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In the U.S., households participate in two very different types of credit 

markets. Personal lending is characterized by continuous risk-based pricing in 

which lenders offer households a continuous distribution of borrowing 

possibilities based on estimates of their creditworthiness. This contrasts 

sharply with mortgage markets where lenders specialize in specific risk 

categories of borrowers and mortgage supply is stepwise linear. The contrast 

between continuous lending for personal loans and discrete lending by 

specialized lenders for mortgage credit has led to concerns regarding the 

efficiency and equity of mortgage lending.  

This paper sheds both theoretical and empirical light on the differences 

in the two credit markets. The theory section demonstrates why, in a 

perfectly competitive credit market where all lenders have the same 

underwriting technology, mortgage credit supply curves are stepwise linear 

and lenders specialize in prime or subprime lending. The empirical section 
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then provides evidence that borrowers are being effectively sorted based on 

risk characteristics by the market.  

 

1. Introduction  
This paper is motivated by two stylized facts that distinguish the 

market for personal credit from the mortgage credit market. First, 

there are fundamental differences in the credit supply function 

between personal loan markets and mortgage markets. U.S. 

households face a continuous supply of personal credit from lenders. 

That is, individual lenders offer personal loans and revolving credit at 

rates that reflect the continuous distribution of consumer credit risk in 

the market. In contrast, mortgage credit is split into “prime” and 

“subprime” markets in which lenders specialize and the effective credit 

supply function is stepwise linear. The more or less continuous pricing 

of credit in personal loan markets contrasts with mortgage markets 

where price increases as a step function of credit risk. Within each step 

of these mortgage markets, there is substantial cross subsidy between 

the best and worst risks.  

For example, IndyMac Bank provides borrowers with a menu of 

risk classifications (level 1 through level 5) to choose from. Level 1, 

the least risky classification, charges a 1.875 percentage point 

premium over the quoted prime mortgage rate of 5.875. The interest 

rate premium for 30-year, fixed-rate owner-occupied mortgages 

increases to 2.25, 2.75, 3.875, and 5.125 percentage points for the 

subsequent levels 2 through 5.1 

A second stylized fact contrasting personal loan markets and 

mortgage markets concerns the relation between credit risk and 

rejection rates. In personal loan markets, rejection rates are higher for 

low-risk, low interest rate credit. In contrast, rejection rates in 

mortgage markets are much higher for subprime lenders than for 

prime lenders. For instance, the U.S. Department of Housing and 

Urban Development (HUD) reports that the rejection rate for subprime 

mortgage applications was 33 percent while for prime applications, the 

rejection rate dropped to 9.1 percent (see Scheessele (2003)).2 Thus, 

in personal loan markets rejection rates vary inversely with interest 

rates and in mortgage markets rejection rates vary directly with 

interest rates.  

These differences in operation between personal credit and 

mortgage credit markets are likely sufficient to raise concerns about 

the role of subprime lending. Concerns have been heightened because, 
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based on simplistic and flawed Home Mortgage Disclosure Act (HMDA) 

measures, the subprime market appears to be growing dramatically to 

almost 9 percent of the total mortgage market, 10.9 percent of 

refinances, and 4.9 percent of home purchase originations.  

In view of this concern, two natural questions arise. First, is 

there a reason to expect, a priori, that the separation of prime and 

subprime lenders and positive association between interest and 

rejection rates arise naturally in an efficient mortgage market? 

Second, does it appear that consumers are sorted into conventional A, 

FHA, and subprime mortgage categories based on characteristics that 

can be related to credit risk—(i.e., does the interaction of mortgage 

markets and borrowers look like risk-based pricing even if that pricing 

is based on a few discrete categories rather than a continuum)? In 

order to answer the first question, we formulate a simple competitive 

model of the mortgage market in which A lenders, which could include 

FHA and conventional lenders, are well established and ask when, if, 

and how B lenders can enter. Can B lenders successfully compete by 

offering a mortgage product that is very close to their A rivals or not? 

To answer the second question, we estimate a model of mortgage 

choice using a full set of applicant characteristics including credit 

score, which is likely to play a crucial role, to determine how well we 

can account for the separation of applicants into conventional A, FHA, 

and subprime mortgages.  

 

2. A model of underwriting cost, self-selection, 

and subprime mortgage credit supply  
We begin with a highly stylized statement of the lender’s 

problem in a world with only BA^ lenders who underwrite each 

applicant and reject all those identified as high risk. The determinants 

of mortgage credit supply are identified and, given that higher risks 

are rejected, credit rationing arises by assumption.3 Then we allow 

type “B” lenders who are willing to consider higher risks than the A 

lenders to enter the market. We determine the conditions under which 

these lenders are able to enter and earn normal profit. Specifically, we 

ask how closely they are able to compete with the A lenders, (i.e., can 

the Bs target borrowers with risks just greater than those targeted by 

the A lenders, or must entry occur at a discrete distance)? In previous 

work on consumer credit, Oreska (1983) demonstrates that a group of 

specialized lenders has an advantage over a general-purpose lender. 

http://dx.doi.org/10.1007/s11146-004-4879-8
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We find that, for plausible values of the parameters, and given 

substantial principal borrowed and underwriting costs in mortgage 

lending, entry occurs at discrete intervals and that the supply of credit 

to subprime borrowers is not continuous.  

 

2.1. A market with only type A lenders  
Assume that mortgage credit is provided by a large number of 

perfectly competitive, zero profit lenders operating under constant 

returns to scale, risk neutrality, and common information sets. These 

assumptions assure that our results do not arise from the technology 

of production or market organization. The mortgage contract is highly 

stylized. Loans are for one period with a balloon payment equal to one 

plus the interest rate due at the end of one period. For borrowers 

accepted in the A market, a payment of IA is due in one year. In cases 

of default, the entire payment of principal and interest is lost.  

Applicants are only differentiated by the default probability 

which equals Di for applicant i. Given that all loans are offered under 

the same terms, there is no possibility for negotiation between 

borrower and lender. In contrast to the reality of mortgage markets, 

loan terms are exogenous. Applicants know both Di and the probability 

of acceptance, αA, at A lenders. Di ranges from 0 to Δ, a constant value 

strictly less than one. Applicants are uniformly distributed on this 

interval. Without loss of generality, we can scale the number of 

applicants to equal 1. As noted above, the loan size is also set equal to 

unity and we further assume that there is no association between Di 

and loan size. Lenders gain information about the Di of an applicant by 

exerting underwriting effort. The cost of underwriting is constant for all 

applicants and equal to U, of which β is the fraction paid by the 

applicant in the form of an application fee, so that (1 - β)U is the cost 

borne by the lender for each applicant. We impose upon the model the 

stylized fact that application fees cover a fraction, far less than half, of 

average underwriting cost.  

Lenders have maximum acceptable default probability (D) equal 

to Θ for the A market. They accept all applicants whose Di, where i 

indicates the individual applicant, is estimated, after underwriting, to 

be less than or equal to Θ. For applicants with Di less than or equal to 

Θ acceptance is certain, α = 1, regardless of the amount of 

underwriting (there is no type II underwriting error). For those with Di 

strictly greater than Θ, the probability of acceptance in the A market is 

http://dx.doi.org/10.1007/s11146-004-4879-8
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given by αA = ΓΘ/Di, where Γ is a between zero and unity, and the 

maximum value of Di is Δ so that α is bounded from below by ΓΘ/Δ. 

Note this implies that, for a given U, the rejection rate rises with Di.  

Borrower self-selection is a crucial element of the model. Given 

that applicants know, Θ, αA (based on their knowledge of U), and ΙA, it 

could be that some high-risk applicants, (i.e., those with Di close to 

D), would not apply at A lenders. We ignore this possibility in this 

version of the model. But, when a new entrant, the B market lender, 

with a cutoff risk level φ strictly greater than Θ tries to enter the 

market, we assume that high-risk borrowers will be aware of the terms 

offered by this lender and self-select accordingly. In actual practice the 

rejection of qualified applicants is an issue of concern to lenders, but 

does not alter our fundamental results.  

It is useful to begin to solve the problem of a type A lender by 

writing the expected profit the firm receives from any individual 

applicant, i, as:  

 

(1) 

 

where αA is the acceptance probability; ΙA –Ι is the interest spread over 

cost on A mortgages; Di is expected default probability which is equal 

to expected loss because the loan amount is normalized to 1; and the 

final term is the portion of underwriting cost borne by the lender. Note 

that competition and constant returns drive πi to zero for the average 

loan, but not for every loan.  

Overall profit of the A lender, maximized at zero, is the integral 

over all applicants.  

 

(2) 

 

As shown in equation (2), it is useful to partition applicants into two 

groups. The first group includes applicants who are always accepted 

(Di ≤ Θ, α = 1) and the second group includes applicants who are 

accepted a fraction of the time depending on how much the 

underwriting standards are violated (Di > Θ, αA is a decreasing 

function of Di and increasing in Θ). This will prove very convenient 

throughout our analysis.  

http://dx.doi.org/10.1007/s11146-004-4879-8
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Substituting equation (1) into (2), solving for πA, taking definite 

integrals, evaluating, and collecting terms gives:  

 

(3) 

 

Solving for ΙA that yields normal profit to A lenders, we find: 

(4) 

 

Credit supply implied by equation (4) has an intuitive 

explanation. ΙA equals cost of capital plus a markup to cover two costs 

of A lending. The first term, which can be written 

, reflects expected credit losses due to 

default. The numerator is positive and increasing in Δ, and is also 

positive and increasing in Θ whenever Γ is less than 1/2. The 

denominator is also positive, recalling that Δ/Θ > 1 > Δ > Θ > 0 and 

increasing in Δ while the effect of Θ on the denominator is ambiguous. 

The second term simply reflects the cost burden of underwriting which 

depends on the fraction of all applicants accepted and hence should 

rise with Δ and fall with Θ. These two effects reveal the lender’s 

problem. Raising Θ has two opposite effects on costs. Increasing Θ 

raises expected default losses but it also lowers the fraction of 

applicants rejected and hence lowers the expected cost of underwriting 

applications.  

It is also instructive to consider what happens to ΙA if applicants 

self-select so that no one with Di > Θ applies. In this case, πA depends 

only on the integral of profit over the 0 to Θ interval and the second 

integral is dropped. The result is:  

 

(5) 

 

http://dx.doi.org/10.1007/s11146-004-4879-8
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The intuition of equation (5) is even more straightforward. Required 

interest is equal to cost of funds, Ι, plus average default loss  plus 

application cost when there are no rejections.  

 

2.2. Entrance of B lenders in the presence of incumbent 

A lenders  
As noted above, the B lender has the same constant returns to 

scale technology as lender A and entry by B lenders will drive their 

economic profit to zero, as it does in the A market. The only 

characteristic that differentiates a B lender from an A lender is the 

target risk level of applicants. B lenders will tolerate default risk of φ 

strictly greater than Θ. Applicants recognize this difference in lending 

standards, and all those DΙ with strictly greater than Θ will apply at B. 

This assumption is favorable to the entrant, implying that all applicants 

switch from A to B when they perceive a higher probability of rejection 

at A than B, regardless of the higher cost of borrowing. However, this 

is a justifiable assumption given that the goal here is to analyze credit 

supply by B under conditions most favorable to the entrant.4 We now 

proceed to characterize the nature of the credit supply by such lenders 

assuming that A lenders are passive.  

Analysis of B lenders begins by writing expected profit from 

applicant i as: 

(6) 

 

where αB is the acceptance probability; ΙB – Ι is the interest spread 

over cost on B mortgages; Di is expected default probability (which is 

again set equal to expected loss because the loan amount is 

normalized to 1); and the final term is the fraction of underwriting cost 

borne by the lender. Note that competition and constant returns drive 

to zero.  

The overall profit of the B lender, maximized at zero, is the 

integral over all applicants, who in this case range from Θ to Δ.  

 

(7) 

 

http://dx.doi.org/10.1007/s11146-004-4879-8
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As before, it is useful to partition applicants into two groups—

those who meet the underwriting requirements and those who do not. 

Those who meet the underwriting requirements are defined as: 0 < Θ 

< Di ≤ φ and α = 1. Those who violate the underwriting standards are 

defined as: Di > φ and αB is a decreasing function of Di and an 

increasing function of φ.  

Substituting equation (6) into (7), taking the definite integrals, 

evaluating, and collecting terms we have:  

 

(8) 

 

Solving for the value of IB that yields normal profit to B lenders, 

we find:  

 

(9) 

 

ΙB must cover the cost of funds Ι, the cost of expected default losses 

 , and the cost of 

underwriting {(Δ –Θ)(1 – β)U}/{φ[1 + Γ(ΙnΔ/φ)] – Θ} . Comparing 

the value ΙB implied by equation (9) when φ = Θ, with ΙA given by 

equation (4), we find that B lenders will not be able to attract low-risk 

applicants away from A lenders, because ΙA is strictly less than ΙB.  

Less intuitive is the effect of φ on the supply price of credit, ΙB, 

by B lenders. Note that, in the relevant range, the denominator of the 

expression involving default and underwriting costs is monotonically 

increasing in φ. The effect of φ on the numerator is ambiguous, but, 

simulation results shown in Figure 1 indicate that using plausible 

values of the parameters, over a significant range of Δ > φ > Θ that 

 < 0. Thus the supply price of credit from B lenders falls when those 

lenders adopt more lenient lending criteria! The reason for this 

counterintuitive result is that the increase in the cost of expected 

default losses as φ rises is overcome by the fall in the average 

http://dx.doi.org/10.1007/s11146-004-4879-8
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underwriting cost. Average underwriting cost falls as φ rises because 

the fraction of applicants accepted increases while total underwriting 

cost remains constant. Total underwriting cost is constant because all 

potential borrowers will apply regardless of the interest rate charged 

by the B lenders. This can be seen in Figure 2, which graphs the 

values of the average underwriting cost and the average default cost, 

as well as the total average cost of lending. Competition forces B 

lenders to set their credit limit, φ, at the point that minimizes the 

average cost of lending and the interest rate charged to borrowers.  

As long as  < 0, competitive forces will make B lenders 

continue to raise φ (i.e., lower underwriting criteria). This leads to our 

central result, B lenders will serve a market that is separated in credit 

risk from that served by A lenders by a significant gap in 

creditworthiness. We could extend this argument further and include a 

C lender with similar results. In such a model, the final market 

equilibrium would consist of a discrete number of credit alternatives 

separated by significant gaps in creditworthiness. Based on this 

argument, we conclude that the observed gap between prime and 

subprime lenders and the discrete nature of mortgage credit supply is 

not inconsistent with a perfectly competitive mortgage market.  

Furthermore, our results also generate the second stylized fact 

separating personal loan and mortgage lending. Rejection rates are an 

increasing function of credit risk in our model because the significant 

cost of rejection for mortgage credit, including both the borrower’s 

share of underwriting cost and transactions costs of failing to achieve 

financing, cause high-risk applicants to self-select away from prime 

lenders. The distinct separation of lenders into A and B categories 

facilitates this self-selection and leaves prime lenders with lower 

rejection rates.  

Why is there a contrast between mortgage credit and credit 

cards, which provide risk-based pricing more or less continuously? The 

credit limit on credit cards serves to limit risk and allows borrowers to 

establish creditworthiness while limiting potential loss. Such credit 

limits are not appropriate for mortgage lending and are particularly 

problematic for consumers who are often seeking cash-out refinancing.  
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3. Credit history, mortgage, and demographic 

data  
Table 1 provides descriptions, mean, minimum, maximum, and 

the standard deviation of each variable. Due to data availability, the 

data are limited to home purchase mortgages only and do not include 

refinances or cash-out refinances. The data in this study came from 

four sources. First is the F42 database of the Federal Housing 

Administration (FHA), which contains detailed loan information and 

household characteristics for FHA loans, but no credit history. Second 

is a real estate transaction database from Experian, which has detailed 

loan information and household identifiers (e.g., address of the 

property, amount of the loan, value of the property, loan-to-value 

(LTV) ratio, and type of loan), but no information on household 

characteristics. It contains a census of conventional loans in each 

county covered by Experian. This database was built from property 

transfer records at the local level. The third source is the individual 

borrower’s credit history from Experian. This credit history was 

matched to FHA and conventional loans by name, Social Security 

number, and property address, with all identifying information 

subsequently deleted. The fourth source is HMDA data that were 

matched by loan amount, census tract, and lender identification to 

conventional Experian loans, to provide income and racial 

characteristics of households securing conventional loans.  

To separate the subprime and prime conventional loans, a list5 

of subprime lenders that report to HMDA created by the Office of 

Policy, Development, and Research (PD&R) in HUD (see Scheessele 

(1998)) was used. This list was created from trade publications; 

therefore, it may not include all subprime lenders that report to HMDA. 

In addition, not all subprime lenders report to HMDA. Finally, the list is 

unable to separate prime from subprime lending by HMDA reporters 

that traditionally originate both types of loans.  

The sample includes fixed-rate loans originated between 

February 1996 and July 1996, excluding loans for multifamily 

properties, refinancing, non-owner occupancy, and loans made to 

investors. The loans were matched by Experian to credit history files 

archived on March 31, 1996, by address, name, and Social Security 

number. This date was chosen to ensure that the credit data did not 

include information on the new mortgage, but were as current as 

possible. Observations with missing or obvious data coding errors were 

http://dx.doi.org/10.1007/s11146-004-4879-8
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excluded.6 A stratified sampling scheme varied sampling rates 

inversely with the FHA market share in each metropolitan statistical 

area (MSA). In subsequent statistical analysis, the effects of the 

sample stratification were offset by weighting each observation 

inversely to its sampling probability. Specifically, conventional loans 

were sampled at one-third of the FHA sampling rate.  

 

3.1. Down payment, income, and credit history  
Because FHA lending standards require very low down payments 

and even insure mortgages with negative equity once insurance 

premiums have been financed, we would expect mean FHA LTVs to be 

very high. Therefore, it is not surprising that Table 2 shows that the 

average down payment for subprime loans was 16.2 percent—well 

above the FHA average of 5.7 percent. In addition, prime borrowers 

have better payment-to-income ratios (PTIs) and Fair Isaac 

Corporation (FICO) credit scores. Note that subprime borrowers lie 

between FHA and prime borrowers, on average, in terms of LTV, PTI, 

and credit scores.  

While FHA serves borrowers who are wealth constrained, as 

shown in Table 2, the borrowers using subprime lenders appear to be 

more diverse and not as easily characterized. The answer might lie in 

the ability of the subprime lender to use discretion and unique lending 

programs that may not require that the borrower’s income be verified 

or that ignore the standard ratios (LTV or PTI) normally used in the 

underwriting process. Although a borrower who does not provide 

documentation supporting a steady income stream might not qualify 

for prime or FHA financing, this does not imply that the borrower has 

little wealth or a poor credit history.  

 

4. Econometric specification and results  
The choice model is estimated for a sample of 48,105 

households that purchased homes in 39 MSAs from February through 

July 1996. Because it can be argued that LTV and mortgage choice are 

jointly determined, LTV is estimated using instrumental variables. The 

predicted LTVs are then used to generate any variables that are 

affected by LTV.7  
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4.1. Specification  
The following specification, taken from Hendershott et al. (1997) 

and Gabriel and Rosenthal (1991), is used to estimate the conditional 

prime, FHA, subprime choice model:  

 

Cj = β0 + β1Fj + β2Θj + β3Dj + β4Lj + εj  (10) 

 

where Fj is a matrix of financial-monetary variables; Θj is a matrix of 

credit history variables; Dj is a matrix of demographic variables; Lj is a 

matrix of location-specific variables; and εj is a normally distributed 

error term. These matrixes are discussed in turn below, and Table 1 

provides summary statistics for each explanatory variable as well as a 

brief description and the sources of data.  

 

4.2. Financial-monetary variables  

One consideration for the homebuyer is the relative cost of the 

mortgage. We focus on the costs to the homebuyer that are derived 

from differences in mortgage insurance rates and interest rates. For 

each buyer, we construct the present discounted value of interest and 

mortgage insurance payments for each mortgage option. For mortgage 

insurance fees, we assume payments stop when equity reaches 20 

percent and that mortgage payments are made on time with no 

house-price appreciation. The borrower’s credit is graded using the 

system reported by the Sub-Prime Funding Corp.’s Underwriting 

Manual. We rely on credit history variables such as late payment rates 

on revolving, installment, and mortgage credit as well as indicators of 

judgments, liens, or bankruptcy. In this fashion, we estimate what the 

best available interest rate would be from a subprime lender. Using 

estimates of interest rate spreads generated by Wall Street firms (see 

Weicher (1997)) and the Mortgage Guaranty Insurance Corporation 

survey of credit terms and interest rates (see Steinbach (1998)), rates 

are increased over prime rates by 200 basis points for B-rated 

borrowers, 300 basis points for C-rated borrowers, and 500 basis 

points for D-rated borrowers. Because we estimate that more than 95 

percent of FHA borrowers financed the upfront mortgage insurance 

premiums in 1996, we assume this is true for everyone when 

calculating the cost of an FHA-insured mortgage. To measure the 

relative cost of prime mortgage insurance versus FHA insurance 

(Pc/Pf), we create the ratio of the present discounted value of the 
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insurance fees. To measure the relative costs of FHA mortgage 

financing and subprime mortgage financing, we create a ratio of the 

discounted interest costs for FHA mortgage financing to the discounted 

interest costs of subprime mortgage financing (Pf/Ps). The specification 

uses these ratios to test the importance of relative prices in the 

mortgage choice framework.  

A measure of the permanent income (yj) of the individual is 

estimated from the cross section of homebuyers and follows the basic 

method used by Zorn (1993). A simple model of current income 

provides parameter estimates for age variables that are used to 

estimate a stream of income through the age 65. This stream is 

discounted at the rate of 7 percent and transformed into an annuity (a 

coupon bond) that matures when the individual is 65 years old. The 

annuity provides the estimated value of the individual’s permanent 

income.8  

The amount of debt (dj) is created from the credit history data 

and is defined as the sum of current revolving debt and non-real 

estate installment loans. It is expected that increases in the non-real 

estate debt burden will make it more difficult for borrowers to qualify 

for the lower cost mortgage.  

The value constraint (vj) indicates if the household can purchase 

the desired amount of housing or if the household is constrained by 

income and/or down payment constraints. In spirit, we follow the 

approach of Haurin (1991) and Hendershott et al. (1997).  

The utility maximizing amount of housing that a household 

would like to own, in the absence of any mortgage financing 

constraints, is determined by maximizing a utility function subject to a 

budget constraint. This ignores the income and wealth constraints 

imposed by lending standards. Following Pennington-Cross and Nichols 

(2000), to determine the unconstrained demand, we estimate a 

reduced-form, house-price equation over unconstrained homeowners, 

defined as households who purchase a home with down payments 

greater than or equal to 30 percent of the value of the home, PTIs of 

less than 20 percent, and FICO scores above 700. Using the estimated 

non-constrained coefficients, the desired house price is calculated for 

all remaining homeowners. If the estimated house price is greater than 

the actual house price, the homeowner is defined as value constrained 

(vj = 1)  

  

http://dx.doi.org/10.1007/s11146-004-4879-8
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Real Estate Finance and Economics, Vol. 30, No. 2 (March 2005): pg. 197-219. DOI. This article is © Springer 
and permission has been granted for this version to appear in e-Publications@Marquette. Springer does not grant 
permission for this article to be further copied/distributed or hosted elsewhere without the express permission from 
Springer. 

14 

 

4.3. Credit history variables  
A variety of credit measures are tested. The FICO score (fj), one 

of the more common aggregate credit measures available, is used as a 

summary variable in the analysis.  

Using Freddie Mac’s Gold Measure Worksheet, we create the 

following more detailed credit history variables:  

 

 anyj is 1 if the borrower has any delinquencies or derogatory 

information ever or if fewer than five credit lines have ever been 

open, otherwise anyj is 0;  

 revj is 1 if the borrower does not have a revolving credit line or 

if total revolving balance is greater than $500, otherwise revj is 

0;  

 fewj is 1 if the borrower has fewer than three credit lines open 

ever, otherwise fewj is 0;  

 delj is 0, 1, 2, 3, or 4 if the borrower has respectively 0-10, 11-

15, 16-40, 41-60, or > 60 percent of credit lines ever 30 days 

delinquent or worse;  

 pubj is 1 if there are any public record items (e.g., bankruptcy) 

on the credit report, otherwise pubj is 0; and  

 inqj is the number of inquiries in the past six months divided by 

2.  

 

All of these variables have been designed so that positive values 

indicate worse credit history and are expected to increase the 

probability of selecting FHA or subprime financing.  

 

4.4. Demographic characteristic variables  
Demographic characteristics are represented by dummy 

variables indicating borrower race (African-American bj, Indian ij, Asian 

aj, Hispanic hj) and marital status (mj). A spatial segregation version of 

the Gini coefficient (gj) is also included to measure the extent of racial 

segregation in each MSA. A zero value indicates complete racial 

integration of the group, while a value of 100 indicates complete 

segregation of the racial group.  
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4.5. Location variables  
A variety of location variables are used to describe the type of 

market in which the loan was made. Variables used to describe the 

housing market include a dummy variable indicating that the purchase 

is made in an “underserved” census tract (unsj), as defined by HUD; 

the one-year percent change in Freddie Mac’s reported repeat sales, 

home-price index (Δpj); and the standard deviation of Δpj for the last 

10 years (σΔpj). Variables from the U.S. Bureau of Labor Statistics 

reflect the condition of the local labor market and are the average 

unemployment rate (uj) for the last five years for the MSA and the 

change in the unemployment rate in the last year (Δuj). Other 

variables measuring area housing cost and the FHA loan limit include a 

dummy variable indicating whether HUD defined the MSA as a high-

cost area (hcj) and the ratio of FHA’s loan limit divided by DRI’s 

estimate of the median house price for the MSA (11/hpj). Indicators of 

increased risk associated with a location may increase the probability 

that a borrower will use FHA or subprime financing.  

 

4.6. Estimation  
Two sets of results are reported. Table 3 provides the estimated 

coefficients from the multinomial logit estimation and Table 4 provides 

the ordered logit results. The general specification is as follows:  

 

Cj = β0 + β1Fj + β2Θj + β3Dj + β4Lj + εj  (11) 

 

where Fj is a matrix of financial-monetary variables; Θj is a matrix of 

credit history variables; Dj is a matrix of demographic variables; Lj is a 

matrix of location-specific variables; and εj is a normally distributed 

error term as discussed above. For each of the estimation techniques 

(multinomial and ordered), two specifications are reported—one with 

the FICO score and the other with more detailed credit history.  

Table 4 shows that ordering is statistically valid (as indicated by 

the mu of index), but the multinomial approach has better explanatory 

power. The log of likelihood is provided as a relative goodness-of-fit 

measure, and t-statistics indicate the significance of each parameter 

estimate with critical values of approximately 1.95 and 1.65 for the 5 

percent and 10 percent levels, respectively. Tables 5 and 6 provide 

estimated marginal effects of the explanatory variables calculated at 
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their means. All results discussed refer to the multinomial specification 

with FICO scores, unless otherwise noted.  

Financial costs play an important and varied role in the choice of 

prime, FHA, and subprime mortgage financing. For instance, 

homebuyers who are value-constrained are more likely to use FHA 

than prime and subprime financing. Borrowers with higher permanent 

income are more likely to use prime financing, while borrowers 

carrying a lot of non-real estate debt are more likely to use FHA and 

subprime financing. But for all measures, the magnitude of the 

responses is always substantially higher for FHA and conventional 

choices. For instance, Figure 3 shows that as the amount of non-real 

estate debt increases from the mean of $10,842 to $48,000, the 

probability of selecting prime financing drops from 80 percent to 56 

percent, while the probability of selecting FHA increases from 18 

percent to 42 percent, and subprime decreases from 1.77 percent to 

1.50 percent.  

As the cost of conventional mortgage insurance increases 

relative to FHA mortgage insurance, borrowers tend to switch to FHA-

insured mortgages. This result is consistent for both the multinomial 

and ordered logit models. But the result is not so consistent for the 

relative cost of FHA and subprime lending.  

The ordered logit estimation finds the expected result that, as 

the interest cost of FHA financing increases relative to subprime, 

borrowers are more likely to use subprime financing and less likely to 

use FHA financing. But the multinomial estimates find the opposite 

result. In addition, when the full array of credit history indicators is 

included, the relative cost of FHA and subprime is no longer 

statistically significant. This may indicate measurement problems in 

the subprime price variation or that some households that use 

subprime lenders cannot respond to prices because they are being 

constrained by unobserved aspects of their credit history or other non-

price rationing mechanisms.  

While Figure 3 shows that the amount of non-real estate debt 

can more than double the probability of using FHA, the changes in 

credit score dwarf this effect. Figure 4 shows that a decrease in a 

borrower’s FICO score—from a mean of 693 to 406, the lowest 

recorded score—increases the probability of choosing FHA from 20 

percent to 68 percent. Over the same range, the probability of using 
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prime financing decreases from 78 percent to 28 percent, and 

increases for subprime—from 1.77 percent to 3.10 percent.  

The detailed credit history variables show that FHA is a more 

likely choice for borrowers with poor credit, no matter how their credit 

history is tarnished. In contrast, the impact of credit history is more 

varied on the use of subprime lending. Only two of the six indicators of 

credit history have the anticipated sign and significance. For instance, 

if the borrower has ever had any delinquencies the probability of using 

subprime decreases. But, the results for the FICO credit score and 

indicators of the level of delinquency and public record items are very 

similar for both FHA and subprime mortgage selection. In fact, 

borrowers who are more than 30 days late on 60 percent or more of 

their loans are more than twice as likely to use FHA or subprime 

financing, as compared with those who are at least 30 days delinquent 

on less than 10 percent of their loans.  

The borrower demographic results indicate that (even after 

controlling for borrower income, debt, and credit history), racial 

groups behave differently. For instance, African-Americans, Indians, 

and Hispanics are more likely to use FHA and subprime financing than 

Whites. In contrast, Asians are less likely to use FHA, but more likely 

to use subprime financing than Whites.  

Location plays a role in mortgage choice. In general, prime 

financing is more likely when house prices are increasing or when the 

unemployment rate is decreasing in the MSA. In contrast, while the 

choice of prime and FHA financing is unresponsive to the volatility of 

house prices ( ), the probability of choosing subprime financing 

increases from 1.77 percent to 2.9 percent when the volatility is 

increased from the mean of 2.3 percent to the maximum of 5.8 

percent.  

In locations considered high cost, the probability of choosing 

FHA is 6 percent higher. In addition, in areas where FHA sets the loan 

limit so that a large portion of the market is eligible for FHA 

mortgages, the probability of using FHA also increases. This is true 

despite the fact that this study includes only loans that are FHA eligible 

(i.e., loans under the FHA loan limit). These results support the 

hypothesis that, when the FHA market is defined as only the bottom 

part of the market, it may have difficulty generating enough business 

for lenders to overcome the fixed costs of learning and staying up with 

FHA programs and/or that it may be difficult to find homes that meet 
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FHA’s habitability requirements in the lowest priced portion of the 

market.  

 

5. Conclusions  
Unlike other forms of credit, such as credit cards, risk-based 

pricing has not provided a smooth continuum of mortgage costs. 

Instead, the mortgage market is segmented into discrete risk 

classifications. Furthermore, rejection rates vary directly with interest 

rates in the mortgage market and inversely in the personal loan 

market. The theoretical model in this paper demonstrates that the 

discrete levels of mortgage credit supply and the positive relationship 

between interest and rejection rates arise from a separating 

equilibrium in the mortgage market. This separation does not rely on 

technology (returns to scale) or market power, but the simple 

observation that processing an application through the underwriting 

process is costly, and is only partially covered by the application fee. 

When a subprime lender tries to locate too close (in credit risk space) 

to prime lenders, the application costs overwhelm credit losses to the 

point where it is less costly to lower credit standards and accept a 

higher proportion of applicants. Equilibrium requires that the subprime 

lender move a substantial distance from prime lenders, thus leading to 

a discrete and segmented mortgage market.  

The econometric results show that the use of prime, FHA, and 

subprime lending is related to indicators of creditworthiness. For 

instance, credit history plays an important role in the selection of 

prime, FHA, or subprime mortgage financing. Other measures of credit 

risk, such as income, non-real estate debt, and value constraints are 

also very important determinants of FHA use, but play a smaller role in 

determining the use of subprime financing.  

Sensitivity tests show that no one indicator can make subprime 

a likely choice for any household. For subprime to be a likely choice 

requires that all of a household’s risk indicators must be very negative. 

It also may be very difficult to identify the characteristics that make 

subprime lending a viable option to borrowers because not all 

underwriting criteria are captured in the estimation, and the sample of 

subprime loans is quite small. For instance, subprime lenders can 

make loans to people who do not want to document their income or 

source of down payment. But our results do indicate that a homebuyer 

is more likely to use subprime lending when risk indicators such as 
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credit history and location are worse. Future research on subprime 

loan choice would benefit if loans could be characterized based on the 

total cost borne by the applicant, or borrower, instead of a simple 

lender classification.  
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Notes  

1. Downloaded from Indymacbank.com on 11/19/02 for 30-year, fixed-rate 

owner-occupied mortgages.  

2. HUD creates a list of subprime specialists that is used to define loans as 

prime or subprime. These figures must be viewed with some 

skepticism because reporting to HMDA has changed over time 

(mortgage bankers especially) and acquisitions of subprime lenders by 

depositories in the 1990s transformed them into mortgage banking 

subsidiaries. These factors are likely to lead to an over-statement of 

subprime growth and make it very difficult to accurately measure the 

size of the subprime market. In addition, it is clear that the HMDA 

approach does not include all subprime loans. For instance, in 1995 

the Inside Mortgage Finance estimate of subprime market share, using 

the dollar value of loans, is almost 7 percentage points higher than the 

HMDA estimates in 1995. By 1998, this spread had decreased to just 

over one point. This may indicate changing reporting in HMDA, 

changing methodology by Inside Mortgage Finance, or the changing 

market structure of subprime lending.  

 

3. In this paper, risk is defined solely from the perspective of credit risk due 

to default. The value of a mortgage is determined by the expected 

cash flow from the instrument and variance of the expected cash flow. 

Therefore, prepayments of mortgages also affect the value of a 

mortgage whether the prepayment is due to changes in interest rates 

or other mobility issues. See Pennington-Cross (2003) for a discussion 

of the prepayment characteristics of subprime mortgages.  
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4. There are typically two sets of underwriting costs. The first set of costs, 

which has fairly low marginal costs, includes the costs of automated 

underwriting. The second set of costs, which is labor and time 

intensive, is the process of verifying income, assets, employment, and 

the physical state of the property.  

5. Office of Policy, Development, and Research (PD&R) in the United States 

Department of Housing and Urban Development (HUD).  

6. Incomplete data was defined as having missing values for one or more of 

the key variables used in the analysis: mortgage amount; property 

value; date of closing for the mortgage; interest rate; term of the 

mortgage; indicator for a first-time home buyer; purpose of the loan; 

and the name, Social Security number, income, and assets of the 

borrower. Some variables were not missing data, but instead 

contained data entry errors (e.g., LTVs greater than 300 percent or 

income of $20). The following set of conditions was used to identify 

any observations containing obvious data errors: FICO scores greater 

than 850 or less than 360; LTV greater than 110 percent or less than 

20 percent; annual income of borrower greater than $1,000,000 or 

less than $1,000; age of borrower less than 18; and a loan amount 

less than $5,000.  

7. See Pennington-Cross and Nichols (2000) for details of the estimation 

technique.  

8. Since we do not have data on assets, income is estimated up to retirement 

age or 65 years of age and it is assumed that there is no par or face 

value payment at term (i.e., no retirement savings). A log-log form is 

used. See Pennington-Cross and Nichols for more details.  
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Appendix  
Appendix 1. Matching experian real estate transaction to HMDA data  

Two key variables—race and income of borrower—were added to the 

Experian non-FHA home-purchase information by finding the corresponding 

mortgages in the Home Mortgage Disclosure Act (HMDA) database.  

The Experian database includes all non-FHA home-purchase mortgages 

made during the months of February 1996 through July 1996. HMDA and 

Experian use different sets of lender codes, so a crosswalk of HMDA and 

Experian lender codes is created. Lender codes (HMDA and Experian) were 

considered to be equivalent for a pair of lenders when, at least five times in a 
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single county, a single loan in the Experian file for a given lender code and a 

single loan in the HMDA file for a given lender code had the same loan 

amount within the same census tract. After this process, Experian loans that 

had multiple matches with HMDA were visually inspected (sorted by ZIP Code 

of lender and name of lender) to identify loans with the equivalent lender 

names. This crosswalk between HMDA and Experian lender codes was then 

used to match HMDA and Experian loan records. A loan was considered 

matched if it was the only loan that had the same loan amount and the same 

lender within a census tract. 

 

Appendix 2. Calculation of user cost measure  

The user cost of ownership is defined as follows:  

 

(12) 

 

where ty is the marginal income tax rate; r is the nominal mortgage rate (FHA 

rate is available on sample records and national average for the month of 

origination is used for conventional loans); tp is the marginal property tax 

rate; πe is the expected inflation in housing prices which is assumed to be 

myopic; δ is the economic depreciation rate which is defined as g * d; g is the 

structure-land ratio which is assumed to be 0.83; d is the depreciation rate, 

which is assumed to be 0.017 following Linneman and Wachter (1989); and s, 

m, and j indicate that the variable is geographically defined at the state, MSA, 

and individual level, respectively.  

For FHA borrowers, the marginal income tax rate (ty) is estimated 

based on the characteristics of each individual. Each borrower is assigned to 

one of three filing status categories—married, single, or head of household. 

All married persons are assumed to file jointly; non-married persons with 

dependents are assumed to file as head of household; and non-married 

persons with no dependents are assumed to file as single. Income levels are 

reduced by the deductions allowed by filing status, number of dependents, 

mortgage interest payments, and the estimated amount of state taxes paid. 

State taxes are based on the same information as federal taxes and the tax 

schedule of the state of residence. Total itemized deductions are defined as 

the sum of the interest rate deduction and state taxes. The federal taxable 

income is calculated using the minimum of itemized or standard deductions. 

In addition, a deduction of $10,000 is applied to all retirees (age greater than 

or equal to 65) to account for the non-taxable portion of Social Security 

benefits. Once the total federal taxable income is defined, the marginal tax 

rate is calculated using the appropriate schedule for the filing status of the 

borrower.  

To estimate the marginal income tax rate of individuals buying non-

FHA homes, we use the Current Population Survey (CPS)-reported federal tax 

http://dx.doi.org/10.1007/s11146-004-4879-8
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Real Estate Finance and Economics, Vol. 30, No. 2 (March 2005): pg. 197-219. DOI. This article is © Springer 
and permission has been granted for this version to appear in e-Publications@Marquette. Springer does not grant 
permission for this article to be further copied/distributed or hosted elsewhere without the express permission from 
Springer. 

23 

 

rate average by income class groups for homeowners. Property tax rates ( ) 

are created at the state level for the last year available (1994), using state 

and local property tax revenues and estimates of the total valuation of 

property:  

 

(13) 

 

where Ts is the property tax revenue for the state and local governments; KHs 

is the number of existing houses; PHs is the median price of existing homes; 

and s is the state. Data on tax revenue are collected by DRI and are available 

from the U.S. Department of Commerce, Bureau of the Census, Government 

Finances. The number of existing homes is collected from DRI and is available 

from the U.S. Department of Commerce, Bureau of the Census. Median house 

prices were estimated by DRI and are derived from the Federal Housing 

Finance Board Mortgage Interest Rate Survey and median prices released by 

the National Association of Realtors. 

 

Figure 1: Market Segmentation 

 
The following parameters are used to create the stimulations in Figure 1 and 2: Δ = 

0.2; Θ = 0.05; Γ = 1; b = 0.2; U = 0.05; and Ι = 1.05. 

http://dx.doi.org/10.1007/s11146-004-4879-8
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Real Estate Finance and Economics, Vol. 30, No. 2 (March 2005): pg. 197-219. DOI. This article is © Springer 
and permission has been granted for this version to appear in e-Publications@Marquette. Springer does not grant 
permission for this article to be further copied/distributed or hosted elsewhere without the express permission from 
Springer. 

24 

 

 

Figure 2: Average Cost Curves 

 
The following parameters are used to create the stimulations in Figure 1 and 2: Δ = 

0.2; Θ = 0.05; Γ = 1; b = 0.2; U = 0.05; and Ι = 1.05. 
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Figure 3: Mortgage Choice and Non-real Estate Debt 
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Figure 4: Mortgage Choice and FICO Score 
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Table 1: Data Description 

 
Notes: Explanation of Source: 1 = loan level data from the Experian transaction 

database as matched to HMDA and FHA’s F42 database; 2 = Experian credit history 

reports; 3 = United States Census Bureau; 4 = general HUD sources; 5 = Freddie 

Mac; 6 = United States Bureau of Labor Statistics; 7 = Standard and Poor’s DRI; a 

Value derived from auxiliary regression results. 
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Table 2: Mean Ratios and Scores by Mortgage Choice 

 
 

 

Table 3: Multinomial Logit Model of Mortgage Choice 
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Table 4: Ordered Logit Model of Mortgage Choice 
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Table 5: Marginal Probabilities: Specification I 
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Table 6: Marginal Probabilities: Specification II 
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