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Abstract:  
The normal modes of an inhomogeneous thin film are obtained by diagonalization of the perturbed 
Hamiltonian. The resulting modes are mixtures of the spin-wave modes and the uniform mode. We 
find that the ferromagnetic resonance intensity spectrum of the diagonalized system has a Lorentzian 
profile, and that the results correspond to the two-magnon model for weak perturbations. For stronger 
perturbations, the density of states is smoothed, and the spectrum becomes asymmetric due to the 
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low-frequency cutoff of the spin-wave manifold. The technique is expected to be valid for perturbation 
amplitudes that are large enough to invalidate the assumptions of the two-magnon model. 
SECTION I. 

Introduction 

In The ferromagnetic resonance of polycrystalline bulk materials, the effects of inhomogeneity can be 
classified into the strong coupling limit, where the magnetostatic coupling between grains is much 
greater than the anisotropy field, 𝑀𝑀s ≫ 𝐻𝐻a, and the weak coupling limit where 𝑀𝑀s ≪ 𝐻𝐻a [1]. A good 
description of the strong coupling limit is available from the two-magnon model of ferromagnetic 
resonance linewidth [2][3]–[4][5][6][7] in which the magnetostatic and exchange interactions are taken into 
account via the spin-wave dispersion relation for the material, and the inhomogeneities are treated as 
perturbations. In the weak coupling limit, the resonance spectrum can be approximated by the 
superposition of resonances from noninteracting grains. Intermediate coupling conditions in bulk 
materials have been approached using a self-consistency approach [8] to calculate higher order effects, 
and by considering direct perturbations of the spin-wave manifold [9]. 

Intermediate coupling conditions may be more prevalent in thin films since the magnetostatic 
interactions can be much weaker than in the bulk, so that for a large value of 𝐻𝐻a, the approximations 
involved in a two-magnon model of linewidth may not be valid. It would be useful, therefore, to extend 
our understanding of thin films ferromagnetic resonance out of the strong coupling limit where 
inhomogeneity is treated as a perturbation and into the intermediate coupling regime. 

The dynamics of thin uniform films can be described by a set of normal modes, known under various 
approximations as Damon–Eshbach [10], magnetoexchange [11], [12], or spin-wave modes. The spin-wave 
modes are labeled by the wave vector 𝒌𝒌, with 𝒌𝒌= 0 representing the uniform precession mode that 
couples to the driving microwave field. When nonuniformities are introduced, the plane-wave states 
still form an orthogonal basis, but they are no longer the eigenstates of the Hamiltonian. In particular, 
the uniform precession that is driven in FMR experiments is not an eigenmode of the perturbed film. 
The inclusion of nonuniformities couples the 𝒌𝒌= 0 uniform mode to other, 𝒌𝒌≠ 0 nonuniform modes of 
the film. The fully perturbed Hamiltonian is written as 

𝐻𝐻 = ℏ𝜔𝜔0𝑎𝑎0
†𝑎𝑎0 + � ℏ𝜔𝜔𝐤𝐤𝑎𝑎𝐤𝐤

†𝑎𝑎𝐤𝐤 + ∑  𝐤𝐤′≠𝐤𝐤
𝑘𝑘≠0

⋅ (𝐴𝐴𝐤𝐤′𝐤𝐤𝑎𝑎𝐤𝐤′𝑎𝑎𝐤𝐤
† + 𝐴𝐴𝐤𝐤′𝐤𝐤

∗ 𝑎𝑎𝐤𝐤′
† 𝑎𝑎𝐤𝐤)

 (1) 

where 𝑎𝑎𝐤𝐤 and 𝑎𝑎𝐤𝐤
† are the lowering and raising operators for the spin waves modes for the uniform film. 

The second sum includes the uniform spin-wave mode, and 𝐴𝐴𝐤𝐤′𝐤𝐤 gives the strength of the 
inhomogeneity which couples the various spin-wave modes. 

For small 𝐴𝐴0𝐤𝐤 the FMR linewidth is described by the two-magnon model of FMR damping. This theory 
treats inhomogeneities as perturbations giving a scattering rate that is found by Fermi's Golden Rule 



(FGR), and that is observed experimentally by the broadening of the ferromagnetic resonance peak. 
The rate given for the scattering of 𝐤𝐤′ = 0 to 𝐤𝐤 ≠ 0 magnons is 

Γ0,𝐤𝐤 =
2𝜋𝜋
ℏ
� |𝐴𝐴0𝐤𝐤|2𝛿𝛿(ℏ𝜔𝜔0 − ℏ𝜔𝜔𝐤𝐤)
𝐤𝐤

 

(2) 

 

where only modes coupled by 𝐴𝐴0𝐤𝐤 with the same energy contribute to the total overall scattering. 
Because (2) is a result of perturbation theory, the validity of this approximation is limited to values of 
𝐴𝐴0𝐤𝐤 that are in some sense small. For cases where ⟨𝐴𝐴0𝐤𝐤2 ⟩ is independent of 𝒌𝒌, then 𝛿𝛿-function is (2) 
effectively measures the density of states at 𝜔𝜔0 = 𝜔𝜔𝐤𝐤. 

 

Fig. 1. Best fit for the intensity of spin-wave modes contributing to the FMR linewidth. The tails of the 
data are best described by a Lorenzian function. 

In this paper, we take an approach valid for large perturbations by rediagonalizing the full Hamiltonian 
by including interactions between all spin–wave modes available for the film. The diagonalization 
approach provides insight into more complicated cases in which the spin-wave density of states is not 
uniform. 
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SECTION II. 

Rediagonalization 

 

Fig. 2. Density of states profile for (a) 20-nm-thick uniform Permalloy film and (b) for a strongly 
perturbed films (Arms= 0.05 GHz). As the strength of the perturbation increases, the density of states 
becomes more evenly distributed. 

The Hamiltonian (1) consists of a series of spin-wave modes for the uniform film and a perturbation. In 
matrix representation the perturbation can be rewritten as 

 

𝐻𝐻′ = 𝑎𝑎†𝐴𝐴𝑎𝑎 (3) 

 

where 𝐴𝐴 is an 𝑁𝑁 × 𝑁𝑁 matrix and a is an 𝑁𝑁-vector containing the annihilation vectors 𝑎𝑎𝐤𝐤. By including 
the eigenfrequencies, 𝜔𝜔𝐤𝐤, of the uniform film along the diagonal, the matrix representation of (1) is 
recovered. Diagonalization of this Hamiltonian allows one to pick out the new eigenvalues and normal 
modes of the perturbed system. To do so, we introduce a unitary matrix 𝑈𝑈. In doing so the Hamiltonian 
takes the form 

𝐻𝐻 = 𝑎𝑎†𝑈𝑈(𝑈𝑈−1𝐴𝐴𝑈𝑈)𝑈𝑈−1𝑎𝑎 (4) 
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where 𝑈𝑈−1𝐴𝐴𝑈𝑈 is diagonal and identically the new eigenvalue spectrum for the perturbed system. The 
new basis (𝑈𝑈−1𝑎𝑎) consists of a new set of eigenmodes containing linear combinations of the original 
uniform film spin-wave modes. To implement the procedure, the perturbation matrix, 𝐴𝐴, is composed 
from a Gaussian distribution of random complex numbers, 𝐴𝐴𝐤𝐤𝐤𝐤′, centered about zero with varying 
strength characterized by the root-mean-square (rms) value. The other tunable parameter in the 
numerical calculations is the density of states in the unperturbed system, most easily changed by 
increasing the number of modes available to couple to within a fixed frequency range. In this paper, we 
present results for both uniform and nonuniform densities of spin-wave states. 

SECTION III. 

Results 

Starting with a uniform distribution of spin–wave states, we find that diagonalization produces a 
symmetric distribution of new eigenstates about the frequency of interest. The eigenstates of the 
perturbed Hamiltonian are mixtures of all the original spin-wave modes including the uniform mode, 
and we compute the FMR intensity spectrum by taking the amplitude of the uniform mode in each 
eigenmode, 𝑖𝑖, 𝑈𝑈𝑖𝑖0, and plotting it versus the eigenfrequency, see Fig. 1. In an unperturbed film, the plot 
would consist of a single spike at 10 GHz. 

One might have expected that the addition of random perturbations would have produced a Gaussian 
lineshape, but we find that least squares fits to the intensity yield a better fit to a Lorenzian, especially 
in the tails of the spectrum away from resonance. The two-magnon model (2) also predicts a Lorenzian 
lineshape by virtue of the fact that it gives a damping rate. 

In a series of runs with different initial densities of states and small values of 𝐴𝐴0𝐤𝐤, we found that the 
spectrum width increases linearly with the initial density of states, and roughly quadratically with the 
perturbation amplitude, consistent with (2). 

We also calculated the density of states for a Permalloy-like material using the lowest branch of the 
magnetoexchange spectrum [12], [13]. A representative density of states profile for a 20-nm thick film 
with the following properties is shown in Fig. 2(a): exchange constant 𝐴𝐴 = 1.0 × 10−11 J/m and Ms= 8.0 
× 105 A/m with an applied field 𝜇𝜇0 𝐻𝐻 == 100 mT such that the resonance is found at 9.8 GHz. The 
lower limit of the density of states in Fig. 2(a) corresponds to the bottom of the spin-wave manifold at 
9.4 GHz, and the upper limit is an arbitrary cutoff. Fig. 3(a) and (b) shows the corresponding intensities 
of the new spin-wave modes coupled by the addition of these inhomogeneities with the varying 
strength. The effect on the original density of states due to the perturbation field is shown in Fig. 3(a) 
and (b).  
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Fig. 3. Intensity of rediagonalized eigenmodes for a system with a nonuniform density of states. (a) 
Arms= 0.02 GHz, and (b) Arms= 0.05 GHz. The tails in the data are consistent with a Lorentzian and the 
peak shifts with increasing perturbation strength. 

There are two effects relative to the density of states that merit discussion. First, the perturbations 
affect the density of states, rounding the low-frequency cutoff, and smearing the small dip in density of 
states at the resonance frequency validating the approach of [9]. The two-magnon model leaves the 
density of states unchanged. 

Second, the resulting intensity spectrum in Fig. 3 is spread over a frequency range that includes 
significant variations in the unperturbed density of states. The spectrum in Fig. 3(b) extends well 
beyond the low-frequency cutoff of the density of states at 9.4 GHz in Fig. 2(a). Because the density of 
states varies with frequency, the two-magnon model predicts a frequency-dependent effective 
damping, and this effect has been demonstrated experimentally by Patton [14]. The effect here is 
different in that after diagonalization, we have modes with resonant frequencies outside the initial 
spin-wave manifold. 

Unlike the case where the initial density of states is uniform, the resulting intensity spectrum does not 
appear to be symmetric. The long tails that are consistent with Lorentzian line shape at high 
frequencies are not seen at low frequencies, and there appears to be a smeared cutoff below the 
bottom of the spin-wave manifold. Because there is nonzero intensity near this cutoff, this effect may 
appear experimentally as an asymmetric signal on the low-frequency (high field) side of the main 
resonance. The intensity spectra of the perturbed films also show a downward shift of the intensity 
maximum that is qualitatively consistent with frequency shifts predicted by the two-magnon model [2], 

[7]. 



SECTION IV. 

Conclusion 

With a rediagonalization of the fully perturbed Hamiltonian we are able to find a new set of 
eigenmodes. The rediagonalization allows us to study the two-magnon approximation for weak 
perturbations. We find for weak perturbations the rediagonalization creates a Lorentzian distribution 
in the FMR linewidth, is linear in the density of states and quadratic in the perturbation as predicted by 
the two-magnon model. The method also allows us to look beyond the two-magnon model to cases 
where the inhomogeneity significantly affects the density of states, or to cases where the 
inhomogeneously broadened spectrum is wide compared to significant variations in the density of 
states of the unperturbed film. 
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