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Abstract: Weighted repeat sales house price indices have become one of the primary 

indicators used to identify housing market conditions and to estimate the amount of equity 

homeowners have gained through house price appreciation. The primary reason for the 

acceptance of this methodology is that it derives a location specific (typically, census division, 

state or metropolitan area) average change in house prices from repeated observations of 

individual house prices. It is this repeat attribute that allows repeat sales price indices to claim 

that it is a preferable index which does a better job of holding quality constant.  

The amount of time between the two observed prices for a single property is determined 

by when the home transacts. Some homes transact twice in a period of months and others do 

not transact for decades. It is likely that individual house price appreciation rates vary from the 

mean appreciation rate, as estimated by the index, in a systematic fashion. In general, the longer 

the time between transactions the more variance there is in individual house price appreciation.  

This paper extends this concept to include new dimensions. For instance, houses that 

appreciate faster than the mean, as estimated by the index for that location, may experience a 

different variation structure than homes that appreciate slower. This process can be viewed as 

an asymmetric treatment of the variance of house price appreciation around the estimated index. 

In addition, the variance of expensive and affordable homes may also be different and time 

varying.  

This paper finds evidence that adding the dimensions of price tiers and asymmetry to the 

variance estimate has merit and does affect the estimated index as well as homeowner equity 

estimates. Homeowner equity estimates are especially sensitive to these added dimensions 

because they depend on both the revised index and the estimated variances, which are specific 

to each dimension considered–time between transaction, asymmetry, and price tier.  
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Introduction  

Using a large database of mortgage transactions either purchased or securitized by 

Fannie Mae and Freddie Mac, this paper estimates a house price index (HPI) using the weighted 

repeat sales (WRS) methodology developed by Case and Shiller (1987).  

WRS attempts to hold quality constant by examining only properties with repeat 

transactions, each of which provides a measure of the appreciation between two time periods. 

Using the repeated transactions, the average growth rate of house prices is estimated for a 

variety of locations. In this paper, we include estimates at the state level. The WRS uses an 

econometric analysis to form an index that has become the standard way to measure average 

house price appreciation or depreciation in specific geographic areas over time. The index 

preserves the intuitively simple interpretation of any index. For example, if the index is 100 in 

state � in 2000 and increases to 105 in state � in 2001, the average house price in state � 
increased by 5 percent over the period 2000-2001.  

While the large sample size and constant quality nature of WRS indices are major 

strengths, various outstanding issues and caveats have been documented. For example, any 

“repeat sales” or WRS index technically cannot be constant quality to the extent that home 

improvements or physical depreciations occur between transactions. The passage of time itself 

can help to increase the value (e.g., a small sapling grows into a majestic tree) of some 

properties and decrease it in others (e.g., a majestic tree is blown over in a thunderstorm). The 

simple fact that trees on a property may grow or die between transactions and change property 

value suggest that “constant quality” may be overstated. In addition, the index may exhibit a 

hidden bias because certain properties may have more repeated observations than others 

(Clapp and Giaccotto, 1998). This paper is based on data that is limited to collateralized loans 

that meet the underwriting requirements and conforming loan limits of Fannie Mae and Freddie 

Mac. Consequently the index does not necessarily reflect value changes in properties without 

mortgages or properties with nonconforming loans, which may be more prevalent in some 

regions. Because the indices are revised with the addition of new historical data as new 

transaction pairs become available, the WRS indices are also subject to revision volatility. 

Incidentally, prior to the advent of the joint Fannie Mae and Freddie Mac data for the purpose of 

WRS index estimation, there were few data sets of sufficient size to produce price indices based 

on this method. As a result, Case and Quigley (1991) introduce a hybrid approach that jointly 

estimates a combination hedonic and WRS index using a neighborhood data set. The hybrid 

approach allows one to take advantage of the information contained in transactions which occur 



3  Dreiman & Pennington-Cross 

 

only once.1 However, the combined Fannie Mae and Freddie Mac data is sufficient to produce a 

sound WRS index. For a detailed discussion of potential biases associated with WRS indices, 

see Calhoun (1991).  

In this paper, we address the role played by the time between transactions and the 

variance of the error term during the estimation. We find qualified support for the conventional 

approach, which views the variance and the resulting standard error of the index as an 

increasing function of the time between transactions. In addition, we introduce two new 

dimensions–asymmetry and house price tiers. The asymmetric approach allows the variance to 

be different for properties that appreciate above and below the estimated mean appreciation rate. 

The house price tier approach allows the variance to be different depending on whether the 

property is expensive, moderate, or affordable.  

The results provide considerable support for the existence of these additional dimensions 

to the variance of the HPI error structure. There are many potential explanations for the observed 

relationships between the variance and the three dimensions (time between transaction, 

asymmetry, and house price tier) that will be discussed later in the paper. One example is that 

properties that are purchased at a very low price typically require relatively more owner 

improvements. Some properties will undergo dramatic renovations while some may be allowed 

to deteriorate and continue to filter down into lower price tiers. If these activities are more 

frequent for lower priced properties then the variance should be higher for these types of 

properties. The opposite may be true for homes that transact at relatively high prices since they 

may need less renovation work. These properties would thus experience relatively less variation 

in house price appreciation. In addition, since some expensive homes whose loans conform to 

the Fannie Mae and Freddie Mac loan limits may appreciate faster than the loan limits over time, 

it is likely that some of these properties with larger increases in value will move outside of the 

sample, as subsequent loans on the property may exceed the conforming limits.  

The proper weighting schemes for both sets of homes are imperative if the WRS process 

is to be efficient and appropriately indicative of actual changes in house prices. Homeowner 

equity can play an important role in determining the perceived riskiness of any mortgage 

application. This is because borrowers with negative equity (the mortgage is larger than the 

house value) in a home find it “in the money” to default on the mortgage and move out of the 

house. Therefore, any revisions to HPI that impact estimates of the equity growth or decline for 

homeowners can have impacts on the availability of credit as well as mortgage pricing for both 

the borrower and the investor.  
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Organization of paper  

This paper begins by briefly describing the typical WRS method. In the section that 

follows, we discuss results obtained by allowing the variance of the error term to systematically 

relate to three separate dimensions (time dependent, asymmetric, and price tier). Upon finding 

that variance is asymmetric (different for above and below the mean estimated appreciation 

rates), we test the premise that properties in different price tiers may drive this apparent 

asymmetry. We find that they do, and we can avoid this problem by specifying variance 

parameters dependent on price tier. Each observed repeat transaction is weighted depending on 

the estimated variance to increase the precision of the estimation using generalized least 

squares (GLS). This process imposes fewer assumptions on the variance during estimation. 

Finally, we use the estimates to predict the probability that households owe more on their home 

than it is worth (negative equity).  

 

The WRS method2 

The WRS method was first proposed by Bailey et al. (1963) and implemented empirically 

in the 1980s by Case and Shiller (1987, 1989). Property specific home values are measured only 

when two consecutive transactions are observed. The WRS uses this information to estimate the 

average appreciation rate for the location.  

The time between consecutive repeat transactions for individual properties can vary 

dramatically from less than 4 months to over 10 years. To address these time differences we use 

the following econometric procedures. First, we use time dummies to generate average value 

changes for cohorts of transactions. We use the errors ��� from this regression to examine for 

evidence that the variance ����is related to the time between transactions. We assume that this 

variance is a function of time between transactions �� � �� and time between transactions 

squared �� � ���, where � is the date of the second transaction and � is the date of the first 

transaction. Finally, we use the fitted residuals from the second regression to create weights in a 

GLS regression. We use a GLS regression because the variance of the errors cannot be 

assumed to be constant. With the previous step we have information about how that variance 

may change. We use this information in the last step as we construct the index. The model is laid 

out in detail below.  

 

Model design  
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Following the approach utilized by Case and Shiller (1987) and later modified by 

Abraham and Schauman (1991). It is assumed that the natural logarithm of price, 	
�,of an 

individual house � at time �, can be expressed in terms of a market price index 
�, a Gaussian 

random walk �
�, and white noise �
�, such that  

 
1n�	
�� � 
� � �
� � �
�  .        (1) 

 
This specification allows us to express the total percentage change in price for house � 

which transacts in time periods � and � as: 

 
 Δ�
 �  1��	
�� � 1��	
��.        (2) 

 
Substituting (1) into (2) provides: 

 
 Δ�
 �  
�  � 
� � �
�  � �
� �  �
�  � �
�.      (3)  

 
We observe 1��	
�� � 1��	
�� and we can calculate ∆�
 from (2). The index that we 

wish to estimate reflects 
� � 
� but we do not observe either 
� or 
� directly. We can think of 

�
� � 
�� as the average appreciation rate over the time period �� � ��. Individual properties 

may be distributed about these averages, but before we can obtain these average values we 

must consider the other components of equation (3). We do not observe �
�, �
�, �
� , �
�. To 

estimate 
� � 
�, we make the following assumptions:  

 

���
� � �
�� � 0,          (4)  

����
� � �
���� �  �� � �� � !�� � ���,      (5)  

���
�� �  0,           (6)  

�"�
��#�$ �  0,          (7) 

���
�
� � % � &

� '(� ,          (8) 

  

for all � and �, and � ) � and   and ! are coeffcients to be estimated. The difference in the 

market price index, 
�  � 
�, represents the expected rate of appreciation in individual property 

values in a given market. The Gaussian random walk �
� describes how variation in individual 

house price appreciation rates around the rate of change in the market index causes house 

prices to vary over time.  
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The white noise term �
�  
represents cross-sectional dispersion in housing values arising 

from purely idiosyncratic differences in how individual properties are valued at any given point in 

time. �
�  
is assumed to be uncorrelated over time and across properties.  

In a sample of repeat sales or mortgage transactions, the difference in the natural 

logarithm of the price of house � can be expressed more generally by:  

 
Δ�
 � ∑ 1n�	
+�,+-. /
+,           (9) 

 

where /
+ 
is a dummy variable that equals 1 if the price of house � was observed for a 

second time at time 0, �1 if the price of house � was observed for the frst time at time 0, and 

zero otherwise.3 Using equation (1) to substitute for 1n�	
+� yields:  

 

Δ�
 � ∑ �
+ � �
+ � �
+�/
+,+-. .        (10) 
 

Alternatively, this expression can be written as:  

 

Δ�
 � ∑ 
+/
+ � �
,+-.  where �
 � ∑ ��
+ � �
+�,+-. /
+.     (11) 

 

The parameters 
+, 0 �  0, 1, 2, . . . , 2 for the market index can be estimated by ordinary 

least squares (OLS) regression.4 An OLS regression of equation (11) on a sample of repeat 

transactions provides an initial estimate of each 
. OLS however is not an effcient estimator 

because we cannot assume that the variance of the error term �'34
� �is constant. The squared 

deviations of observed house prices from the market index are given by:  

 

�

� � �Δ�
 � ∑ 
+/
+,+-. ��.        (12) 

 
We assume that the squared deviations of observed house price changes around 
+  

will provide 

us with an estimate for '34
� . Using equations (5) and (8) it can be shown that the expectation of 

this expression is given by:  

 

�"�

�$ �   5�� � ��
 � !6�� � ��


� � %5 7 '34
� .       (13) 

 

The estimated variance of the error term in (13) will change for each combination of � and �. 
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The expected values of the squared deviations, ���

��, are used to derive the expected standard 

error, ���8
�, which is defined as the square root of �"�

�$. The expected errors are then used 

as the weights needed to obtain GLS estimates of the 
�  
parameters in the following regression:  

 

9:4
;��<4� � ∑ 
+

=4>
;��<4� � 34

;��<4� .,+-.         (14) 

 

Equation (14) is estimated to derive WRS HPI. Index numbers for periods 0 � 1, 2, 3, . . . , 2 are 

given by: 

 

 @+ � 100 ·  e CDD> ,         (15) 

 

where 
55+  
are the GLS parameter estimates.5 

 

New variance and standard error estimates  

We focus on the portion of the regression which models the variance of the error term as 

a function of time and time squared. The original method proposed by Bailey et al. (1963) 

conducted OLS estimation to produce coefficients on the time dummies in equation (11). The 

Case and Shiller (1987) method extended this approach to include the estimates of '34
� and its 

use in their subsequent GLS estimation. They assumed that '34
�  

was simply a linear function of 

time between transactions. Abraham and Schauman (1991) proposed the use of a quadratic 

(inclusion of a time-squared term), to take into account the fact that there is an upper bound to 

the amount of variance of properties about the index or mean. This method was tested 

extensively against the conventional linear form and is used by both publicly available repeat 

sales HPI, the Office of Federal Housing and Enterprise house price index (OFHEO HPI) and 

Freddie Mac conforming mortgage home price index (CMHPI). Consistent with these indices and 

Abraham and Schauman (1991), the quadratic approach is also used in this paper. While 

OFHEO and this paper utilizes a geometric weighting scheme, it is also worthwhile to note that 

Geotzmann (1992) proposed the use of arithmetic weighting in repeat sales indices.  

First, we hypothesize that the time dependant nature of the variance may not be the 

same for properties that disperse above versus below the mean estimated appreciation rate. The 

mean appreciation rate is the one estimated by the initial OLS regression results (the Bailey, 

Muth, and Nourse estimates). Intuition suggests that the variance is smaller in magnitude on the 
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negative tail (the depreciation side) than the positive tail (the appreciation side) of the distribution. 

There are a number of reasons this could be the case. First, this is consistent with the lognormal 

distribution observed in house prices and assumed in this procedure. Individual properties may 

diffuse far above the mean, but obviously cannot decline below zero. In fact, the distribution of 

values in any given quarter obtained from our database is consistent with wide right tails. Second, 

the index does not control for home renovations. Therefore, some individual property 

appreciation rates on the positive tail may look “artificially high” as they are contaminated by 

noise induced by home improvements. In other words, quality is not being held constant for a 

group of properties. Another possible reason is that homes appreciating at much less than 

average rates are less likely to be observed as the owners are less likely to sell under this 

scenario. Genesove and Mayer (2001) document this finding using a model of loss aversion.  

We test for evidence of this phenomenon by applying equation (13) separately for 

properties that appreciate above and below the mean, as identified by the first stage estimate. 

This procedure provides two sets of estimates of the parameters A, B, and C, which are used to 

calculate the expected variance ����

���. 

Second, we consider whether the variance is constant across homes in different price 

categories. A larger variance for lower priced homes is consistent with the hypothesis that lower 

priced properties are more likely to experience substantial home improvements. They may then 

be more likely to show large positive deviations from the typical appreciation rate. Another 

possible reason lower priced properties may experience larger variations in appreciation is that 

they were undervalued at the time of the first transaction. The reverse could be true for 

properties with higher house prices. That is, they may experience fewer than the average 

number of home improvements and they may come into the sample relatively overvalued. Both 

phenomena would cause some of the higher priced properties to appreciate at a much lower rate, 

leading to larger variations in the negative tails of the distribution. Therefore, we next include 

dummies for the highest and lowest 10 percentile tiers interacted with time and time squared. 

The top and bottom 10 percentiles are identified by the price of the property at the first 

transaction and are relative to all other observed transactions in the time period. We can then 

calculate the variance process for properties that are in the highest and lowest tiers separately 

from the rest of the properties while simultaneously considering the asymmetric dimension 

added earlier.  

We estimate both the asymmetric and the asymmetric price tiered approach for 10 

different states (California, Florida, Georgia, Illinois, North Carolina, Nevada, New York, Kansas, 
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Texas, and Washington states).  

 

Results of state variance estimation  

Equation (13) is estimated separately for the group of properties in which the �
 ) 0 and 

�
 E 0. Therefore, we obtain separate estimates of A, B, and C for those properties that 

appreciate above versus below the estimated mean, and thus compute separate volatility or 

variance estimates for each of these groups. Table 1 displays the difference between the 

estimated standard error, ���8
�, which is defned as the square root of the estimated variance 

for the above and below mean appreciation rate properties for each state after 1 year, 5 years, 

10 years, and 15 years. If the newly introduced asymmetric dimension is not relevant then the 

differences should be zero. F-tests were utilized to test the difference in the A, B, and C 

parameters for the above and below mean groups. The parameters are always statistically 

different at above a 99 percent confidence level.  

The standard error of house price appreciation rates is usually higher for properties that 

appreciate faster than the mean rate.6 Florida, Georgia, and North Carolina consistently exhibit 

the largest difference between the above and below mean cohorts. For instance, after 5 years 

since the last transaction the difference in the estimated standard error is 2.49, 2.68, and 2.98 

percent, after 10 years the difference is 5.54, 7.68, and 6.62 percent, and 15 years the difference 

is 5.57, 10.50, and 7.65 percent. Texas also has a relatively high difference (4.59 percent after 

15 years). The average difference between above and below mean variance across states after 

5 years was 3.53 percent, after 10 years was 3.84 percent, and after 15 years was 4.06 percent.  

This phenomenon is illustrated graphically in Figure 1. The growth of the standard error 

over time is depicted for each state using the asymmetric and symmetric estimation results. The 

expected standard error is depicted on the y-axis and time between transactions on the x-axis. 

Expected standard error above the mean is depicted as a positive number. To depict the 

expected standard error below the mean a negative number is presented in the figures. This is 

done to aid the visual presentation and is not meant to indicate that a negative expected 

standard error was estimated. Because at time period 0 the actual house price is known 

���8
� �  0. As time passes ���8
� is increasingly greater than 0 both above and below the 

mean. For the symmetric estimates the expected standard error is the same above and below 

the mean in each time period. The asymmetric approach allows the estimated expected standard 

error above and below the index to be different.  

From Figure 1 it is easy to see that Georgia, for example, exhibits large differences 
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between above average and below average appreciating properties by the 15th year but 

Washington has the largest difference after 1 year. Visually the figures reinforce the consistency 

of the results.  

The data allows us to set up a test to determine whether differences in price tier may be 

responsible for the asymmetry observed in the first round of tests. For all states, the asymmetry 

appears to be induced by the appreciation behavior of properties in the lowest and highest 10 

percentile tiers. As mentioned in the previous section, we introduce a new specification for 

equation (13), which keeps the same original variables, but also includes interactions for time 

and time squared with dummy variables for the highest and lowest 10 percentile tiers. This model 

is estimated separately for properties that appreciate above and below the mean. F-tests 

indicate that the interaction dummy parameters are statistically different than the A and B 

parameters for the middle 10-90 percentile tier, both for below and above mean groups at higher 

than a 99 percent confidence level.  

For all states, the expected standard error is virtually symmetric for properties whose 

levels fall between the 10 and 90 percentile tiers (see Figure 2). A few states still exhibit a small 

degree of asymmetry after controlling for the top and bottom tiers. The figures consistently show 

that among properties that appreciate below average, the top 10 percentile experiences the 

largest negative or downward variance. In contrast, among properties that appreciate above 

average the bottom 10-percentile estimated standard error is still the largest.7 

 

Implications of asymmetry  

This section explores two implications of the proposed estimation technique. First, 

different specifications of the expected time dependent nature of the variance are likely to lead to 

different WRS HPI estimates. Second, different specifications are also likely to affect estimates 

of the equity that borrowers have in a house. Specifically, this section will address how the 

different specifications affect the probability of the borrower having negative equity. See Foster 

and Van Order (1984) for an example of using the A, B, and C parameter estimates to calculate 

the probability of negative equity (pneq).  

Index comparisons  

Figure 3, provides a visual presentation of the WRS price indices using symmetric, 

asymmetric, and asymmetric with price tiers specifications from the first quarter of 1980 through 

the first quarter of 2001. Table 2 provides comparative numbers for all 10 states over the same 

time period. As Figure 3 and Table 2 show, all 10 states experienced a downward revision in the 
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index when an asymmetric process is introduced. The two states associated with large 

metropolitan areas (New York and California) experienced some of the smallest revisions on 

average. The average revision ranges from a 5.54 percent in Georgia using the symmetric 

approach to a 0.52 in New York using the asymmetric price tier approach. Ninety percent 

confidence bands were utilized to determine the statistical differences the indexes. The second 

column of Table 2 indicates that for most states, statistically different results are obtained 

between the symmetric and asymmetric indexes in most quarters since 1990. Fannie Mae and 

Freddie Mac volumes are significantly higher in the 1990s than in the 1970s and 1980s. For this 

reason, the differences are often insignificant in earlier years, resulting in a misleading 

calculation when earlier years are included. States with a smaller percentage of significantly 

different quarters since 1990 (such as Kansas, Nevada, and Washington), become statistically 

different almost 100 percent of the time if the calculation is restricted to data from 1995 forward. 

This is because these states contain fewer transactions than the other states in the sample.  

When price tiers are included the revision of the index is slightly muted for states. This is 

seen most clearly in Florida and Georgia. In addition, as shown in the figures, the revisions tend 

to grow with time. Ninety percent confidence bands again indicate that the tiered index is most 

often different than the standard index in the quarters since 1990. As with the confidence tests 

for the asymmetric versus symmetric, smaller states have fewer quarters with statistically valid 

differences. Again, the index becomes statistically different in the most recent years when the 

sample is large enough.  

New York is the only state in which significance tests are much different for the tiered 

index. While most states with fairly large numbers of transactions indicate the tiered and 

standard indexes are statistically different most of the time, the two indexes are never statistically 

different in New York. This is most likely because the conforming loan limit restricts the true 

“upper tier” from appearing in our sample. The “upper tier” for New York using Fannie Mae and 

Freddie Mac data most likely belongs in the “average” bucket if the true tiers were known. That is, 

results would likely differ substantially if the transactions included jumbo loans for this state.  

It is also worthwhile to note that for 8 of the 10 states, the asymmetric indexes are never 

statistically different than the tiered indexes in the last 12 years (not shown on Table 2). New 

York and Illinois exhibit differences a minority of the time. This would support our notion that the 

asymmetric diffusion is likely driven by different appreciation patterns among tiers. In fact, results 

show that for the middle 10-90 percent tiers, there is little asymmetry in diffusion.  

The significantly different results emerging from the price tiered diffusion estimation leads 
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to the question of whether indexes themselves should be delineated by price tier. We created 

price tiered indexes for a couple of states for which there were enough transactions. These 

results are discussed with graphical presentations in Appendix 1. This paper, however, focuses 

primarily on the specification of the variance.  

Home owner negative equity  

The specification of the expected variance and the resultant expected standard error can 

also have affects on estimates of the probability of a mortgage going into a negative equity 

position. For an individual property (i), the pneq can be calculated as follows:  

 

F+,�G� � Θ IJKL�MNOPQR�GJKL�S>�
;��<PQR� T       (16) 

 
where F+,�G� 

is the probability that the property is worth less than the mortgage and depends on 

the 0, the current time period, as well as how long it has been since the last transaction �� � ��, 

upb�G� 
is the unpaid balance on the mortgage and depends on how long the borrower has been 

paying the mortgage, 	+ is the value or price of the home, ���8
� is the expected value or 

estimated standard error as defined by the square root of the expected variance as shown in 

equation (13), and Θ is the cumulative normal density function (see Deng, 1997; Deng et al., 

1994).8 Assume that the mortgage interest rate is fixed at 8 percent for the life of the loan, the 

term is fixed at 30 years, the home initial value is 100 dollars, and a 10 dollar down payment was 

made. In addition, the borrower is assumed to make all payments on time so that the unpaid 

balance is reduced on schedule through the 30 years. Lastly, the values or price of the home is 

updated in each period by the WRS HPI for the state of residence.  

Table 3 provides the summary comparative information for the hypothetical mortgage as 

described above that is originated in the first quarter of 1985 for each of the 10 states. The 

average probability of negative equity is calculated from the date of origination through the end of 

2000. The probability of negative equity is always lowest for houses that are in the middle tier 

(10-90 percent). This is true for states with very high probabilities of negative equity, such as 

Texas, and states with low probabilities of negative equity, such as California. In addition, houses 

in the highest tier always have the highest probability of negative equity. The variety of 

probabilities ranging from 6.1 to 37.7 percent indicate that location and price tier can make a 

large difference in the equity position of borrowers with identical mortgage products. This 

difference can be traced back to the growth in the state HPI, the expected variance of error term 

over time and the price tier of the house at origination.  
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From the perspective of an investor homeowner equity, or the lack of it, has two related 

impacts. First, homeowners with negative equity are more likely to default on a mortgage (Deng 

et al., 1994; Pennington-Cross, 2003). Second, once a loan is defaulted one of the primary 

determinants of the severity of the loss is home much equity is in the house (Quigley and Van 

Order, 1995; Crawford and Rosenblatt, 1995). Therefore, as homeowner equity becomes 

negative both the probability of default increases thus stopping any future income stream and the 

credit loss also rises. As a result, Table 3 indicates that high price homes, at least within the 

conventional conforming market, have on average higher probabilities of negative equity than 

other price tiers and as a result should also have higher default rates and higher loss rates given 

a default.  

 

Conclusion  

The introduction of new dimensions to the variance of the error term while estimating the 

WRS HPI can lead to large and small changes in the estimated indices. These new dimensions 

allow asymmetry and price tier effects to interact with the time between transaction. Typically the 

index revises downward when the estimated expected variance is made more general by 

allowing it to contain an asymmetric and house price tier component. More detailed examination 

of the expected variance indicates that the most expensive homes exhibited a larger time 

dependent component on the negative side (down side, relative to the index) and the least 

expensive homes exhibited a larger time dependent component on the positive side (upside, 

relative to the index). The rest of the homes exhibited roughly a symmetric variance. This implies 

that while the variance seems to be asymmetric overall, this asymmetry is being driven by the 

least and most expensive homes. These finding also have implications for estimates of the 

households' equity position. For the 10 states included in this study, the various specifications 

show middle tier houses have the lowest probability of negative equity and that the most 

expensive houses have the highest probability of negative equity. In addition, there is substantial 

variation in the estimated equity positions of borrowers in different locations and price tiers even 

if they use identical mortgages (10 percent down payment, 8 percent fixed rate, 30-year term, 

originated in the first quarter of 1985). These differences, which can exceed 30 percentage 

points, can be traced back to the state's growth in the HPI, the variance of prices around the HPI 

over time, and the price tier of the house at origination.  

While this paper has focused on the role of the time between transactions and the 

importance of alternative specifications for the variance of the error term, it is also natural to 
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consider whether the underlying house price process is different for alternative segments of the 

housing market. These segments could include a more detailed geographic definition of location 

such as the metropolitan area or even the neighborhood. In addition, different price segments of 

the housing market may experience different patterns of house price appreciation within each of 

these geographical definitions. These issues may have implications on the returns of home 

ownership for different segments of the population as well as the benefits of home ownership as 

a mechanism to increase wealth for low-income households. These and many other econometric 

and public policy issues are beyond the scope of this paper and are potentially fruitful avenues 

for future research.  

 
Notes  

1. The hybrid model was further extended to relax the random walk assumption in both the 

works of Hill et al. (1997) and Englund et al. (1998), who uses a rich Swedish data set.  

2. This paper draws heavily from the Technical Appendix to the OFHEO HPI, which was 

written by Charles Calhoun in 1996. The approach used here is also laid out in the 

documentation of Freddie Mac's CMHPI, which was published by Stephens et al. (1995).  

3. Note that the time period 0, which indicates the time period the index is estimated for, is 

different from �, which was used previously to denote the time period of the second 

transaction.  

4. It is necessary to restrict one of the market index parameters to avoid perfect collinearity 

among the explanatory variables. It is convenient to use 
X � 0, where Y is the base 

period of the reported index.  

5. If the restriction 
& � 0 is imposed in estimation, then @& � 100. 

6. The quadratic usually results in turning points after a number of years, which cause this 

result to reverse as in the case of Illinois and New York. However, few properties in the 

sample experience 15 years between transactions.  

7. We also tested the functional form utilized for the variance estimates using a simple 

nonparametric approach. We generated frequencies by grouping properties by the 

number of years between transactions and calculated the average variance. Our tests 

confirmed that the functional form chosen is appropriate. There was very little difference 

between the estimated parametrical and nonparametric results. The smaller states 

exhibit larger differences, but that is due to noise resulting from small sample sizes.  

8. The expected variance is time varying as defined by the parameter estimates of A, B, C 
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and the time between transactions �� � ��.  

9. We limit the data to 1987 forward, because the previous years have too few transactions 

to generate a reasonable index for the top and bottom tiers.  

10. However, the MSAs contain too few observations to estimate valid indices by tier.  

*The views expressed in this research are those of the authors and do not represent 

policies or positions of the Office of Federal Housing Enterprise Oversight (OFHEO) or 

other officers, agencies, or instrumentalities of the United States Government. While this 

paper discusses some implications of a house price index (HPI) calculated differently 

than OFHEO's HPI, the results are part of a broader examination of related issues. 

OFHEO is not considering making any changes to the HPI at this time. 
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Appendix 
Table 1  
Absolute difference in Z�[\])  
 

 
 
Notes. The absolute difference in ���8
) is defined as the absolute value of the percent difference 
between the expected standard error for properties that appreciated faster than the mean relative to the 
expected standard error for properties that appreciated slower than the mean. For instance, after one year 
since the last transaction in California there is a 1.26 percent difference in the expected standard error 
(above mean versus below mean). This difference decreases to 0.78 percent by 15 years.  
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Table 2  
Average quarterly differences in WRS price indexes*  

 

 
 
*The average difference is calculated as the average percent difference over the time period 1980 through 
the first quarter of 2001.  
†Only quarters since 1990 were used for these calculations. The earlier years are more likely to exhibit 
insignificant differences in the indexes due to fewer transactions contributing to the index.  
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Table 3  
Average probability of negative equity 
 

 
 
Notes. These estimates use the revised expected variance parameters and the revised indices to calculate 
the average probability of negative equity for a hypothetical mortgage (originated in the first quarter of 
1985, 8 percent fixed interest rate, 30 year term, 100 dollar initial value of the home, and a 10 dollar down 
payment) over the first 15 years of the mortgage. Averages are calculated from quarterly estimates.  
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Figure 1 
Expected standard error, by time between transaction 

 
The expected standard error, ���8
�,is depicted on the y-axis and time between transactions on the x-axis. 
To aid the visual presentation, ���8
� above the mean is depicted as a positive number and below the 
mean as a negative number even though it can by definition only be positive. Because at time period 0 the 
actual house price is known ���8
� � 0. In general, as time passes ���8
� is increases. For the 
symmetric estimates ���8
� is the same above and below the index. The asymmetric approach allows 
���8
� above and below the index to be different.  
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Figure 2  
Expected standard error, by time between transaction and price tier 

 
See the note accompanying Figure 1. In addition, the expected standard error, ���8
�, is derived from 
different parameter estimates that allows ���8
� to be different above and below the mean, across time, 
and across different price tiers. ���8
� above the mean is depicted as a positive number and ���8
� 
below the mean is depicted as a negative number even though it can, by definition, only be positive. This is 
done to aid the visual presentation. At time period 0 the actual house price is known so that ���8
� � 0.  
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Figure 3  
Repeat sale price index comparison  
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Appendix 1: Price tiered indexes  
In order to better understand the implications of price tiers, we also estimate the index 

separately by price tier. The price tiers depend on whether the house price is in the top 10 
percentile, bottom 10 percentile, or between the 10th and 90th percentiles. A few states had 
enough transactions to generate a reasonable result, and we focus on those states to shed some 
light on this question. Specifically, those states are California, Illinois, Florida, New York, and 
Washington. California, however, has significantly more transactions than any other state.  

The results for California are pictured in Figure A-1. We graph the annual average 
percent change for each year from March 1987 to March 2001.9 This smoothes the index so that 
results are less influenced by quarterly noise. In California during housing booms (late 1980s, 
late 1990s, and early 2000s) the more expensive properties tend to appreciate more rapidly, and 
during housing busts, the cheaper properties appreciate more rapidly. However, the absolute 
differential seems to be greater during housing busts. That is, during busts, the bottom 10 
percent experience substantially higher appreciation than the middle and upper tiers. Additionally, 
declines in the lower end properties appear to lag declines in the middle and upper tiers. This is 
consistent with conventional wisdom that the more expensive properties in a housing market are 
generally the first to experience the impact of a downturn.  

Appreciation patterns for the three tiers in the state of Washington are quite similar to 
California, potentially due to proximity. Housing prices in New York and Illinois cycle somewhat 
differently than the two West Coast states. However, the data also roughly indicate more rapid 
declines of higher priced properties during busts and more rapid appreciation of these properties 
during booms. A high degree of volatility in the Florida index makes it difficult to analyze, perhaps 
due to heterogeneity across metropolitan areas. However, it is notable that the lower end 
properties appreciate much more rapidly during the most recent period than the higher priced 
homes. This is not consistent with the results of the other four states.  

Using 90 percent confidence bands, we test the statistical differences between the 
indexes for the states mentioned. Table A-1 indicates that the three indexes are statistically 
different in most quarters since 1990 for California. Florida and Illinois also indicate the bottom 
10 percentile is usually significantly different than the middle or upper percentiles. For New York 
and Washington none of the three indexes are statistically different.  

As illustrated in Table A-1, a disadvantage of producing price tiered indices is the loss of 
degrees of freedom that comes from limiting samples to 10 percentile buckets. This influences 
the results of most states to the degree that the data is unreliable. Also, metropolitan area 
heterogeneity makes it difficult to properly assign rationale to tiered state index results.10 
Diffusion parameters take advantage of a broader sample because they are not estimated 
separately for each year. Therefore, we can get solid estimates for these parameters even after 
breaking down the data into tiers. Using this technique of accounting for tiers, we get a more 
accurate index estimate without incurring the cost in terms of lost degrees of freedom.  
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Table A-1 
Percent of quarters price indexes are statistically different* 

 

 
 

*Since the first quarter of 1991.  
 

 
 
Figure A-1  
Annual average percentage change in price index by price tier  
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