements of the vessel wall. 



For fluid domain Ω with its boundary Γ and solid domain Ωs with its boundary Γs, the following equations are 
solved for velocities v⃗ ,v→, pressure p, and wall displacement u⃗ u→.4 
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Neumann boundary condition: 
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Density ρ and dynamic viscosity μ of the blood and density ρs of the vessel walls are assumed to be constant. 𝐶𝐶
∼

 is 

a fourth-order tensor of material constants. Additionally, 𝑓𝑓
→

 is the external body force on the fluid domain, 

and 𝑓𝑓
→
s is the external body force on the solid domain. 



The boundary Γ of the fluid domain is divided into Dirichlet boundary portion Γ g and Neumann boundary portion 
Γ h . These boundaries satisfy (Γ𝑔𝑔 ∪ Γℎ) = Γ and Γ𝑔𝑔 ∩ Γℎ = 𝜙𝜙.. Note that for this study, when the aortic valve is 
open, the inlet boundary is included in the Neumann boundary portion Γ h , not in the Dirichlet boundary portion 
Γ g to enable coupling with a lumped parameter heart model. Therefore, the Dirichlet boundary portion Γ g only 
consists of the inlet and outlet rings of the computational domain when the aortic valve is open. In what follows, 
these rings are fixed in time and space.4 

The Neumann boundary portion Γ h consists of the inlet and outlet surfaces of the computational domain when 
the aortic valve is open. We divide the Neumann boundary portion Γ h into inlet surface Γin and the set of all the 
outlet surfaces, Γ h ′, such that (Γin ∪ Γℎ′) = Γℎ and Γin ∩ Γℎ′ = 𝜙𝜙.. For the outlet boundaries, we utilize the 
coupled multidomain method35 to prescribe the impedance of lumped parameter models approximating the 
downstream vasculature networks of the cardiovascular system not included in the computational model. The 
lateral surface of the fluid domain coincides with a membrane approximation for the vessel wall as modeled 
using the coupled momentum method for fluid–solid interaction.4 In this work, the coupled multidomain 
method is used on inlet surface Γin to couple a lumped parameter heart model to the computational domain. 
Similar to the treatment of the outflow boundary conditions, in this method, a lumped parameter heart model is 
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Then, the resulting weak form is as follows: 

�{𝑤𝑤
→
⋅ (𝜌𝜌𝑣𝑣

→
,𝑡𝑡 + 𝜌𝜌𝑣𝑣

→
⋅ ∇𝑣𝑣

→
− 𝑓𝑓

→
) + ∇𝑤𝑤

→
: (−𝑝𝑝𝐼𝐼

∼
+ 𝜏𝜏

∼
)}

Ω
𝑑𝑑𝑥𝑥
→
−�  

Ω
∇𝑞𝑞 ⋅ 𝑣𝑣

→
𝑑𝑑𝑥𝑥
→

+𝜁𝜁 � {𝑤𝑤
→
⋅ 𝜌𝜌s𝑣𝑣

→
,𝑡𝑡 + ∇𝑤𝑤

→
:𝜎𝜎
∼
s(𝑢𝑢
→

)}
Γs

𝑑𝑑𝑑𝑑 − 𝜁𝜁� 𝑤𝑤
→

∂Γℎ
⋅ ℎ
→
s𝑑𝑑𝑑𝑑 + �  

Γs
𝑞𝑞𝑣𝑣
→
⋅ 𝑛𝑛
→
𝑑𝑑𝑑𝑑

−� 𝑤𝑤
→

Γℎ
′

⋅ ℎ
→
𝑑𝑑𝑑𝑑 + �  

Γℎ
′
𝑞𝑞𝑣𝑣
→
⋅ 𝑛𝑛
→
𝑑𝑑𝑑𝑑 + �  

Γ−Γℎ
𝑞𝑞𝑣𝑣
→
⋅ 𝑛𝑛
→
𝑑𝑑𝑑𝑑

−� 𝑤𝑤
→

Γin
⋅ (𝑀𝑀

∼𝑚𝑚
(𝑣𝑣
→

,𝑝𝑝) + 𝐻𝐻
∼𝑚𝑚

) ⋅ 𝑛𝑛
→
𝑑𝑑𝑑𝑑 + �  

Γin
𝑞𝑞(𝑀𝑀

→
𝑐𝑐(𝑣𝑣
→

,𝑝𝑝) + 𝐻𝐻
→
𝑐𝑐) ⋅ 𝑛𝑛

→
𝑑𝑑𝑑𝑑 = 0

 

(7) 

where ζ is the wall thickness. The boxed terms now couple the lumped parameter heart model to the 
computational domain using the operators, M and H that are specific to the lumped parameter heart model, 
which is described below. 

A stabilized semi-discrete finite element method was employed based on the ideas developed in Brooks and 
Hughes,2 Franca and Frey,7 Taylor et al.,33 and Whiting et al.36 

Time-Varying Elastance Function 
The contraction and relaxation of a ventricle is approximated using a time-varying elastance 
function.25,29 Elastance is the instantaneous ratio of ventricular pressure P v (t) and ventricular volume V v (t) 
according to the following equation: 



𝑃𝑃𝑣𝑣(𝑡𝑡) = 𝐸𝐸(𝑡𝑡) ⋅ [𝑉𝑉𝑣𝑣(𝑡𝑡) − 𝑉𝑉0] 

(8) 

Here, V 0 is a constant correction volume, which is recovered when the ventricle is unloaded. 

Each subject has a different time-varying elastance function depending on his or her contractility, vascular 
loading, heart rate, etc. However, if the elastance function is normalized with a maximum elastance value, 
and t max, the time difference between the onset of systole and the time at the maximum elastance value, the 
same normalized elastance function is obtained regardless of contractility, vascular loading, heart rate, and 
heart diseases.25,29 This normalized elastance function is scaled to approximate the measured cardiac output, 
pulse pressure, and contractility of each subject. 

Lumped Parameter Heart Model Used to Define Operators 
A lumped parameter heart model coupled to an inlet surface is shown in Fig. 1.24 For this study, we only 
consider the left side of the heart, but the same method can be applied to the right side of the heart. The heart 
model consists of constant left atrial pressure P LA, mitral valve, atrio-ventricular valvular resistance R A-V, atrio-
ventricular inductance L A-V, aortic valve, ventriculo-arterial valvular resistance R V-art, ventriculo-arterial 
inductance L V-art, and left ventricular pressure. The left ventricular pressure is modeled with time-varying 
elastance E(t). An atrio-ventricular inductance L A-V and ventriculo-arterial inductance L V-art were added to the 
model proposed by Segers et al.24 in order to simulate the inertial effects of blood flow. 

 
Figure 1 Lumped parameter heart model.24 
 

In systole, when the left ventricular pressure rises above the aortic pressure, the aortic valve opens and enables 
the interactions between the ventricle and the arterial system (Fig. 2). During this phase, aortic flow and 
pressure arise naturally through the interactions between the lumped parameter heart model and the three-
dimensional finite element model of the aorta. In diastole, when the aortic flow is reversed, the aortic valve 
closes. There is no aortic inflow from the ventricle during this phase. Ventricular pressure and volume are 
determined independently of the three-dimensional finite element model of the aorta, and are a function of the 
time-varying elastance function and the lumped parameter heart model. The ventricular pressure decreases as 
the ventricle is relaxed in diastole. When the ventricular pressure falls below the left atrial pressure, the mitral 
valve opens and the left atrial flow and left ventricular pressure are determined by the interactions between the 
left ventricle and the left atrium. The mitral valve closes when the left atrial flow is reversed (Fig. 2). 

https://link.springer.com/article/10.1007/s10439-009-9760-8/figures/1


 
Figure 2 Pressure–volume loop of the left ventricle for a single cardiac cycle. Note that a weak pressure 
boundary condition on the inlet is assigned only when the aortic valve is open. When the aortic valve is closed, a 
zero velocity boundary condition is applied on the inlet 
 

When the aortic valve is open, aortic flow is a function of the aortic pressure and ventricular pressure. 
Moreover, aortic flow is coupled to the ventricular volume as the ventricle ejects blood to the aorta. Thus, using 
the lumped parameter heart model described above, aortic flow Q(t) is coupled to aortic pressure P(t), 
ventricular volume V v (t), and the time-varying elastance function E(t) through the following equation: 
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(9) 

where t ao is the time the aortic valve opens. 

Using this equation, the operators M and H are defined as follows: 
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(10) 

Using these operators, the traction and velocity fields of the inlet surface of the aortic model are now strongly 
coupled to the lumped parameter heart model and solved implicitly while the aortic valve is open. 

When the mitral valve is open, atrial flow is a function of left atrial pressure P LA and the left ventricular pressure, 
which is coupled to the left ventricular volume. The atrial flow Q LA(t) is computed through the following 
equation: 

𝑃𝑃LA = 𝐸𝐸(𝑡𝑡) ⋅ {𝑉𝑉𝑣𝑣(𝑡𝑡) − 𝑉𝑉0} + 𝑄𝑄LA(𝑡𝑡) ⋅ 𝑅𝑅A−V +
𝑑𝑑𝑄𝑄LA
𝑑𝑑𝑑𝑑

⋅ 𝐿𝐿A−V

= 𝐸𝐸(𝑡𝑡) ⋅ {𝑉𝑉𝑣𝑣(𝑡𝑡mo) + �  
𝑡𝑡

𝑡𝑡mo

𝑄𝑄LA(𝑠𝑠)𝑑𝑑𝑑𝑑 − 𝑉𝑉0} + 𝑄𝑄LA(𝑡𝑡) ⋅ 𝑅𝑅A−V +
𝑑𝑑𝑄𝑄LA
𝑑𝑑𝑑𝑑

⋅ 𝐿𝐿A−V
 

(11) 

https://link.springer.com/article/10.1007/s10439-009-9760-8/figures/2


where t mo is the time the mitral valve opens. 

Opening and Closure of the Aortic Valve 
The heart model is always coupled to the three-dimensional finite element model of the aorta but the 
interactions between the heart model and the aorta occur only when the aortic valve is open. In diastole and 
part of systole, the aortic valve remains closed, thus, there is no flow from the ventricle. To accommodate this 
change, the inlet boundary is switched from a Neumann boundary to Dirichlet boundary when there is no flow 
(Fig. 2). When the ventricular pressure rises above the aortic pressure again, the inlet boundary changes back 
from a Dirichlet boundary to a Neumann boundary. Finally, the boundary changes back to a Dirichlet boundary 
when there is retrograde aortic flow. 

Constraints on the Shape of the Velocity Profiles of the Inlet and the Outlets with 
Retrograde Flow 
In our approach, we weakly enforce boundary conditions such that the normal traction is a function of the flow 
rate using the coupled multidomain method.35 If the shape of the inlet velocity profile is free of constraints, it 
often results in an irregular profile prone to numerical instability. To resolve this issue, an augmented Lagrangian 
method was used to weakly enforce a shape of the inlet velocity profile as was done for retrograde outlet flows 
in Kim et al.12 The following axisymmetric velocity profile is prescribed after constructing a circular shape for 
the inlet surface: 

𝑣𝑣𝑛𝑛(⋅, 𝑡𝑡) = 𝑣𝑣(𝑡𝑡) ×
𝑛𝑛 + 2
𝑛𝑛

�1− �
𝑟𝑟
𝑅𝑅
�
𝑛𝑛
� 

(12) 

where v n is a normal velocity, v¯(t)v¯(t) is the mean normal velocity, r is the distance between a point on the 
constrained surface and the center of the surface and R is the radius of the constrained surface. In-plane 
velocities are zeroed out weakly using additional constraints. A profile order n is chosen to approximate a 
parabolic (n = 2) or increasingly flat velocity profile based on the measured inflow waveform, inlet radius, and 
cardiac cycle. If the outlets have retrograde flow, constraints with the same profile order are enforced on the 
shape of the outlet velocity profiles to achieve a robust algorithm. The assumption of circular faces and the 
above choice of profile function were made without loss of generality. 

Setting Up Initial Conditions Using Reduced-Order Models 
To determine an appropriate initial condition, the three-dimensional finite element model of the aorta was 
replaced with a 3-element Windkessel model and run until a converged solution was obtained. Based on this 
converged solution describing a full cardiac cycle, one time point was selected and set as an initial condition for 
the lumped parameter heart model and the aortic flow and pressure of the three-dimensional finite element 
model of the aorta. 

Choice of the Parameter Values of the Lumped Parameter Heart Model 
The parameter values of the lumped parameter heart model were optimized to approximate the measured 
cardiac output and pulse pressure. Initially, the following parameter values were chosen based on measured 
values and literature data.17,23 



𝑡𝑡max = {
𝑇𝑇
3

, at rest, where 𝑇𝑇 is the measured cardiac cycle.

0.5𝑇𝑇, during exercise.

𝐸𝐸max =
𝛾𝛾 ⋅ 𝑅𝑅
𝑇𝑇

, where 𝑅𝑅 is the total resistance of the systemic circulation and 1 ≤ 𝛾𝛾 ≤ 2.

𝑉𝑉0 = 𝑉𝑉esv −
0.9𝑃𝑃sys
𝐸𝐸max

, where 𝑉𝑉esv is an end-systolic volume and 𝑃𝑃sys is a systolic pressure.

𝑅𝑅V−art = 10dyness/cm5

𝑅𝑅A−V = 10dyness/cm5

𝐿𝐿V−art = 0.6879dyness2/cm5

𝐿𝐿A−V = 0.6670dyness2/cm5

 

E max and V 0 were modified iteratively to minimize the difference between the computed cardiac output and 
pulse pressure and the measured cardiac output and pulse pressure based first on the simulation results of the 
lumped models and then the three-dimensional finite element solver. The iterations were continued until the 
computed cardiac output, pulse pressure, and flow distribution to each outlet matched the target subject-
specific data within 5.0% relative difference. 

Simulation Details 
For the simulations presented here, we assumed that blood can be described as a Newtonian fluid with a density 
of 1.06 g/cm3 and a dynamic viscosity of 0.04 dynes/cm2 s. As a first approximation, we assumed that the blood 
vessel walls can be modeled as a linear elastic material with Poisson’s ratio of 0.5, a wall density of 1.0 g/cm3, 
and a wall thickness of 0.1 cm. The values of these material parameters are all physiologically reasonable. We 
utilized anisotropic finite element mesh generation techniques with refinement on the exterior surfaces and five 
boundary layers.20 The solutions were run until the relative changes in pressure fields at the inlet and the 
outlets were smaller than 1.0% compared to the solutions from the previous cardiac cycle. 

The computer models used in the simulations were constructed from magnetic resonance imaging data. Each 
model started from the root of the aorta, ended above the diaphragm, and included the main upper branch 
vessels: right subclavian, left subclavian, right carotid, and left carotid arteries. For the inlet, we coupled the 
lumped parameter heart model described before. For the outlets, we assigned three-element Windkessel 
models to represent the downstream vasculature networks that are absent in the three-dimensional 
computational domains. Flow distribution to each outlet was based on data measured using cine phase contrast 
magnetic resonance imaging (cine PC-MRI) and literature data.37 Boundary conditions were adjusted to match 
both the flow distribution and the measured brachial artery pulse pressure.14,27 For a normal thoracic aorta 
model, we attempted to match the brachial pulse pressure at the level of the descending thoracic aorta based 
on the experiments conducted by Hope et al.,9 which demonstrated that brachial pressure is in the same range 
of the aortic pressure at the level of the diaphragm for normal subjects. 

Results 
A Subject-Specific Thoracic Aorta Model at Rest and During Exercise 
In these simulations, we studied how cardiac properties change as the resistance of the lower extremities 
decreases due to the increase of flow demand during light exercise. A subject-specific thoracic aorta computer 
model of an eleven-year-old male subject was constructed (Fig. 3). Solutions were obtained using a 1,916,167 
element and 345,069 node mesh with a time step size of 0.16 ms to simulate a resting condition and 0.1 ms to 
simulate a light exercise condition. The shape of the velocity profiles of the inlet and of all the outlets were 
constrained to an axisymmetric shape with a profile order of seven. To simulate light exercise, the resistance 



value of the descending thoracic aorta was decreased in order to increase flow to the lower extremities. The 
cardiac cycle was shortened to simulate increased heart rate until the systolic pressure matched the systolic 
pressure of the resting state in the thoracic aorta. For simplicity, the boundary conditions of the upper branch 
vessels were unchanged. The parameter values of the Windkessel models are shown in Fig. 3 along with the 
time-varying elastance function and the parameter values of the lumped parameter heart model. The same 
time-varying elastance function was used for both rest and light exercise conditions. 

 
Figure 3 Problem specification for simulations of blood flow in a normal thoracic aorta model under rest and 
exercise conditions 
 

Wall deformability was also modeled. A Young’s modulus of the vessel walls was chosen to be 
6.04 × 106 dynes/cm2 so that a maximum deformation of 11% was obtained based on cine PC-MRI data at the 
level of the ascending and descending thoracic aorta. The same value of Young’s modulus was used for the 
exercise simulation. The simulations were run for a total of six cardiac cycles until the flow rate and pressure 
fields yielded periodic solutions. 

In Fig. 4, computed pressure and flow waveforms of the inlet and the outlets are shown for rest and exercise 
conditions. The pressure–volume loops of the left ventricle for both conditions are also shown. The measured 
cardiac output of the subject was 3.4 L/min for the resting condition. The computed cardiac output of the 
subject was 3.5 L/min for the resting condition and 6.4 L/min during exercise. These values for rest and exercise 
are within the normal cardiac indices for children when scaled to body surface area.22 The body surface area of 
this subject was 1.45 m2 and the cardiac index was 2.41 L/min/m2 for the resting condition and 
4.41 L/min/m2 during exercise. The estimated cardiac output based on these cardiac indices was 3.5 L/min for a 
resting condition and 6.4 L/min for an exercise condition, respectively. The measured brachial pulse pressure of 
the subject at rest ranged from 63 to 106 mmHg. The computed brachial pulse pressure of the subject ranged 
from 62 to 106 mmHg for the resting condition and from 65 to 103 mmHg for the light exercise condition. The 
computed left ventricular pressure ranged from 7 to 104 mmHg for the resting condition and from 8 to 
109 mmHg for the light exercise condition. The stroke volume was 56 cm3 for the resting condition and 
64 cm3 for the light exercise condition (see Fig. 4). Increase in the cardiac output was mainly due to the 
shortening of the cardiac cycle, not due to the increase of the stoke volume. The cardiac work over one cardiac 
cycle increases little as the stroke volume and the operating pressure range of the left ventricle does not 
increase much. However, the cardiac work over a fixed duration of time is greater for the light exercise condition 
resulting from the shortened cardiac cycle. 

https://link.springer.com/article/10.1007/s10439-009-9760-8/figures/3


 
Figure 4 Computed pressure and flow waveforms at the inlet and the outlet boundaries at rest and during 
exercise. Also shown are the corresponding pressure–volume loops of the left ventricle 
 

Figure 4 shows that the upper branch vessels experience retrograde flow in diastole. Retrograde flow to the 
upper branch vessels becomes severe in the light exercise condition even though the same boundary conditions 
were assigned to the upper branch vessels likely due to the increased flow demand to the descending thoracic 
aorta. The descending thoracic aorta has positive flow in diastole. Figure 4 also shows the pressure waveforms 
of the upper branch vessels and the descending thoracic aorta. The pressure waveform of the descending 
thoracic aorta decays faster during exercise compared to the resting condition. 

In Fig. 5, volume rendered velocity magnitudes are shown for peak systole, late systole, and mid-diastole in 
order to illustrate complex flow features in the thoracic aorta resulting from the high inertia of blood traveling 
through the arch and the presence of the great vessels. Note the different scales for mid-diastole. These 
complex flow features are more pronounced in late systole when the aortic flow is decelerating. For the light 
exercise condition, positive flow to the descending thoracic aorta in diastole resulted in persistent flow 
complexity compared to the resting condition (Fig. 5C and c). 

https://link.springer.com/article/10.1007/s10439-009-9760-8/figures/4


 
Figure 5 Volume rendered velocity magnitude in a normal thoracic aorta at three different time points at rest 
and during exercise. Note the different scales for mid-diastole 
 

Mean wall shear stress and oscillatory shear index for the resting condition and the light exercise condition are 
also plotted in Fig. 6. For the light exercise condition, mean wall shear stress increased as a higher flow was 
ejected from the left ventricle. Few zones with shear stress less than 10 dynes/cm2 remain with exercise. The 
oscillatory shear index for the light exercise condition was decreased in the descending thoracic aorta as the 
descending thoracic aorta had higher flow but increased in the upper branch vessels as these vessels 
experienced higher retrograde flow in diastole. 

https://link.springer.com/article/10.1007/s10439-009-9760-8/figures/5


 
Figure 6 Mean wall shear stress and oscillatory shear index of a normal thoracic aorta at rest and during exercise 
 

A Thoracic Aorta Model with an Aortic Coarctation at Pre-Intervention and Post-
Intervention 
In these simulations, we studied how the afterload changes as a coarctation in the descending thoracic aorta is 
removed. We constructed a subject-specific thoracic aorta model of a ten-year-old female subject with an aortic 
coarctation (Fig. 7). For the pre-intervention case, when the aortic coarctation is still present, the solutions were 
obtained using a 2,647,619 element and 475,866 node mesh with a time step size of 0.025 ms. Note that a small 
time step size was chosen to adequately resolve the complex flow features distal to the aortic coarctation. The 
shape of the velocity profiles at the inlet and all the outlets was constrained to an axisymmetric shape with a 
profile order of six. The parameter values of the Windkessel models are shown in Fig. 7 along with the time-
varying elastance function and the parameter values of the lumped parameter heart model. A constant Young’s 
modulus for the vessel wall was chosen to be 8.78 × 106 dynes/cm2 so that a maximum deformation of 10% was 
obtained. This matched the wall deformation at the level of the ascending and the descending thoracic aorta 
based on cine PC-MRI data. 

https://link.springer.com/article/10.1007/s10439-009-9760-8/figures/6


 
Figure 7 Problem specification for simulations of blood flow in a subject-specific thoracic aorta model with an 
aortic coarctation under pre-intervention and simulated post-intervention conditions. To highlight the effect of 
treatment of the coarctation, outlet boundary conditions are unchanged from the pre-intervention to post-
intervention state 
 

To simulate a post-intervention case, a “virtual surgery” was performed computationally by translating and 
joining the aorta proximal and distal to the coarctation using surgical guidelines.13 The solutions of the post-
intervention case were obtained using a 2,501,074 element and 449,968 node mesh with a time step size of 
0.13 ms. We ran two separate simulations for the post-intervention case. First, we maintained the same 
contractility of the left ventricle to simulate blood flow and pressure right after removing the coarctation in the 
descending thoracic aorta. Second, we decreased the maximum elastance value, representing the contractility 
of the left ventricle, until the computed cardiac output matched the cardiac output measured for the pre-
intervention case to approximate the autoregulatory mechanisms of the cardiovascular system. To highlight the 
effect of treatment of the coarctation, the outlet boundary conditions were unchanged from the pre-
intervention case to the post-intervention case. The same value of Young’s modulus was used for the post-
intervention simulation. For the pre-intervention and post-intervention cases, simulations were run for up to six 
cardiac cycles, until the flow rate and pressure fields yielded periodic solutions. 

In Fig. 8, computed flow and pressure waveforms of the inlet and outlets and pressure–volume loops of the left 
ventricle are shown for the pre-intervention case and two post-intervention cases. The measured cardiac output 
of the subject was 6.5 L/min for the pre-intervention case. The computed cardiac output of the subject was 
6.7 L/min for the pre-intervention case, 8.1 L/min for the post-intervention case with the same contractility of 
the left ventricle, and 6.5 L/min for the post-intervention case with the decreased contractility of the left 
ventricle. These values for the resting condition are within the normal cardiac output range for children with an 
aortic coarctation when scaled to body surface area. The body surface area for this patient was 0.93 m2 with the 
preoperative cardiac index of 7.18 L/min/m2 and the postoperative cardiac index of 6.98 L/min/m2.22 The 
cardiac output computed from these cardiac indices was 6.7 L/min for the pre-intervention case and 6.5 L/min 
for the post-intervention case. The measured brachial pulse pressure of the ten-year-old subject before the 
intervention ranged from 68 to 142 mmHg. The computed left subclavian pulse pressure of the subject ranged 
from 65 to 144 mmHg for the pre-intervention case, from 101 to 137 mmHg for the post-intervention case with 
the same contractility, and from 86 to 127 mmHg for the post-intervention case with the reduced contractility. 
The computed descending thoracic aortic pulse pressure of the subject ranged from 63 to 90 mmHg for the pre-
intervention case, from 100 to 130 mmHg for the post-intervention case with the same contractility, and from 
85 to 110 mmHg for the post-intervention case with the reduced contractility. The computed pulse of the left 
subclavian artery changed from 79 mmHg to 36 and 41 mmHg, respectively, as the resistance at the aortic 
coarctation was relieved. The maximum inflow rate increased as observed in Fig. 8. Also, the flow waveforms at 

https://link.springer.com/article/10.1007/s10439-009-9760-8/figures/7


the descending thoracic aorta demonstrate increased pulsatility as the coarctation is removed. Cardiac work was 
computed using a trapezoidal integration scheme. For the pre-intervention case, the computed cardiac work 
was 6900 mmHg cm3. However, after finding a new homeostatic state after the surgery, the computed cardiac 
work was 5900 mmHg cm3. The cardiac work of the left ventricle was therefore acutely reduced by 14% relative 
to the pre-intervention level. 

 
Figure 8 Computed pressure and flow waveforms at the inlet and selected outlet boundaries of an aortic 
coarctation model for pre-intervention and post-intervention conditions. Post-intervention case 1 represents 
the changes that would occur with relief of the aortic coarctation, but no change in contractility whereas post-
intervention case 2 models a decrease in contractility until the cardiac output matches that of the pre-
intervention case. Also shown are the corresponding pressure–volume loops of the left ventricle. Note the 
change in the slope shown on the pressure–volume diagram. This slope is related to the end systolic pressure–
volume relationship (ESPVR) and therefore represents the reduction in contractility achieved by relieving the 
aortic coarctation 
 

In Fig. 9, volume rendered velocity magnitudes are shown for peak systole, late systole, and mid-diastole for pre-
intervention case and the post-intervention case after reaching a new homeostatic state. Note the different 
scales for mid-diastole. High velocity is observed at the coarctation for the pre-intervention case. Flow below the 
aortic coarctation becomes chaotic, especially in the deceleration phase and this complex flow feature 
disappears slowly in diastole. 

https://link.springer.com/article/10.1007/s10439-009-9760-8/figures/8


 
Figure 9 Volume rendered velocity magnitude in a thoracic aorta with an aortic coarctation at three different 
time points for pre-intervention condition and post-intervention condition representing the new homeostatic 
state. Note the different scales for mid-diastole 

 

Figure 10 shows pressure contours for peak systole, late systole, and mid-diastole for pre-intervention case and 
the post-intervention case after reaching a new homeostatic state. Note the fact that pressure proximal to the 
coarctation is higher during the deceleration phase of systole than at peak systole. We can observe a large 
pressure loss in the pre-intervention case due to the coarctation of the aorta. The large pressure loss disappears 
for the two post-intervention cases. The operating pressure range is also higher for the pre-intervention case 
compared to the post-intervention case after reaching a new homeostatic state. 

https://link.springer.com/article/10.1007/s10439-009-9760-8/figures/9


 
Figure 10 Pressure contours in a thoracic aorta with an aortic coarctation at three different time points for pre-
intervention condition and post-intervention condition representing the new homeostatic state. Note the fact 
that pressure proximal to the coarctation is higher during the deceleration phase of systole than at peak systole 
 

Discussion 
We have successfully developed and implemented an inflow boundary condition that couples a lumped 
parameter heart model to the inlet of a three-dimensional finite element model of the aorta. We also used 
deformable wall properties developed in prior work to better represent flow and pressure waveforms. Because 
we considered deformable wall properties, when the aortic valve was open, the only Dirichlet boundary 
conditions were the inlet and outlet rings for each computational domain. While previous work found that flow 
simulations with few Dirichlet boundary conditions are unstable,8 our method is robust and stable due to the 
constraints on the shape of the velocity profiles at the inlet and the outlets of the computational domain. 

Using the lumped parameter heart model as an inflow boundary condition, we studied how changes in cardiac 
properties affect the arterial system and vice versa. We simulated two different physiologic conditions, first with 
a normal thoracic aorta model, and then with a thoracic aorta model with an aortic coarctation. 

For the normal thoracic aorta model, we simulated rest and light exercise conditions. To simulate a light exercise 
condition, we only shortened the cardiac cycle until we recovered the same systolic pressure after decreasing 
the resistance of the lower extremities. In reality, systolic pressure should be higher depending on the degree of 
exercise but in this simulated light exercise case, we did not consider the increase in the systolic pressure. From 
the simulation results, we observed that shortening the cardiac cycle can increase cardiac output significantly 
without changing the contractility of the heart, and still maintain physiologic pressures despite reductions in 
vascular resistance. We also observed that, during exercise, a faster pressure decay due to the lower resistance 
to flow in the lower extremities augments ejection of blood from the heart during late systole. Flow in the lower 
extremities increased significantly, causing higher retrograde flow in the upper branch vessels. For the aortic 
coarctation model, we computed afterload for the pre-intervention and post-intervention cases. As the 
coarctation was removed for the post-intervention case, the total resistance of the arterial system was reduced, 

https://link.springer.com/article/10.1007/s10439-009-9760-8/figures/10


relieving the afterload of the left ventricle and the contractility of the left ventricle was reduced accordingly. In 
the pre-intervention case, although the measurement was made in a resting state, the left ventricle had a short 
cardiac cycle with high cardiac output, emulating an exercise condition of a normal subject, a commonly 
reported finding for patients with a native (i.e., uncorrected) aortic coarctation.34 To simulate the post-
intervention case, we decreased the maximum elastance value until we obtained the same cardiac output, 
approximating the autoregulatory mechanisms in the cardiovascular system. Patients with an aortic coarctation 
generally experience a decrease in the cardiac output in addition to a decrease in the maximum elastance value 
after removing the coarctation.34 Yet, in this study, we only changed the maximum elastance value assuming 
that the patient maintains the same cardiac output. From the simulation results, we observed that the operating 
pressure range for the post-intervention case was lower compared to the pre-intervention case, signifying a 
reduction in the afterload of the left ventricle. 

We have shown that this method can be used to study the interactions between the heart and the arterial 
system. However, this study has three primary limitations. First, feedback control loops were not present in the 
computational domain. Different physiologic conditions simulated in this paper were all modeled by manually 
changing the parameter values of the lumped parameter heart model based on literature data. To replicate 
physiologic changes due to changes in the heart function or arterial impedance, the development of feedback 
control loops and models of the autoregulatory mechanisms of the cardiovascular system are needed. 

Second, the tuning of the parameter values of the lumped parameter heart model was complex and time 
consuming. When the lumped parameter heart model was implemented as an inflow boundary condition of a 
three-dimensional finite element model of the aorta, several parameter values were introduced and adjusted to 
match subject-specific pulse pressure and cardiac output through an iterative approach. To expedite the study 
of the interactions between the heart and the arterial circulation, automatic optimization of these parameter 
values is necessary. 

Third, uniform deformable wall properties were assigned to each computer model despite the fact that the 
vessel wall properties vary spatially. To compute flow and pressure waveforms considering non-uniform vessel 
wall properties, noninvasive methods to estimate wall thickness and elastic (viscoelastic) wall properties are 
needed. Additionally, the current deformable wall model does not consider bending stiffness. The absence of 
bending stiffness in the deformable wall model resulted in oscillations of the flow and pressure waveforms due 
to the high inertia of blood flow traveling through the arch of the aorta. More realistic deformable wall models 
with consideration of bending stiffness may reduce the amplitude of these oscillations. 

Conclusions 
We have successfully implemented an inflow boundary condition coupling a lumped parameter heart model to 
the inlet of a three-dimensional finite element model of the aorta. Although we only modeled the left side of the 
heart and the systemic circulation, the same approach can be applied to the right side of the heart and the 
pulmonary circulation. We have shown that interactions between the heart and the systemic circulation can be 
studied using this method. This approach can be applied to better understand human physiology including how 
changes in the arterial system affect cardiac properties or vice versa. It can also be utilized to predict outcomes 
of cardiovascular interventions as demonstrated with the patient-specific thoracic aorta model with an aortic 
coarctation. 
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