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Abstract:  
Two important components in the selection of an admittance that facilitates force-guided 
assembly are the identification of: 1) the set of feasible contact states, and 2) the set of 
configurations that span each contact state, i.e., the extremal configurations. We present a 
procedure to automatically generate both sets from CAD models of the assembly parts. In the 
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procedure, all possible combinations of principle contacts are considered when generating 
hypothesized contact states. The feasibility of each is then evaluated in a genetic algorithm 
based optimization procedure. The maximum and minimum value of each of the 6 
configuration variables spanning each contact state are obtained by again using genetic 
algorithms. Together, the genetic algorithm approach, the hierarchical data structure 
containing the states, the relationships among the states, and the extremals within each state 
are used to provide a reliable means of identifying all feasible contact states and their 
associated extremal configurations. 
 

SECTION I. 

INTRODUCTION 

In the development of automated assembly strategies, the types of part misalignment that may 
occur must be known. The subset of configuration space (C-space) that corresponds to 
contact (the C-space obstacle), however, is very difficult to describe even for planar cases [1]. 
As a consequence, recent research efforts [2], [3], [4], [5] have been directed toward identifying a 
set of topological descriptions of contact for polygonal and polyhedral parts. These “high-level” 
topological descriptions are referred to as contact states. 

In addition to contact states, the sets of configurations that bound translational and rotational 
misalignment in each contact state also play a key role in the design of the manipulator 
admittance that achieves force-guided assembly [6]. An admittance designed for force guidance 
maps the contact force associated with a type of misalignment into a motion that reduces that 
misalignment. The configuration “extremals” represent configurations that have extreme values 
in misalignment information within the specified contact state. As described in [6], by imposing 
conditions on the admittance at a finite number of representative “extremal” configurations, 
force-guided assembly is ensured for all of the infinite number of intermediate configurations. 

A. Related Work 

Previously, Xiao and Ji [4] systematically described contact states in terms of Principle Contacts 
(PCs). A PC describes contact between any two surface elements (i.e., faces, edges, or 
vertices) and is denoted as 𝑃𝑃𝐶𝐶𝑖𝑖 = {𝑠𝑠𝑒𝑒𝑝𝑝𝐴𝐴 − 𝑠𝑠𝑒𝑒𝑞𝑞𝐵𝐵}, where 𝑠𝑠𝑒𝑒𝑗𝑗𝑜𝑜 identifies surface element 𝑗𝑗 of object 
𝑜𝑜. There are 6 distinct types of non-degenerate PCs (face-vertex, edge-edge-cross, vertex-
face, face-edge, edge-face, and face-face). A contact state indicates the set of PCs that are 
simultaneously attained and is denoted by 𝐂𝐂𝐂𝐂𝑖𝑖 = {𝑃𝑃𝐶𝐶𝑗𝑗 , 𝑗𝑗 = 1,2⋯ ,𝑛𝑛}. Using their PC-based 
description of the contact states, Xiao and Ji [4] developed the ability to identify the contact 
states that may occur for 3D polyhedra in spatial motion. Contact state feasibility is evaluated 
in their approach using a direct search of the configuration space obstacle. Their approach 
requires the user to provide one or more “seed” contact states (locally most constrained 
contact states) which can be very difficult to obtain for some cases. 



Goeree et al. [5] described contact states in terms of combinations of Primitive Contacts which 
are of 3 types (face-vertex, vertex-face, and edge-edge). This type of contact description, 
however, yields non-unique descriptions of some contact states. They developed more reliable 
means of assessing the feasibility of hypothesized contact states using traditional numerical 
optimization procedures. Their procedure for generating the set of hypothesized contact states, 
however, considers all possible combinations of primitive contacts yielding an extremely large 
set, even for the simplest polyhedra. 

Pan and Schimmels [7] introduced an algorithm to generate the set of contact states for an 
assembly operation, known as Assembly Contact State Graph (ACSG). The ACSG is 
systematically generated by first evaluating the least constrained contact states. By combining 
a single point contact state (PPC) with a feasible contact state, a new higher level (more 
constrained) hypothesized contact state is generated. The procedure has the following 
benefits: 1) no user supplied “seed” information is required, and 2) realistic limits on possible 
part misalignment can be imposed. 

In previous work directed toward identifying a range of configurations within a contact state, 
Xiao and Zhang [8] computed the angular distance between two contacting polyhedra for a 
given rotational axis passing through the point of contact. The rotational axis was determined 
by the contact state. In [9], Ji and Xiao presented an approach to planning motions compliant to 
contact states. A component of the approach involved determining configurations within the 
range of translation or rotation for a specified contact state. The approach introduced in [8] was 
used to determine the rotational range. For translation, rather than explicitly determining the 
range, a configuration within the range was determined only. 

B. Approach 

To reliably generate contact states and associated extremal configurations, optimization is 
used to search the configuration space. The search is facilitated by using a data structure 
(associated with the assembly contact state graph (ACSG) [7]) that both records the contact 
states and stores the configuration extremals. When checking the feasibility of a more 
constrained contact state (contact states at higher levels in the ACSG), the extremal 
configurations from lower levels are used to restrict the range of the search. As such, the 
constraint relationships contained in the ACSG are used to improve procedure robustness both 
in checking the feasibility and in obtaining extremals of contact states. 

The procedure of identifying an assembly contact state (as introduced in [7]) and the approach 
to obtaining associated extremal configurations take into account the range of configurations 
determined by robot inaccuracy. Here, an assembly contact state is feasible if there is a 
representative configuration with the specified configuration range. 

C. Overview 

This paper describes means of reliably generating the set of assembly contact states and 
identifying the extremal configurations within each contact state using optimization. Section II 
reviews the procedure for obtaining the set of feasible assembly contact states from standard 



geometrical descriptions (DXF files) of polyhedral parts using a nested optimization. Section III 
introduces the methods for obtaining the extremal configurations within a feasible contact 
state. A strategy for improving robustness using extremal configurations and relationships 
among the contact states is presented in Section IV. Section V presents a simple spatial 
example demonstrating the algorithm. A discussion and brief summary are presented in 
Section VI. 

SECTION II. 
Contact State Feasibility 

A reliable means of obtaining all assembly contact states without user intervention was 
introduced in [7]. The general algorithm has the following components: 

1. Generate the set of PPCs from DXF files of the parts (A PPC is a PC having 5 degrees 
of freedom (face-vertex, vertex-face and edge-edge-cross)); 

2. Combine feasible PPCs to generate a hypothesized contact state; 
3. Map the hypothesized contact state into the highest level topological description; 
4. Check the feasibility of the hypothesized contact state; 
5. Repeat Steps 2–4 until no additional PPC combinations can be generated. 

In this section, the conditions used to evaluate assembly contact state feasibility (item 4) are 
briefly reviewed. These conditions are based on three considerations: 1) the surface elements 
of the hypothesized contact state must be in contact (the CS Feature Criteria); 2) there must 
be no geometric conflict between the parts (the Non-Penetration Criteria); and 3) the 
configuration must be within the user specified bounds of misalignment (the Bounded-
Misalignment Criteria). 

A. CS Feature Criteria 

In [5], Goeree et al. defined a set of mathematical conditions for vertex-face, face-vertex and 
edge-edge-cross PCs. In [7], similar conditions were defined for face-edge, edge-face and face-
face PCs. Each of these conditions consists of two types of sub-conditions, Intersection 
Conditions and Bounding Conditions. 

1) Intersection Conditions 

Each PC has at least one intersection condition. Intersection conditions require that the 
supporting geometrical element (plane for face, line for edge) must intersect a feature from the 
other part (e.g., feature is coplanar or collinear). Intersection Conditions that are satisfied have 
the following form [7]: 

ℎ𝑃𝑃𝑃𝑃𝟏𝟏 (𝐓𝐓) = 0 (1) 



where the subscript PC indicates one of six types of nondegenerate PCs. The independent 
variable T of this condition is the relative configuration of two objects, containing 6 
configuration variables. 

2) Bounding Conditions 

Each PC has multiple bounding conditions. The bounding conditions require that the 
intersection occurs within some bounds (e.g., point contact within bounded face, line 
intersection within line segment). Bounding Conditions that are satisfied have the following 
form [7]: 

ℎ𝑃𝑃𝑃𝑃2 (𝐓𝐓) = 0 

 

3) Combination Conditions 

By combining the Intersection Conditions with the Bounding Conditions, the CS Feature 
Criteria is satisfied if the following holds: 

ℎ𝑃𝑃𝑃𝑃(𝐓𝐓) = 𝑊𝑊1ℎ𝑃𝑃𝑃𝑃1 (𝐓𝐓) + 𝑊𝑊2ℎ𝑃𝑃𝑃𝑃2 (𝐓𝐓) = 0 (3) 

 

where 𝑊𝑊1 and 𝑊𝑊2 are the scaling factors for a PC. Their values are determined by the 
dimension of two objects and the level of PC (amount of constraint). 

The conditions for all single PC contact states have this form. For a CS consisting of multiple 
PCs, CS𝑖𝑖 = {𝑃𝑃𝐶𝐶𝑗𝑗 , 𝑗𝑗 = 1,2,⋯𝑛𝑛}. The condition for every 𝑃𝑃𝐶𝐶𝑗𝑗 must be satisfied simultaneously, 
indicated by: 

� ℎ𝑃𝑃𝑃𝑃𝑗𝑗(𝐓𝐓) = 0
𝑃𝑃𝑃𝑃𝑗𝑗∈𝐂𝐂𝐂𝐂𝑖𝑖

 

 (4) 

 

Note that the left side of (4) must be non-negative [7]. Therefore, if (4) is satisfied for a specific 
configuration T, contact of type 𝐂𝐂𝐂𝐂𝑖𝑖 can occur. 

B. Non-Penetration Criteria 

In addition to requiring contact of the specific surface elements, penetration between two parts 
at other locations must be prevented. Part penetration can be assessed using a measure of 
polyhedral object penetration known as the growth distance [10]. 
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The growth distance is a function of configuration, denoted as: 

𝑑𝑑𝑝𝑝𝐺𝐺(𝐓𝐓) = 𝑑𝑑𝑝𝑝𝐺𝐺(𝐴𝐴,𝐵𝐵) ≥ 0. (5) 

 

If there is penetration between two objects, the growth distance 𝑑𝑑𝑝𝑝𝐺𝐺(𝐴𝐴,𝐵𝐵) is positive. The 
growth distance is zero when contact is obtained at any location of the body. 

As described in [10], the calculation of growth distance for a given configuration of polyhedral 
objects involves constrained linear optimization. 

Equation (5) together with (4) define the conditions used to evaluate whether a given 
configuration corresponds to a feasible configuration within a specified contact state. 

C. Bounded-Misalignment Criteria 

Some generally feasible configurations cannot occur in an assembly operation due to the 
restrictions on possible part misalignment. 

The configuration of an unconstrained rigid body T can be described by 6 independent 
variables t, consisting of three translation variables p and three rotation variables 𝜃𝜃 [11]. 

𝐭𝐭 = [𝐩𝐩𝜃𝜃] (6) 

 

Limits associated with robot or fixture inaccuracy can be expressed as: 

𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 ⩽ 𝑡𝑡𝑖𝑖 ⩽ 𝑡𝑡𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , (7) 

 

where 𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 and 𝑡𝑡𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , (𝑖𝑖 = 1,2,⋯ ,6) indicate the lower and upper bounds, respectively, of the 
misalignment for each of the 6 variables in (6). 

D. Configuration Search Algorithm 

The procedures above provide means of checking whether a configuration corresponds to a 
specific feasible assembly contact state. A procedure for finding a feasible configuration, if one 
exists, is needed. In this section, an optimization procedure used to reliably identify a feasible 
configuration for each contact state is described. 

Because the criteria described above ((4) – (5)) involve nonlinear relationships, a nonlinear 
optimization procedure is required. The design variables in the optimization are the 

https://ieeexplore.ieee.org/document/#deqn5
https://ieeexplore.ieee.org/document/#deqn4
https://ieeexplore.ieee.org/document/#deqn6
https://ieeexplore.ieee.org/document/#deqn4
https://ieeexplore.ieee.org/document/#deqn5


configuration variables in t. If all the conditions are satisfied ((4), (5) and (6)) for some 
configuration, this hypothesized contact state is assembly-feasible. 

Problems of this type can be solved using standard gradient search [5] methods. These 
methods, however, have the following limitations: 

• Gradient search methods start from a single initial value, and the optimal result depends 
highly on the initial value chosen. Because of the nonlinear conditions, there exists 
many spurious local minima. Therefore, it is difficult to obtain the global minimum for the 
optimization procedure even for the simplest contact state (face-vertex, vertex-face or 
edge-edge-cross). 

• Gradient search methods require gradients, which are difficult to obtain due to the 
nested optimization used here (growth distance is obtained by optimization). 

A genetic algorithm is a relatively new class of stochastic nonlinear optimization that does not 
have these limitations. Genetic algorithms start with a large number of randomly generated 
initial values (referred to as the population). Then using reproduction, crossover and mutation 
1, new generations of improved (higher fitness) individuals are obtained [12]. The general 
optimization format of a genetic algorithm is to obtain the minimum value of a objective 
function subject to bounds on the design variables. 

In our optimization, (7) is used to upper and lower bound each of the variables in t. If a 
configuration is feasible, both CS Feature Criteria and Non-Penetration Criteria are satisfied, 
i.e. both 𝑑𝑑𝑝𝑝𝐺𝐺(𝐓𝐓) and ∑ℎ𝑃𝑃𝑃𝑃𝑗𝑗(T) are zero. So, to evaluate a hypothesized contact state 𝐂𝐂𝐂𝐂𝑖𝑖, these 
two conditions are combined to obtain the objective function: 

𝑓𝑓(𝐓𝐓) = � ℎ𝑃𝑃𝑐𝑐𝑗𝑗(𝐓𝐓) + 𝑊𝑊3𝑑𝑑𝑝𝑝𝐺𝐺(𝐓𝐓)
𝑃𝑃𝑃𝑃𝑗𝑗∈𝐂𝐂𝐂𝐂𝑖𝑖

 

(8) 

 

where ℎ𝑃𝑃𝑃𝑃𝑖𝑖(𝐓𝐓) is the appropriate CS feature criteria for 𝑃𝑃𝐶𝐶𝑗𝑗 (4), and 𝑊𝑊3 is a scaling factor, 
whose value is determined by the dimensions of two objects. 

The feasibility of a contact state is evaluated by optimizing the objective function (8) subject to 
the bounded misalignment conditions (7). If the objective value is zero, this indicates that the 
Non-Penetration Criteria and CS Feature Criteria are both satisfied and that there exists a 
feasible configuration within the range considered. As such, the hypothesized contact state is 
assembly-feasible. If the optimal value of (8) is greater than zero, this indicates that no 
configuration obtained by the genetic algorithm corresponds to a feasible configuration for the 
hypothesized contact state and the hypothesized contact state is assembly-infeasible. 
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E. Algorithm Implementation 

As stated previously, the procedure of checking the feasibility of a hypothesized contact state 
involves nested optimization. The inner optimization calculates the growth distance for a given 
configuration (as described in Section II.B) obtained using the simplex method. The outer 
optimization searches for a feasible configuration in a nonlinear optimization and is obtained 
using a genetic algorithm (as described in Section II.D). 

SECTION III. 
Contact State Extremals 

Extremal configurations represent configurations that have extreme values in misalignment 
within a specific contact state. Formally, 

III. 
Definition 1 

An extremal configuration of a contact state is a special configuration having at least one of its 
six configuration variables at its maximum or minimum value. In this section, we present an 
algorithm to identify the extremal configurations for a contact state. 

A. Obtaining Extremal Configurations 

Because an extremal configuration must be a configuration within the specified contact state, it 
must satisfy: i) the CS Feature Criteria, (4); ii) the Non-Penetration Criteria (5); and iii) the 
Bounded-Misalignment Criteria, (7). The problem of finding the lower bounded extremal 
configurations for independent variable tk can be formulated as a constrained optimization 
problem: 

𝑚𝑚𝑖𝑖𝑛𝑛𝑡𝑡𝑘𝑘s. t.�
𝑑𝑑𝑝𝑝𝐺𝐺(𝐓𝐓) = 0

∑ℎ𝑃𝑃𝑃𝑃𝑗𝑗(𝐓𝐓) = 0
𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚∀𝑖𝑖 = 1,2,⋯ ,6

  (9) 

Similarly, the optimization to determine the upper bounded extremals of each independent 
variable 𝑡𝑡𝑘𝑘 is given by 
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𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑡𝑡𝑘𝑘s. t.�
𝑑𝑑𝑝𝑝𝐺𝐺(𝐓𝐓) = 0

∑ℎ𝑃𝑃𝑃𝑃𝑗𝑗(𝐓𝐓) = 0
𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚∀𝑖𝑖 = 1,2,⋯ ,6

  (10) 

 

To solve this type of constrained optimization problem using genetic algorithms, a penalty 
method is used to incorporate some constraint equations into the objective function. The 2 new 
objective functions are expressed as: 

𝑚𝑚𝑖𝑖𝑛𝑛𝑓𝑓1(𝐓𝐓) = 𝑡𝑡𝑘𝑘 + 𝜆𝜆1( � ℎ𝑃𝑃𝑃𝑃𝑗𝑗(𝐓𝐓) + 𝑊𝑊3𝑑𝑑𝑝𝑝𝐺𝐺(𝐓𝐓))
𝑃𝑃𝑃𝑃𝑗𝑗∈𝐂𝐂𝐂𝐂𝑖𝑖

𝑚𝑚𝑖𝑖𝑛𝑛𝑓𝑓2(𝐓𝐓) = −𝑡𝑡𝑘𝑘 + 𝜆𝜆2( � ℎ𝑃𝑃𝑃𝑃𝑗𝑗(𝐓𝐓) + 𝑊𝑊3𝑑𝑑𝑝𝑝𝐺𝐺(𝐓𝐓))
𝑃𝑃𝑃𝑃𝑗𝑗∈𝐂𝐂𝐂𝐂𝑖𝑖

 

(11)(12) 

 

where 𝜆𝜆1 and 𝜆𝜆2 are large positive numbers known as penalty factors, and 𝑊𝑊3 is a scaling 
factor defined in (8). 

The objective functions (11) (12) are similar to (8) in that all are subject to limits on the design 
(configuration) variables. A genetic algorithm is again used to obtain configuration extremals 
for each assembly contact state. 

SECTION IV 
Robustness Improvement 

The conditions for evaluating the feasibility of more constrained contact states are larger in 
number and more nonlinear than the conditions for less constrained contact states. This 
occurs because each higher level CS requires additional CS Feature Criteria (4). The 
robustness of most optimization routines decreases when the number of constraints and the 
nonlinearity of the constraints increase. In this section, a robustness improvement strategy 
based on a search space refinement that uses the relationships among contact states and 
extremal configurations (both stored in the ACSG data structure) is described. 

A. Contact State Relations 

In [4], Xiao and Ji identified the neighbor relations of contact states based on the topology of the 
two polyhedral parts. Here, we use a restrictive form of that information. 
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For two PCs, 𝐏𝐏𝐂𝐂𝐏𝐏,𝑃𝑃𝐶𝐶𝑎𝑎 = (𝑠𝑠𝑒𝑒𝑖𝑖𝐴𝐴 − 𝑠𝑠𝑒𝑒𝑗𝑗𝐵𝐵),𝑃𝑃𝐶𝐶𝑏𝑏 = (𝑠𝑠𝑒𝑒𝑘𝑘𝐴𝐴 − 𝑠𝑠𝑒𝑒𝑙𝑙𝐵𝐵), if: 1) 𝑠𝑠𝑒𝑒𝑖𝑖𝐴𝐴 is 𝑠𝑠𝑒𝑒𝑘𝑘𝐴𝐴 and 𝑠𝑠𝑒𝑒𝑗𝑗𝐵𝐵 is the 
boundary of 𝑠𝑠𝑒𝑒𝑙𝑙𝐵𝐵, or 2) 𝑠𝑠𝑒𝑒𝑖𝑖𝐴𝐴 is the boundary of 𝑠𝑠𝑒𝑒𝑘𝑘𝐴𝐴 and 𝑠𝑠𝑒𝑒𝑗𝑗𝐵𝐵 is 𝑠𝑠𝑒𝑒𝑙𝑙𝐵𝐵, then 𝑃𝑃𝐶𝐶𝑎𝑎 is the close less 
constrained neighbor (CLCN) PC of 𝑃𝑃𝐶𝐶𝑏𝑏 and 𝑃𝑃𝐶𝐶𝑏𝑏 is the close more constrained neighbor 
(CMCN) PC of 𝑃𝑃𝐶𝐶𝑎𝑎. 

The relationships of PCs are consistent with the classification of PCs by the level of constraint 
in [7]. The CLCN PC of a PC is a PC in the next lower level2, and the CMCN PC is in the next 
higher level. 

For two CSs, 𝐂𝐂𝐂𝐂𝑎𝑎 = {𝑃𝑃𝐶𝐶𝑖𝑖} and 𝐂𝐂𝐂𝐂𝑏𝑏 = {𝑃𝑃𝐶𝐶𝑗𝑗},𝐂𝐂𝐂𝐂𝑎𝑎 is the close less constrained neighbor (CLCN) 
CS of 𝐂𝐂𝐂𝐂𝑏𝑏, and 𝐂𝐂𝐂𝐂𝑏𝑏 is the close more constrained neighbor (CMCN) CS of 𝐂𝐂𝐂𝐂𝑎𝑎, if one of the 
following two conditions is satisfied: 

• if the number of PCs in 𝐂𝐂𝐂𝐂𝑎𝑎 is equal to that in 𝐂𝐂𝐂𝐂𝑏𝑏, and there are a pair of 𝑃𝑃𝐶𝐶𝑖𝑖 ∈ 𝐂𝐂𝐂𝐂𝑎𝑎 and 
𝑃𝑃𝐶𝐶𝑗𝑗 ∈ 𝐂𝐂𝐂𝐂𝑏𝑏 such that PCi is the CLCN PC of PCJ, while all other PCs are the same; 

• if the number of PCs in 𝐂𝐂𝐂𝐂𝑎𝑎 is 1 less than that in 𝐂𝐂𝐂𝐂𝑏𝑏, and there is only 1 PPC in 𝐂𝐂𝐂𝐂𝑏𝑏 
that is not contained in 𝐂𝐂𝐂𝐂𝑎𝑎. 

Each contact state corresponds to a patch in C-space. For each patch, there is a range of 
values for each configuration variable. Using the definition of extremal configurations (in 
Section III.A) for a contact state and the relations among contact states, we have:  

 
Fig. 1. Example Assembly. To illustrate the strategy, configurations are limited to small range. 
Only those surface elements that may compose a hypothesized CS are labeled. 



Proposition 1 

The configurations of a contact state cannot exceed the bounds defined by the minimum lower 
bound and maximum upper bounds of all its close less constrained neighbor contact states. 

For a CS containing multiple PCs, the following proposition holds: 

Proposition 2 

The configurations of a contact state cannot exceed the bounds defined by the intersection of 
the range of each of the PCs contained in the CS. 

B. Robustness Improvement 

One parameter used in genetic algorithms is the number of individuals in the population. It 
determines the density of the distribution of individuals within the range of variables. For a 
given population size, a smaller range yields a greater population density in the solution space, 
and therefore is more likely to yield the true optimal solution. 

There are two types of constraint on the range of configuration variables. One is determined by 
relative positioning inaccuracy. The other relates to restrictions associated with part geometry. 
The actual range of each variable for a contact state, in general, will be less than the initial 
range determined by robot inaccuracy. 

Recall that the procedure for generating all contact states starts by considering less 
constrained contact states, after which the more constrained neighbor hypothesized contact 
states obtained from combinations of feasible PPCs are considered. 

In the sequence of checking the feasibility of hypothesized contact states, the associated 
extremal configurations for a feasible contact state are determined prior to checking the 
feasibility of the next hypothesized contact state. Using Proposition 1 and Proposition 2, these 
extremals are used to restrict the range of configuration variables. The feasibility of a new 
hypothesized contact state can be assessed within the range of configuration variables based 
on the extremal values of its CLCN contact states and PCs contained in the CS.  



 
Fig. 2. ACSG for L-shape Assembly and Associated Close Neighbors. 

Generally, this range is much smaller than the initial range imposed by robot inaccuracy (7). 
For example, if the range of each of the 6 configuration variables is half of its original range, 
the restricted search range will be 1/64 of the original range. By restricting the range of 
configuration variables, the density of the population is greatly increased and the robustness of 
the optimization is significantly improved at no addition cost in computation time. 

The following describes the improved algorithm used to identify contact states and associated 
extremal configurations: 

1. Generate set of PPCs from DXF files of the parts (A PPC is a PC having 5 degrees of 
freedom (face-vertex, vertex-face and edge-edge-cross)); 

2. Combine feasible PPCs to generate a hypothesized contact state; 
3. Map the hypothesized contact state into the highest level topological description; 
4. Obtain the bounds of the search area for the hypothesized contact state; 

1. Get all CLCN CSs for the hypothesized CS; 
2. Determine the lower and upper bounds for each variable for each of these CLCN 

CSs; 
3. Among all these lower (upper) bounds, find the minimum lower (maximum upper) 

bound; 
4. Determine the lower and upper bounds for each variable for each of the PCs 

contained in the hypothesized CS; 
5. Find the maximum lower (minimum upper) bound, among these bounds 

determined by PCs; 
6. Find the intersection of the ranges determined in (c) and (e). 

5. Check the feasibility of the hypothesized contact state based on the refined bounds; 
6. Obtain extremal configurations if the contact state is feasible; 
7. Repeat Steps 2–6 until no additional PPC combinations can be generated. 

https://ieeexplore.ieee.org/document/#deqn7


Items 4(a)-4(c) identify the range determined by CLCN contact states based on Proposition 1. 
Items 4(d)-4(e) identify the range determined by PCs contained in the CS based on 
Proposition 2. If there are no CLCN for the hypothesized contact state, items 4(a)-4(c) are 
skipped and the range is determined only by 4(d)-4(e). If the hypothesized contact state 
consists of only 1 PC, 4(d)-4(e) are skipped and the range is determined only by 4(a)-4(c). 

SECTION V. 
Example 

A simple example illustrates the improved means of generating all contact states and 
associated extremals. Figure 1 illustrates two parts and the coordinate frames used to indicate 
relative positioning. The misalignment bounds in this example are limited to a range consistent 
with the process of inserting the block into the L-shape corner from the top. 

For inaccuracy imposed bounds given by: 

𝐭𝐭𝑚𝑚𝑖𝑖𝑚𝑚 = [−5,−5,0,−𝜋𝜋/203 − 𝜋𝜋/20,−𝜋𝜋/20]𝑇𝑇

𝐭𝐭𝑚𝑚𝑎𝑎𝑚𝑚 = [5,5,240,𝜋𝜋/20,𝜋𝜋/20,𝜋𝜋/20]𝑇𝑇
 

 

the generated ACSG shown in Fig. 2 is obtained. A total of 63 contact states are generated. 
Note that there are no CLCN or CMCN relationships between the contact states in level 4 and 
level 5. In this case, the level 5 contact states are derived from the combination of level 3 and 
level 1 (PPC) contact state. For this case, the search range is restricted by using the 
procedure described in items 4(d)-4(e) of Section IV.B. 

To illustrate the ACSG generation strategy and the robustness improvement, consider the 
ACSG subset shown in Fig. 3. The lines between pairs of contact states indicate that the two 
contact states are close neighbor contact states. Figure 3 shows, for example, that {𝑓𝑓2𝐴𝐴 − 𝑒𝑒2𝐵𝐵} is 
derived from the combination of {𝑓𝑓2𝐴𝐴 − 𝑣𝑣2𝐵𝐵} and {𝑓𝑓2𝐴𝐴 − 𝑣𝑣3𝐵𝐵} which are CLCN PCs. When the 
feasibility of {𝑓𝑓2𝐴𝐴 − 𝑒𝑒2𝐵𝐵} is checked, the range of configurations is not the initial range between 
tmin and tmax determined by the robot uncertainty, but the range between 

𝐭𝐭𝑚𝑚𝑖𝑖𝑚𝑚
′ =

[−5,9.88 × 10−4, 3.42 × 10−3,
−8.80 × 10−4,−0.157,−7.01 × 10−2]𝑇𝑇

𝐭𝐭𝑚𝑚𝑎𝑎𝑚𝑚
′ = [5,5,10.95,1.97 × 10−2, 0.157,7.03 × 10−2]𝑇𝑇

 

 

determined by its CLCN PCs, which is approximately 11200 of the initial range. Improvements 
at higher levels are even more dramatic, particularly, when the search dimension is decreased.  



 
Fig. 3. ACSG subset. Arrows indicate the CMCN for each contact state generated. Levels 
indicate the level of kinematic constraint provided by contact and the contact state generation 
sequence. 

 

Table I Assembly Contact States Evaluation and Ranges for Each Configuration Variable. 

 

The values of the objective function for each hypothesized contact state within this subset and 
the extremal values for each configuration variable are summarized in Table I. Table I also 
indicates the values of objective functions for three infeasible contact states. Results show that 
the objective function values for feasible contact states are approximately zero. For infeasible 
contact states, the objective function has a relatively large positive number. 

SECTION VI. 
Discussion and Summary 

In this paper, we have presented an approach for testing the assembly-feasibility of 
hypothesized contact states and for identifying extremal configurations of an assembly contact 
state using genetic algorithms. For the more constrained contact states, a search refinement 



strategy was presented to improve the optimization robustness using the extremal 
configurations and the neighbor relationships among the contact states. 
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	Abstract:
	Two important components in the selection of an admittance that facilitates force-guided assembly are the identification of: 1) the set of feasible contact states, and 2) the set of configurations that span each contact state, i.e., the extremal configurations. We present a procedure to automatically generate both sets from CAD models of the assembly parts. In the procedure, all possible combinations of principle contacts are considered when generating hypothesized contact states. The feasibility of each is then evaluated in a genetic algorithm based optimization procedure. The maximum and minimum value of each of the 6 configuration variables spanning each contact state are obtained by again using genetic algorithms. Together, the genetic algorithm approach, the hierarchical data structure containing the states, the relationships among the states, and the extremals within each state are used to provide a reliable means of identifying all feasible contact states and their associated extremal configurations.
	SECTION I.
	INTRODUCTION
	A. Related Work
	B. Approach
	C. Overview

	In the development of automated assembly strategies, the types of part misalignment that may occur must be known. The subset of configuration space (C-space) that corresponds to contact (the C-space obstacle), however, is very difficult to describe even for planar cases [1]. As a consequence, recent research efforts [2], [3], [4], [5] have been directed toward identifying a set of topological descriptions of contact for polygonal and polyhedral parts. These “high-level” topological descriptions are referred to as contact states.
	In addition to contact states, the sets of configurations that bound translational and rotational misalignment in each contact state also play a key role in the design of the manipulator admittance that achieves force-guided assembly [6]. An admittance designed for force guidance maps the contact force associated with a type of misalignment into a motion that reduces that misalignment. The configuration “extremals” represent configurations that have extreme values in misalignment information within the specified contact state. As described in [6], by imposing conditions on the admittance at a finite number of representative “extremal” configurations, force-guided assembly is ensured for all of the infinite number of intermediate configurations.
	Previously, Xiao and Ji [4] systematically described contact states in terms of Principle Contacts (PCs). A PC describes contact between any two surface elements (i.e., faces, edges, or vertices) and is denoted as 𝑃𝐶𝑖={𝑠𝑒𝑝𝐴−𝑠𝑒𝑞𝐵}, where 𝑠𝑒𝑗𝑜 identifies surface element 𝑗 of object 𝑜. There are 6 distinct types of non-degenerate PCs (face-vertex, edge-edge-cross, vertex-face, face-edge, edge-face, and face-face). A contact state indicates the set of PCs that are simultaneously attained and is denoted by 𝐂𝐒𝑖={𝑃𝐶𝑗,𝑗=1,2⋯,𝑛}. Using their PC-based description of the contact states, Xiao and Ji [4] developed the ability to identify the contact states that may occur for 3D polyhedra in spatial motion. Contact state feasibility is evaluated in their approach using a direct search of the configuration space obstacle. Their approach requires the user to provide one or more “seed” contact states (locally most constrained contact states) which can be very difficult to obtain for some cases.
	Goeree et al. [5] described contact states in terms of combinations of Primitive Contacts which are of 3 types (face-vertex, vertex-face, and edge-edge). This type of contact description, however, yields non-unique descriptions of some contact states. They developed more reliable means of assessing the feasibility of hypothesized contact states using traditional numerical optimization procedures. Their procedure for generating the set of hypothesized contact states, however, considers all possible combinations of primitive contacts yielding an extremely large set, even for the simplest polyhedra.
	Pan and Schimmels [7] introduced an algorithm to generate the set of contact states for an assembly operation, known as Assembly Contact State Graph (ACSG). The ACSG is systematically generated by first evaluating the least constrained contact states. By combining a single point contact state (PPC) with a feasible contact state, a new higher level (more constrained) hypothesized contact state is generated. The procedure has the following benefits: 1) no user supplied “seed” information is required, and 2) realistic limits on possible part misalignment can be imposed.
	In previous work directed toward identifying a range of configurations within a contact state, Xiao and Zhang [8] computed the angular distance between two contacting polyhedra for a given rotational axis passing through the point of contact. The rotational axis was determined by the contact state. In [9], Ji and Xiao presented an approach to planning motions compliant to contact states. A component of the approach involved determining configurations within the range of translation or rotation for a specified contact state. The approach introduced in [8] was used to determine the rotational range. For translation, rather than explicitly determining the range, a configuration within the range was determined only.
	To reliably generate contact states and associated extremal configurations, optimization is used to search the configuration space. The search is facilitated by using a data structure (associated with the assembly contact state graph (ACSG) [7]) that both records the contact states and stores the configuration extremals. When checking the feasibility of a more constrained contact state (contact states at higher levels in the ACSG), the extremal configurations from lower levels are used to restrict the range of the search. As such, the constraint relationships contained in the ACSG are used to improve procedure robustness both in checking the feasibility and in obtaining extremals of contact states.
	The procedure of identifying an assembly contact state (as introduced in [7]) and the approach to obtaining associated extremal configurations take into account the range of configurations determined by robot inaccuracy. Here, an assembly contact state is feasible if there is a representative configuration with the specified configuration range.
	This paper describes means of reliably generating the set of assembly contact states and identifying the extremal configurations within each contact state using optimization. Section II reviews the procedure for obtaining the set of feasible assembly contact states from standard geometrical descriptions (DXF files) of polyhedral parts using a nested optimization. Section III introduces the methods for obtaining the extremal configurations within a feasible contact state. A strategy for improving robustness using extremal configurations and relationships among the contact states is presented in Section IV. Section V presents a simple spatial example demonstrating the algorithm. A discussion and brief summary are presented in Section VI.
	SECTION II.
	Contact State Feasibility
	A. CS Feature Criteria
	1) Intersection Conditions
	2) Bounding Conditions
	3) Combination Conditions

	B. Non-Penetration Criteria
	C. Bounded-Misalignment Criteria
	D. Configuration Search Algorithm
	E. Algorithm Implementation

	A reliable means of obtaining all assembly contact states without user intervention was introduced in [7]. The general algorithm has the following components:
	1. Generate the set of PPCs from DXF files of the parts (A PPC is a PC having 5 degrees of freedom (face-vertex, vertex-face and edge-edge-cross));
	2. Combine feasible PPCs to generate a hypothesized contact state;
	3. Map the hypothesized contact state into the highest level topological description;
	4. Check the feasibility of the hypothesized contact state;
	5. Repeat Steps 2–4 until no additional PPC combinations can be generated.
	In this section, the conditions used to evaluate assembly contact state feasibility (item 4) are briefly reviewed. These conditions are based on three considerations: 1) the surface elements of the hypothesized contact state must be in contact (the CS Feature Criteria); 2) there must be no geometric conflict between the parts (the Non-Penetration Criteria); and 3) the configuration must be within the user specified bounds of misalignment (the Bounded-Misalignment Criteria).
	In [5], Goeree et al. defined a set of mathematical conditions for vertex-face, face-vertex and edge-edge-cross PCs. In [7], similar conditions were defined for face-edge, edge-face and face-face PCs. Each of these conditions consists of two types of sub-conditions, Intersection Conditions and Bounding Conditions.
	Each PC has at least one intersection condition. Intersection conditions require that the supporting geometrical element (plane for face, line for edge) must intersect a feature from the other part (e.g., feature is coplanar or collinear). Intersection Conditions that are satisfied have the following form [7]:
	ℎ𝑃𝐶𝟏(𝐓)=0 (1)
	where the subscript PC indicates one of six types of nondegenerate PCs. The independent variable T of this condition is the relative configuration of two objects, containing 6 configuration variables.
	Each PC has multiple bounding conditions. The bounding conditions require that the intersection occurs within some bounds (e.g., point contact within bounded face, line intersection within line segment). Bounding Conditions that are satisfied have the following form [7]:
	By combining the Intersection Conditions with the Bounding Conditions, the CS Feature Criteria is satisfied if the following holds:
	ℎ𝑃𝐶(𝐓)=𝑊1ℎ𝑃𝐶1(𝐓)+𝑊2ℎ𝑃𝐶2(𝐓)=0 (3)
	where 𝑊1 and 𝑊2 are the scaling factors for a PC. Their values are determined by the dimension of two objects and the level of PC (amount of constraint).
	The conditions for all single PC contact states have this form. For a CS consisting of multiple PCs,CS𝑖={𝑃𝐶𝑗,𝑗=1,2,⋯𝑛}. The condition for every 𝑃𝐶𝑗 must be satisfied simultaneously, indicated by:
	𝑃𝐶𝑗∈𝐂𝐒𝑖ℎ𝑃𝐶𝑗(𝐓)=0 (4)
	Note that the left side of (4) must be non-negative [7]. Therefore, if (4) is satisfied for a specific configuration T, contact of type 𝐂𝐒𝑖 can occur.
	In addition to requiring contact of the specific surface elements, penetration between two parts at other locations must be prevented. Part penetration can be assessed using a measure of polyhedral object penetration known as the growth distance [10].
	The growth distance is a function of configuration, denoted as:
	𝑑𝑝𝐺(𝐓)=𝑑𝑝𝐺(𝐴,𝐵)≥0. (5)
	If there is penetration between two objects, the growth distance 𝑑𝑝𝐺(𝐴,𝐵) is positive. The growth distance is zero when contact is obtained at any location of the body.
	As described in [10], the calculation of growth distance for a given configuration of polyhedral objects involves constrained linear optimization.
	Equation (5) together with (4) define the conditions used to evaluate whether a given configuration corresponds to a feasible configuration within a specified contact state.
	Some generally feasible configurations cannot occur in an assembly operation due to the restrictions on possible part misalignment.
	The configuration of an unconstrained rigid body T can be described by 6 independent variables t, consisting of three translation variables p and three rotation variables 𝜃 [11].
	𝐭=[𝐩𝜃] (6)
	Limits associated with robot or fixture inaccuracy can be expressed as:
	𝑡𝑖𝑚𝑖𝑛⩽𝑡𝑖⩽𝑡𝑖𝑚𝑎𝑥, (7)
	where 𝑡𝑖𝑚𝑖𝑛 and 𝑡𝑖𝑚𝑎𝑥,(𝑖=1,2,⋯,6) indicate the lower and upper bounds, respectively, of the misalignment for each of the 6 variables in (6).
	The procedures above provide means of checking whether a configuration corresponds to a specific feasible assembly contact state. A procedure for finding a feasible configuration, if one exists, is needed. In this section, an optimization procedure used to reliably identify a feasible configuration for each contact state is described.
	Because the criteria described above ((4) – (5)) involve nonlinear relationships, a nonlinear optimization procedure is required. The design variables in the optimization are the configuration variables in t. If all the conditions are satisfied ((4), (5) and (6)) for some configuration, this hypothesized contact state is assembly-feasible.
	Problems of this type can be solved using standard gradient search [5] methods. These methods, however, have the following limitations:
	 Gradient search methods start from a single initial value, and the optimal result depends highly on the initial value chosen. Because of the nonlinear conditions, there exists many spurious local minima. Therefore, it is difficult to obtain the global minimum for the optimization procedure even for the simplest contact state (face-vertex, vertex-face or edge-edge-cross).
	 Gradient search methods require gradients, which are difficult to obtain due to the nested optimization used here (growth distance is obtained by optimization).
	A genetic algorithm is a relatively new class of stochastic nonlinear optimization that does not have these limitations. Genetic algorithms start with a large number of randomly generated initial values (referred to as the population). Then using reproduction, crossover and mutation 1, new generations of improved (higher fitness) individuals are obtained [12]. The general optimization format of a genetic algorithm is to obtain the minimum value of a objective function subject to bounds on the design variables.
	In our optimization, (7) is used to upper and lower bound each of the variables in t. If a configuration is feasible, both CS Feature Criteria and Non-Penetration Criteria are satisfied, i.e. both 𝑑𝑝𝐺(𝐓) and ∑ℎ𝑃𝐶𝑗(T) are zero. So, to evaluate a hypothesized contact state 𝐂𝐒𝑖, these two conditions are combined to obtain the objective function:
	𝑓(𝐓)=𝑃𝐶𝑗∈𝐂𝐒𝑖ℎ𝑃𝑐𝑗(𝐓)+𝑊3𝑑𝑝𝐺(𝐓)(8)
	where ℎ𝑃𝐶𝑖(𝐓) is the appropriate CS feature criteria for 𝑃𝐶𝑗 (4), and 𝑊3 is a scaling factor, whose value is determined by the dimensions of two objects.
	The feasibility of a contact state is evaluated by optimizing the objective function (8) subject to the bounded misalignment conditions (7). If the objective value is zero, this indicates that the Non-Penetration Criteria and CS Feature Criteria are both satisfied and that there exists a feasible configuration within the range considered. As such, the hypothesized contact state is assembly-feasible. If the optimal value of (8) is greater than zero, this indicates that no configuration obtained by the genetic algorithm corresponds to a feasible configuration for the hypothesized contact state and the hypothesized contact state is assembly-infeasible.
	As stated previously, the procedure of checking the feasibility of a hypothesized contact state involves nested optimization. The inner optimization calculates the growth distance for a given configuration (as described in Section II.B) obtained using the simplex method. The outer optimization searches for a feasible configuration in a nonlinear optimization and is obtained using a genetic algorithm (as described in Section II.D).
	SECTION III.
	Contact State Extremals

	Extremal configurations represent configurations that have extreme values in misalignment within a specific contact state. Formally,
	III.
	Definition 1
	A. Obtaining Extremal Configurations

	An extremal configuration of a contact state is a special configuration having at least one of its six configuration variables at its maximum or minimum value. In this section, we present an algorithm to identify the extremal configurations for a contact state.
	Because an extremal configuration must be a configuration within the specified contact state, it must satisfy: i) the CS Feature Criteria, (4); ii) the Non-Penetration Criteria (5); and iii) the Bounded-Misalignment Criteria, (7). The problem of finding the lower bounded extremal configurations for independent variable tk can be formulated as a constrained optimization problem:
	𝑚𝑖𝑛𝑡𝑘s.t.𝑑𝑝𝐺(𝐓)=0∑ℎ𝑃𝐶𝑗(𝐓)=0𝑡𝑖𝑚𝑖𝑛≤𝑡𝑖≤𝑡𝑖𝑚𝑖𝑛∀𝑖=1,2,⋯,6  (9)
	Similarly, the optimization to determine the upper bounded extremals of each independent variable 𝑡𝑘 is given by
	𝑚𝑖𝑛−𝑡𝑘s.t.𝑑𝑝𝐺(𝐓)=0∑ℎ𝑃𝐶𝑗(𝐓)=0𝑡𝑖𝑚𝑖𝑛≤𝑡𝑖≤𝑡𝑖𝑚𝑎𝑥∀𝑖=1,2,⋯,6  (10)
	To solve this type of constrained optimization problem using genetic algorithms, a penalty method is used to incorporate some constraint equations into the objective function. The 2 new objective functions are expressed as:
	𝑚𝑖𝑛𝑓1(𝐓)=𝑡𝑘+𝜆1(𝑃𝐶𝑗∈𝐂𝐒𝑖ℎ𝑃𝐶𝑗(𝐓)+𝑊3𝑑𝑝𝐺(𝐓))𝑚𝑖𝑛𝑓2(𝐓)=−𝑡𝑘+𝜆2(𝑃𝐶𝑗∈𝐂𝐒𝑖ℎ𝑃𝐶𝑗(𝐓)+𝑊3𝑑𝑝𝐺(𝐓))(11)(12)
	where 𝜆1 and 𝜆2 are large positive numbers known as penalty factors, and 𝑊3 is a scaling factor defined in (8).
	The objective functions (11) (12) are similar to (8) in that all are subject to limits on the design (configuration) variables. A genetic algorithm is again used to obtain configuration extremals for each assembly contact state.
	SECTION IV
	Robustness Improvement
	A. Contact State Relations
	Proposition 1
	Proposition 2
	B. Robustness Improvement

	The conditions for evaluating the feasibility of more constrained contact states are larger in number and more nonlinear than the conditions for less constrained contact states. This occurs because each higher level CS requires additional CS Feature Criteria (4). The robustness of most optimization routines decreases when the number of constraints and the nonlinearity of the constraints increase. In this section, a robustness improvement strategy based on a search space refinement that uses the relationships among contact states and extremal configurations (both stored in the ACSG data structure) is described.
	In [4], Xiao and Ji identified the neighbor relations of contact states based on the topology of the two polyhedral parts. Here, we use a restrictive form of that information.
	For two PCs, 𝐏𝐂𝐬,𝑃𝐶𝑎=(𝑠𝑒𝑖𝐴−𝑠𝑒𝑗𝐵),𝑃𝐶𝑏=(𝑠𝑒𝑘𝐴−𝑠𝑒𝑙𝐵), if: 1) 𝑠𝑒𝑖𝐴 is 𝑠𝑒𝑘𝐴 and 𝑠𝑒𝑗𝐵 is the boundary of 𝑠𝑒𝑙𝐵, or 2) 𝑠𝑒𝑖𝐴 is the boundary of 𝑠𝑒𝑘𝐴 and 𝑠𝑒𝑗𝐵 is 𝑠𝑒𝑙𝐵, then 𝑃𝐶𝑎 is the close less constrained neighbor (CLCN) PC of 𝑃𝐶𝑏 and 𝑃𝐶𝑏 is the close more constrained neighbor (CMCN) PC of 𝑃𝐶𝑎.
	The relationships of PCs are consistent with the classification of PCs by the level of constraint in [7]. The CLCN PC of a PC is a PC in the next lower level2, and the CMCN PC is in the next higher level.
	For two CSs, 𝐂𝐒𝑎={𝑃𝐶𝑖} and 𝐂𝐒𝑏={𝑃𝐶𝑗},𝐂𝐒𝑎 is the close less constrained neighbor (CLCN) CS of 𝐂𝐒𝑏, and 𝐂𝐒𝑏 is the close more constrained neighbor (CMCN) CS of 𝐂𝐒𝑎, if one of the following two conditions is satisfied:
	 if the number of PCs in 𝐂𝐒𝑎 is equal to that in 𝐂𝐒𝑏, and there are a pair of 𝑃𝐶𝑖∈𝐂𝐒𝑎 and 𝑃𝐶𝑗∈𝐂𝐒𝑏 such that PCi is the CLCN PC of PCJ, while all other PCs are the same;
	 if the number of PCs in 𝐂𝐒𝑎 is 1 less than that in 𝐂𝐒𝑏, and there is only 1 PPC in 𝐂𝐒𝑏 that is not contained in 𝐂𝐒𝑎.
	Each contact state corresponds to a patch in C-space. For each patch, there is a range of values for each configuration variable. Using the definition of extremal configurations (in Section III.A) for a contact state and the relations among contact states, we have: 
	/
	Fig. 1. Example Assembly. To illustrate the strategy, configurations are limited to small range. Only those surface elements that may compose a hypothesized CS are labeled.
	The configurations of a contact state cannot exceed the bounds defined by the minimum lower bound and maximum upper bounds of all its close less constrained neighbor contact states.
	For a CS containing multiple PCs, the following proposition holds:
	The configurations of a contact state cannot exceed the bounds defined by the intersection of the range of each of the PCs contained in the CS.
	One parameter used in genetic algorithms is the number of individuals in the population. It determines the density of the distribution of individuals within the range of variables. For a given population size, a smaller range yields a greater population density in the solution space, and therefore is more likely to yield the true optimal solution.
	There are two types of constraint on the range of configuration variables. One is determined by relative positioning inaccuracy. The other relates to restrictions associated with part geometry. The actual range of each variable for a contact state, in general, will be less than the initial range determined by robot inaccuracy.
	Recall that the procedure for generating all contact states starts by considering less constrained contact states, after which the more constrained neighbor hypothesized contact states obtained from combinations of feasible PPCs are considered.
	In the sequence of checking the feasibility of hypothesized contact states, the associated extremal configurations for a feasible contact state are determined prior to checking the feasibility of the next hypothesized contact state. Using Proposition 1 and Proposition 2, these extremals are used to restrict the range of configuration variables. The feasibility of a new hypothesized contact state can be assessed within the range of configuration variables based on the extremal values of its CLCN contact states and PCs contained in the CS. 
	/
	Fig. 2. ACSG for L-shape Assembly and Associated Close Neighbors.
	Generally, this range is much smaller than the initial range imposed by robot inaccuracy (7). For example, if the range of each of the 6 configuration variables is half of its original range, the restricted search range will be 1/64 of the original range. By restricting the range of configuration variables, the density of the population is greatly increased and the robustness of the optimization is significantly improved at no addition cost in computation time.
	The following describes the improved algorithm used to identify contact states and associated extremal configurations:
	1. Generate set of PPCs from DXF files of the parts (A PPC is a PC having 5 degrees of freedom (face-vertex, vertex-face and edge-edge-cross));
	2. Combine feasible PPCs to generate a hypothesized contact state;
	3. Map the hypothesized contact state into the highest level topological description;
	4. Obtain the bounds of the search area for the hypothesized contact state;
	1. Get all CLCN CSs for the hypothesized CS;
	2. Determine the lower and upper bounds for each variable for each of these CLCN CSs;
	3. Among all these lower (upper) bounds, find the minimum lower (maximum upper) bound;
	4. Determine the lower and upper bounds for each variable for each of the PCs contained in the hypothesized CS;
	5. Find the maximum lower (minimum upper) bound, among these bounds determined by PCs;
	6. Find the intersection of the ranges determined in (c) and (e).
	5. Check the feasibility of the hypothesized contact state based on the refined bounds;
	6. Obtain extremal configurations if the contact state is feasible;
	7. Repeat Steps 2–6 until no additional PPC combinations can be generated.
	Items 4(a)-4(c) identify the range determined by CLCN contact states based on Proposition 1. Items 4(d)-4(e) identify the range determined by PCs contained in the CS based on Proposition 2. If there are no CLCN for the hypothesized contact state, items 4(a)-4(c) are skipped and the range is determined only by 4(d)-4(e). If the hypothesized contact state consists of only 1 PC, 4(d)-4(e) are skipped and the range is determined only by 4(a)-4(c).
	SECTION V.
	Example

	A simple example illustrates the improved means of generating all contact states and associated extremals. Figure 1 illustrates two parts and the coordinate frames used to indicate relative positioning. The misalignment bounds in this example are limited to a range consistent with the process of inserting the block into the L-shape corner from the top.
	For inaccuracy imposed bounds given by:
	the generated ACSG shown in Fig. 2 is obtained. A total of 63 contact states are generated. Note that there are no CLCN or CMCN relationships between the contact states in level 4 and level 5. In this case, the level 5 contact states are derived from the combination of level 3 and level 1 (PPC) contact state. For this case, the search range is restricted by using the procedure described in items 4(d)-4(e) of Section IV.B.
	To illustrate the ACSG generation strategy and the robustness improvement, consider the ACSG subset shown in Fig. 3. The lines between pairs of contact states indicate that the two contact states are close neighbor contact states. Figure 3 shows, for example, that {𝑓2𝐴−𝑒2𝐵} is derived from the combination of {𝑓2𝐴−𝑣2𝐵} and {𝑓2𝐴−𝑣3𝐵} which are CLCN PCs. When the feasibility of {𝑓2𝐴−𝑒2𝐵} is checked, the range of configurations is not the initial range between tmin and tmax determined by the robot uncertainty, but the range between
	determined by its CLCN PCs, which is approximately 11200 of the initial range. Improvements at higher levels are even more dramatic, particularly, when the search dimension is decreased. 
	/
	Fig. 3. ACSG subset. Arrows indicate the CMCN for each contact state generated. Levels indicate the level of kinematic constraint provided by contact and the contact state generation sequence.
	Table I Assembly Contact States Evaluation and Ranges for Each Configuration Variable.
	/
	The values of the objective function for each hypothesized contact state within this subset and the extremal values for each configuration variable are summarized in Table I. Table I also indicates the values of objective functions for three infeasible contact states. Results show that the objective function values for feasible contact states are approximately zero. For infeasible contact states, the objective function has a relatively large positive number.
	SECTION VI.
	Discussion and Summary

	In this paper, we have presented an approach for testing the assembly-feasibility of hypothesized contact states and for identifying extremal configurations of an assembly contact state using genetic algorithms. For the more constrained contact states, a search refinement strategy was presented to improve the optimization robustness using the extremal configurations and the neighbor relationships among the contact states.
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