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Synopsis 
Structural factors inherent to the bonding of silver(I) to arene ligands are thoroughly analyzed with the aid of the 
Cambridge Crystallographic Database; and the normal separation of Ag from the aromatic mean plane is found 
to be invariant for all silver/arene complexes independent of the hapticity, hybridization, or multiple 
coordination. Using this basic information, we can precisely predict the depth penetration of silver(I) into the 
aromatic clefts of various cis-stilbenoid ligands with a single parameter that measures the separation of the two 
cofacial aryl groups comprising the cleft. 

 
Abstract 

 

Silver(I) complexes with aromatic donors are thoroughly analyzed (with aid of the Cambridge Crystallographic 
Database) to identify the basic structural factors inherent to the bonding of an arene ligand. Most strikingly, the 
distance parameter d (which simply measures the normal separation of Ag from the mean aromatic plane) is 
singularly invariant at d = 2.41 ± 0.05 Å for all silver/arene complexes, independent of the hapticity (η1 or η2), 
hybridization, or multiple coordination. As such, a systematic series of stilbenoid ligands has been successfully 
designed to precisely modulate the penetration of silver(I) into the ligand cleft, and a multicentered poly(arene) 
ligand (X) designed to form a one-dimensional assembly of Ag/arene units. Simply stated, the depth penetration 
of silver(I) into the aromatic cavities of various cis-stilbenoid donors can be precisely predicted with a single 
parameter γ that measures the separation of the two cofacial aryl groups comprising the cleft. This simple 
geometric consideration must be taken into account in any successful design of novel (poly)aromatic ligands for 
silver(I) complexation to constitute new molecular architectures. 
 

Introduction 
Among the various σ- and π-complexes of silver(I) with organic ligands,1,2 those derived from arene 
donors have the desired structural diversity for the construction of organometallic (solid-state) devices 
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as electrical conductors, photoactive switches, chemical sensors, etc.3,4 This possibility stems in large 
part from the active synthetic interest in polycyclic hydrocarbons that bear two or more aromatic 
groups in interesting arrays, including diarylalkanes (-alkenes and -alkynes), cyclophanes, tryptycenes, 
triangulanes, deltaphanes, cylindrophanes, etc.5-7 Critical to crystal engineering is the spontaneous self-
assembly of the active silver(I) center within a proscribed environment, whether it links a di- or 
trifunctional aromatic ligand in a polymeric (linear) structure or is encapsulated deep within a 3-
dimensional cage such as a calixarene.8,9 Despite numerous ingenious designs of novel ligands, 
however, the systematics for the precise placement of silver(I) has not evolved and it remains as a 
largely ad hoc operation. 

To address this structural problem, we inquire as to the basic nature of the arene bonding to silver(I). 
Historically, Mulliken conceived the π-interaction of arene with silver(I) to be dominated by charge 
transfer;10 but this formulation is not amenable to experimental test owing to the absence of 
distinctive (resolved) absorption bands in most (colorless) complexes.11 The alternative 
Dewar−Chatt−Duncanson model is most widely accepted, and it predicts the η2 bonding of silver(I) to a 
pair of ring carbon centers (arising from π-back-donation)12 though it is not commonly observed.13 

Our analysis initially considered (mono)benzenoid ligands with the thought that these may provide 
some clues for a better understanding of the general stereoelectronic requirements of silver/arene 
coordination that is unbiased by either distortion or steric hindrance introduced by the chemical linking 
of two or more aromatic groups. Indeed, a search through the Cambridge Crystallographic Database 
(CCD) reveals more than 70 entries of intermolecular structures of which more than half (40) involve 
two or three arene ligands bound to silver(I), independent of whether the arene/Ag molar ratios are 
less than 2:1 or 3:1.14 Most importantly, the following three critical structural features are found to be 
inherent to all the silver/arene complexes of rather wide ligand diversity. 

A. The separation of silver(I) from the mean plane of the coordinated benzene (see I) lies within 
a narrow range, being d = 2.41 ± 0.05 Å, i.e., ±2% over all structures. 

B. Silver(I) shows no preference toward either η1 or η2 coordination of arenes.15 [Note that 
η1coordination is tantamount to σ-bonding of silver(I) to an arene center.] Most importantly, 
the position of Ag is always restricted to a narrow arc over the periphery of the coordinated 
benzene ring, and its (azimuthal) position can be quantitatively gauged by its deviation Δ from 
the centroid axis (see I). Indeed the angular parameter β and the linear Δ as measures of 
deviation show remarkable constancy with β = 32° ± 3° and Δ = 1.53 ± 0.2 Å over the range of all 
structures,16being only slightly subject to packing forces. 
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C. The “grab” angle α between the planes of the coordinated benzene (see II)17 falls within 
three sharply delineated regions of 95°, 130°, and 155° (typically within ±3°) roughly 
corresponding to octahedral, tetrahedral, and linear hybridization of silver. Accordingly, the 
known silver/bis(monoarene) complexes can be divided into separate structural groups 
composed of three different coordination geometries, and they all abide by structural 
requirements A and B described above (for details see Table 4). 

We believe that structural requirements A−C are equally applicable to cyclic (poly)arene ligands which 
have been elaborately designed to capture silver(I) deep within their cavities. Let us consider 
deltaphane III and (2.2.2)paracyclophane IV as illustrative examples18 in which the size of the internal 
cavity matches the ionic radius of silver(I); and AgI was thus expected to occupy the center of the 
cavities and perfectly entombed within. However, NMR studies revealed a high kinetic lability of these 
complexes, and X-ray crystallography demonstrated the silver(I) contact to occur only with the carbon 
atoms of the upper rims of both cylinder-shaped donors and not in the middle of the cavity. Our more 
detailed consideration of the available crystallographic data revealed some large deviations of silver(I) 
from an expected ideal trigonal coordination (Table 1) and an unusually enhanced thermal motion of 
silver.19 Such structural “anomalies” are easily accounted for and even predicted from structural facets 
A−C. For example, AgI sits over the rim of the coordinated benzene rings but at a distance a little too 
distant (d = 2.47 Å in IV) from the standard value of 2.41 Å. However, the principal reason for 
ineffective silver(I) coordination lies in the angular distortion of α, which is forced to be 120° instead of 
the desired value of α = 130°; and importantly the 3-fold symmetry of the (poly)arene ligand forces Ag 
to adopt an undesirable trigonal pyramidal coordination. As such, we conclude that the increased 
lability and thermal motion of silver(I) reflect a tendency to resolve this degenerate symmetry. The 
point is strongly supported by structural data on the less symmetrical homologue in which the 
additional methylene bridge removes the 3-fold symmetry.20 As a result, Ag shifts aside (from the 
remaining mirror plane) to achieve the more natural (distorted) tetrahedral coordination. Even in this 
complex, however, the pair of potential minima are not well separated and three crystallographically 
independent units show different degrees of Ag deviation from the local mirror plane. 

 

The same analyses of silver/arene complexes based on structural facets A−C of different macrocyclic 
aromatic ligands such as the calixarenes, other cyclophanes, etc. (for some details see Experimental 
Section) show why all previous attempts to totally encapsulate silver(I) heretofore have been 
unsuccessful. In order to achieve this goal, we identify the desirable structural features of the aromatic 
ligand to include two (not three) linked benzene rings so that the grab angle in the complex will be 
close to either 130° or 155° and the distance between benzene centers will not be less than 3.5 Å (but 
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not exceed 5 Å). Moreover, the local symmetry of the desired ligand should accord with the silver(I) 
coordination (e.g., 2-fold symmetry is allowed but not 3-fold) and possess only a narrow site wherein 
the steric limitations of silver(I) coordination are satisfied (since multiple or extended sites will reduce 
the efficiency of complexation). 

A literature search revealed that these optimal structural features are inherent to the cis-stilbenoid 
ligand V previously utilized by Gano and co-workers21 and its close bicyclic relative VI which we 
developed for nitrosonium complexation.22 
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Table 1.  Geometrical Parameters of Silver(I)/Bis- and Tris(arene) Complexes with Polynuclear Tethered 
Ligands 

 

a In parentheses:  ratio between coordinated benzene rings and silver(I).b The symbol “-” means that all other 
distances Ag···C are larger than 2.71 Å (rAg + rC + 0.5 Å).c “η1.5” used for hapticities intermediate between η1 and 
η2.d Parameters are given only for one of four crystallographically nonequivalent units.e Parameters are given 
only for one of three crystallographically nonequivalent units.f With toluene molecule. 
 

In these bis-arene ligands, the silver(I) complexation that occurs between the pair of (more or less) 
cofacial aryl groups will determine its penetration into the cleft. Although Gano and co-
workers21afound that silver(I) sits somewhat outside the cleft formed by the cofacial phenyl groups 
in V (i.e., on the rim), we thought that the unique combination of steric and electronic factors in 
these cis-stilbenoid ligands can be optimized by (a) introduction of suitable (electron-donor) 
substituents on the aromatic complexing sites, (b) modulating the cleft opening by modification of the 
bicyclic bridge that controls the steric strain around the double bond, and (c) regulating the rotational 
freedom of the aryl groups with ortho substituents. 



Results and Discussion 
We focused in this study on four stilbenoid ligands in Chart 1 as prototypes for the study of silver(I) 
penetration into the ligand cavity. For comparison, data from Gano's ligand (1,2-di-tert-butyl-cis-
stilbene, V) are also included. 

Synthesis of the Stilbenoid Ligands. Ligands VII, VIII, and X were prepared by a general procedure 
described earlier based on the palladium-catalyzed coupling of a 1,2-dibromoalkene with an aryl 
Grignard reagent,23 e.g., Ligand IX was prepared via the cycloaddition 1,5-cyclooactadiene and 
diphenylcyclopentadienone and isolated as colorless crystals in 62% yield.24 

 

Chart 1 

 

 

Cyclic Voltammetry of the Stilbenoid Ligands. The donor strengths of the stilbenoid ligands were 
evaluated by their reversible oxidation potentials.25 Cyclic voltammetry carried out at a platinum anode 
showed reversible electrochemical behavior when a 5 mM solution in dichloromethane containing 0.1 
M tetrabutylammonium tetrafluoroborate was swept at 100 mV s-1. The trend in the E°ox values listed 
in Table 2 followed the decreasing trend of the methylated benzenes established earlier.26 As such, we 
conclude that they are largely unaffected by steric changes or the nature of the bicyclic bridge. 
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Table 2.  Donor Strengths of Stilbenoid Ligands and Formation Constants of Their Complexes with 
Silver(I) 

 

a PMB = pentamethylphenyl, Ph = phenyl, MES = mesityl, But = tert-butyl.b In dichloromethane at 25 °C.c In 3:1 
v/v mixture of dichloromethane and methanol.d From Gano et al. in ref 21a. 
 

Preparation and Isolation of Silver(I) Complexes with cis-Stilbenoid Ligands. A uniform procedure was 
followed in the preparation of the crystalline complexes by the dissolution of equimolar amounts of 
silver(I) trifluoromethanesulfonate (AgOTf) and the appropriate stilbenoid ligand in anhydrous 
tetrahydrofuran. The colorless solution was evaporated to dryness in vacuo, and the residue was 
redissolved in dichloromethane. The colorless solution was carefully layered with either n-hexane or 
toluene and allowed to deposit colorless crystals. The silver/stilbene complexes are stable at room 
temperature and showed no signs of decomposition over a period of months. 

Evaluation of Formation Constants in Solution. The formation constants of the silver(I) complexes with 
ligands VII−IX were evaluated in a 3:1 v/v mixture of dichloromethane-d2 and methanol-d4 by the NMR 
method described earlier.18,21a The magnitudes of the Kform values in Table 2 are substantially larger 
than those of simple (mono)arene complexes (Kform ∼ 2.4−3.9 M-1in aqueous solutions),27 but less than 
that [Kform = (3.7 ± 0.3) × 103 M-1] obtained for V in pure chloroform by Gano and co-workers.21a 

X-ray Crystallographic Structures of Silver(I) Complexes with Stilbenoids. Crystallographic data on the 
1:1 silver(I)/stilbene complexes VII−IX were collected at low temperature (either 93 or 123 K) and 
refined to R1 ≤ 3.6%, and the pertinent structural parameters are listed in Table 3. As a basis for 
comparison, crystallographic data were also collected for the free (uncomplexed) ligands, and they are 



available from the Cambridge Crystallographic Data Center together with those for their silver 
complexes. 

The ORTEP structures for VII−IX are illustrated in Figures 1−3, respectively, and they uniformly show 
that Ag is incorporated within the cleft of the stilbenoid donors, and the bonding to both aromatic 
moieties is essentially the same (with a local 2-fold axis through the silver(I) ion and the middle of the C

C double bond), i.e., Although the silver(I) complex VII packs in the unit cell as single molecules 
and VIII and IX pack as dimeric units (with trifluoromethanesulfonato bridges), the basic structural unit 
illustrated by XI remains intact in all structures. However, the bonding of silver(I) to the aromatic 
moiety varies between η1 and η2 (see column 5, Table 3). 

 

The most important structural parameter for this study is the distance between silver(I) and the 
olefinic center, which is given by the parameter L in structure XI. We consider the parameter L to be a 
reliable measure of the penetration of Ag into the donor cavity, and it is listed in the last column of 
Table 3. In the Ag complex VII, silver(I) penetrates deeply into the cleft, and the value of L is only 3.5 Å 
(more or less within van der Waals contact of silver cation and the double bond28). Such a close 
proximity occurs with the silver/arene bonding parameters α, β, and Δ of 113°, 24°, and 1.0 Å, which 
are significantly less than the optimal values of 130°, 32°, and 1.5 Å, as originally outlined in 



structures I and II (vide supra). (Note that the silver/ arene separation as measured by d is the only 
structural parameter that remains invariant at 2.5 Å.) 

 

Figure 1 ORTEP diagram of the monomeric [VIIAgOTf(H2O)] complex. Thermal ellipsoids are shown at the 50% 
probability level. 

 

Figure 2 ORTEP diagram of the dimeric [VIIIAgOTf(μ2-OTf)(H2O)AgVIII] complex. Thermal ellipsoids are shown at 
the 50% probability level. 



 

Figure 3 ORTEP diagram of the dimeric [IXAg(μ2-OTf)(μ2-H2O)OTfAg···AgOTf(μ2-H2O)(μ2-OTf)AgIX] complex with 
an unusually short Ag···Ag contact of 3.234(1) Å. Thermal ellipsoids are shown at the 50% probability level. 
 

Table 3.  Geometrical Parameters of Silver(I)/Bis(arene) Complexes with cis-Stilbenoid Ligands 

 

a In parentheses:  ratio between coordinated benzene rings and silver(I).b The symbol “-” means that all other 
Ag···C distances are larger than 2.71 Å (rAg + rC + 0.5 Å). In parentheses:  coordination site within Ph ring (ipso, 
ortho, meta, or para).c “η1.5” used for hapticities intermediate between η1 and η2.d In parentheses:  values for an 
uncomplexed ligand.e First two lines and last two lines refer to two symmetrically nonequivalent units, 
respectively.f First two lines:  parameters with participation of unsubstituted Ph groups. Last two lines:  with 
participation of methylated Ph groups. 
 

The opposite extreme of silver penetration is found in Gano's silver(I) complex21a (L = 4.7 Å) in which Ag 
is situated on the rim at the very periphery of the bis(arene) complexing site. Although the bonding 
parameters of α = 135°, β = 25°, and Δ = 1.2 Å are close to optimal values (see structures I and II), silver 
coordination to arene is highly asymmetric with one benzene nucleus much more tightly bound than 
the other (see column 6, Table 3). This suggests a very shallow or wide shape of the potential energy 
minimum from silver(I) coordination [possibly with several minima that should reduce the 



effectiveness of complex formation as described in the tris(arene) complexes above]. The systematic 
variation in depth of Ag penetration into the various stilbenoid clefts is illustrated in Figure 4. 

 

Figure 4 Progressive structural changes in silver(I)/stilbenoid complexes with increasing values of γ (cleft opening 
between benzene rings). See text and Table 3. 
 

It is particularly important to note that the cleft between the phenyl groups of the cis-di-tert-
butylstilbene in Gano's complex is the narrowest of all the stilbenoid ligands examined in this study. Let 
us therefore define γ as the cleft parameter for maintaining the dihedral angle α between the mean 
aromatic planes in stilbenoid ligands (see structure XI). If so, Figure 5dramatically illustrates the linear 
correlation that pertains between L (penetration) and γ (cleft).29In other words, the degree to which Ag 
penetrates the stilbenoid cavity is solely determined by the (dihedral) cleft angle, which modulates the 
precise location of Ag within the cavity. In essence, such a conclusion derives from the distance d as 
the invariant parameter for all silver/arene complexes. [Thus, it is easy to conclude that Ag will slide 
into the cleft (with a certain value of γ) up to an L at which the distance criterion (d) is fulfilled]. Minor 
adjustments of the ligand morphology to accommodate the d constant include a slight variation in the 
aryl twist angle (which in turn is influenced by ortho substituents) as well as some contraction of the 
cleft angle γ. The latter is indicated in Table 3 (column 9) by the comparative values of γ in the free 
ligand relative to that in the complex (always smaller). The hapticity of the silver/arene bonding is a 
“soft” parameter, and it is readily accommodated by changes in α, β, and Δ as listed in columns 10, 7 
and 8. 



 

Figure 5 Silver penetration L (see structure XI) as a function of dihedral angle α between benzene rings (see 
structure II). Correlation factor for the linear approximation is R = 0.9995 (Gano's structure V·Ag was not 
included in the computation). 
 

Silver(I) Complexes of Bifunctional Stilbenoid Ligands. Crystal engineering inherent to the 
encapsulation of silver(I) into the stilbenoid ligands can be extended to a polymeric chain by employing 
the bifunctional ligand X (see Chart 1). The synthesis of this tetraarylethylene followed from our earlier 
studies30a and involved the standard palladium-catalyzed coupling of 1,2-dibromostilbene with 
pentamethylphenylmagnesium bromide (compare eq 1). Indeed, X-ray crystallographic analysis shows 
that both pairs of syn-aryl groups are cofacially disposed about the ethylenic linkage in much the same 
manner as those in the cis-stilbenes VII−IX. Treatment of X with 1 equiv of silver 
trifluoromethanesulfonate in tetrahydrofuran and workup as described above yielded sharply melting 
colorless crystals of the silver(I) complex. X-ray crystallographic analysis of the silver(I) complex 
revealed the novel (linear) polymeric structure shown in Figure 6, in which each tetraarylethylene 
ligand is connected to two silver(I) in a regular alternating sequence with two different penetration 
distances characteristic of a pair of syn-phenyl groups (L = 4.82 Å) and syn-pentamethylphenyl groups 
(L = 4.07 Å). 



 

Figure 6 Infinite regular chain formed along 2-fold axis in structure X(AgOTf)2. Note the head-to-tail arrangement 
and μ2 bridging function of triflate ligands. 
 

Despite the difference in the overall structure of the polymeric chain in Figure 6 from that in the 
stilbenoid mono- and dimeric analogues (Figures 1−3), the relevant penetrations of Ag into both clefts 
of X are unaffected. The latter is demonstrated by the exact inclusion of both sets of L and γ 
parameters for silver(I) complex X in the linear correlation shown in Figure 5. The latter confirms our 
above conclusion that the distance parameter d is the overriding factor that establishes the degree to 
which Ag can penetrate a stilbenoid cavity. 

Conclusion 
Structural analysis of a wide variety of both mono(arene) and poly(arene) complexes of silver(I) reveals 
a surprisingly consistent set of optimal (bonding) parameters:  d = 2.4 Å, Δ = 1.5 Å, and α = 130° or 150° 
(within a rather narrow range) when 2-fold symmetry pertains in arene/Ag interactions. The hapticity 
(η1 or η2) is not a rigid bonding mode for silver(I), and a continuum of intermediate values (η1.5) are 
commonly found. We hope these conclusions will aid in the appropriate design of poly(arene) ligands 
for effective silver(I) encapsulation. 

Experimental Section 
Materials. The 2,3-diphenylbicyclooctene derivative (IX, 9,12-dimethyl-10,11-
diphenyltetracyclo[6.4.0.04,12.05,9]dodec-10-ene) was prepared by heating a mixture of commercially 
available dimeric 3,4-diphenyl-2,5-dimethylcyclopentadienone (2.5 g, 10 mmol) and freshly distilled 
1,4-cyclooctadiene (10 mL) in a sealed tube at 80 °C for 72 h. The excess 1,4-cycloocatadiene was 
removed in vacuo, and the chromatographic purification of the resulting crude syrup on silica gel, using 
a 1:1 mixture of hexane and ethyl acetate as an eluent, afforded the pure 2,3-diphenylbicyclooctene 
derivative IX in good yield (2.1 g, 62%); mp 142−144 °C (dichloromethane/ethanol); 1H NMR (CDCl3) δ 
0.94 (s, 6H), 1.75 (br d, 4H), 1.82 (br s, 4H), 1.95 (br d, 4H), 6.88−7.07 (m, 10H); 13C NMR (CDCl3) δ 
22.97, 24.86, 45.63, 47.38, 125.11, 126.86, 130.02, 141.86, 142.18; GC−MS m/z 340 (M+), 340 calcd for 
C26H28. An efficient general procedure for the synthesis of 2,3-bis(pentamethylphenyl)bicyclo[2.2.2]oct-
2-ene (VII), 2,3-bis(2,4,6-trimethylphenylbicyclo[2.2.2]oct-2-ene (VIII), and 1,2-
bis(pentamethylphenyl)-1,2-diphenylethylene (X) (mp 157−159 °C (dichloromethane−ethanol); 1H NMR 
(CDCl3) δ 2.05 (s, 12H), 2.12 (s, 6H), 2.15 (s, 12H), 7.08 (m, 10H); 13C NMR (CDCl3) δ 16.46, 16.68, 20.07, 
125.68, 127.22, 130.98, 131.79, 131.85, 132.83, 139.00, 141.59, 143.35; GC−MS m/z 470 (M+), 470 
calcd for C36H40) has been described previously.23 Silver trifluoromethanesulfonate (Aldrich) was stored 
in a Vacuum Atmospheres HE-493 drybox kept free of oxygen. 

Dichloromethane (Mallinckrodt analytical reagent) was repeatedly stirred with fresh aliquots of 
concentrated sulfuric acid (∼20 vol %) until the acid layer remained colorless. After separation, it was 



washed successively with water, aqueous sodium bicarbonate, water, and aqueous sodium chloride 
and dried over anhydrous calcium chloride. The dichloromethane was distilled twice from P2O5 under 
an argon atmosphere and stored in a Schlenk flask equipped with a Teflon valve fitted with Viton O-
rings. The hexane was distilled from P2O5 under an argon atmosphere and then refluxed over calcium 
hydride (∼12 h). After distillation from CaH2, the solvents were stored in the Schlenk flasks under an 
argon atmosphere. 

Instrumentation. The 1H and 13C NMR spectra were obtained on a General Electric QE-300 FT NMR 
spectrometer. Electrochemical apparatus and the procedure for the determination of the oxidation 
potentials has been described elsewhere.30b The equilibrium constants for stilbenoid donor/silver 
complexes were determined according to a published procedure.18,21a 

Preparation of Crystalline Stilbene/Silver Complexes. General Procedure. Equimolar solutions of 
CF3SO3Ag (0.2 mmol, 0.01 M) and of the stilbene (0.2 mmol, 0.01 M) in anhydrous tetrahydrofuran 
were mixed at 22 °C and under an argon atmosphere. After the mixture was stirred for 1 h at 22 °C, the 
solvent was removed in vacuo. The resulting solid was redissolved in dichloromethane. The cloudy 
solution was filtered through glass wool (under an argon atmosphere) and carefully layered with 
hexane. After standing for several days, the bilayeredmixture deposited colorless single crystals of high 
quality. Note that these silver/diaryl olefin complexes were stable at room temperature for months 
without showing any sign of decomposition. 

  



Table 4.  Comparison of the Geometrical Parameters of Silver(I)/Bis(arene) Complexes with 
Mononuclear Ligands 

 

a The symbol “-” means that all other Ag···C distances are longer than 2.71 Å (rAg + rC + 0.5 Å).b “η1.5” used for 
hapticities intermediate between η1 and η2. 
 

X-ray Crystallography. The intensity data for all the compounds were collected with the aid of a 
Siemens SMART diffractometer equipped with a 1K CCD detector using Mo Kα radiation (λ = 0.71073 
Å), at −180 °C unless otherwise specified. The structures were solved by direct methods31 and refined 
by a full-matrix least-squares procedure with IBM Pentium and SGI O2computers. (The details of the X-
ray structure of various compounds are on deposit and can be obtained from Cambridge 
Crystallographic Data Center, U.K.) 2,3-Bis(pentamethylphenyl)bicyclo[2.2.2]oct-2-ene 
(VII)/Ag+CF3SO3- Complex. Brutto formula:  C30H40·CF3SO3Ag·H2O, MW = 675.58, monoclinic, space 
group P21/c, at −150 °C a = 17.0787(3) Å, b = 14.5611(3) Å, and c = 12.6883(4) Å, β = 111.754(1)o, Dc = 
1.531 g cm-3, V = 2930.7(1) Å3, Z = 4. The total number of reflections measured was 24367, of which 
12740 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0228 and wR2 = 
0.0554 for 11322 reflections with I > 2σ(I). 2,3-Bis(2,4,6-trimethylphenyl)bicyclo[2.2.2]oct-2-ene 
(VIII)/Ag+CF3SO3- Complex. Brutto formula:  2C27H32·2CF3SO3Ag·H2O, MW = 1220.93, triclinic, space 
group P1̄, a = 12.8222(7) Å, b = 13.9994(7) Å, and c = 15.5853(8) Å, α = 94.850(1)°, β = 93.037(1)°, γ = 
106.372(1)o, Dc = 1.534 g cm-3, V = 2643.0(2) Å3, Z = 2. The total number of reflections measured was 
36667, of which 22079 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0356 
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and wR2 = 0.0801 for 15475 reflections with I > 2σ(I). 9,12-Dimethyl-10,11-
diphenyltetracyclo[6.4.0.04,12.05,9]dodec-10-ene (IX)/Ag+CF3SO3- Complex.Brutto formula:  
C26H28·2CF3SO3Ag·H2O, MW = 872.38, monoclinic, space group P21/n, a = 6.1411(8) Å, b = 36.618(5) Å, 
and c = 13.486(2) Å, β = 100.599(3)o, Dc = 1.944 g cm-3, V = 2981.0(7) Å3, Z = 4. The total number of 
reflections measured was 33402, of which 9115 reflections were symmetrically nonequivalent. Final 
residuals were R1 = 0.0492 and wR2 = 0.1108 for 5849 reflections with I > 2σ(I). 1,2-
Bis(pentamethylphenyl)-1,2-diphenylethylene (X)/Ag+CF3SO3- Complex. Brutto formula:  
2C38H40·2CF3SO3Ag, MW = 986.56, monoclinic, space group C2/c, a = 19.5429(5) Å, b = 14.1980(4) Å, 
and c = 16.4689(5) Å, β = 123.8240(10)o, Dc = 1.726 g cm-3, V = 3796.2(2) Å3, Z = 4. The total number of 
reflections measured was 26514, of which 8222 reflections were symmetrically nonequivalent. Final 
residuals were R1 = 0.0191 and wR2 = 0.0502 for 7282 reflections with I > 2σ(I). 

Neutral 9,12-Dimethyl-10,11-diphenyltetracyclo[6.4.0.04,12.05,9]dodec-10-ene (IX). Brutto formula:  
C26H28, MW = 340.48, triclinic, space group P1̄, a = 5.9876(2) Å, b = 11.6951(4) Å, and c= 13.9555(5) Å, α 
= 76.047(1)°, β = 81.328(1)°, γ = 83.152(1)o, Dc = 1.211 g cm-3, V = 934.06(6) Å3, Z = 2. The total number 
of reflections measured was 13264, of which 7886 reflections were symmetrically nonequivalent. Final 
residuals were R1 = 0.0458 and wR2 = 0.1247 for 6677 reflections with I > 2σ(I). 

Neutral 1,2-Bis(pentamethylphenyl)-1,2-diphenylethylene (X). Brutto formula:  C36H40, MW = 472.68, 
monoclinic, space group P21/c, a = 17.0401(5) Å, b = 9.6913(3) Å, and c = 17.3737(5) Å, β = 
106.389(1)o, Dc = 1.141 g cm-3, V = 2752.5(1) Å3, Z = 4. The total number of reflections measured was 
33158, of which 11876 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0428 
and wR2 = 0.0668 for 8426 reflections with I > 2σ(I). (Note that X-ray structure data for the neutral 
stilbenoid donors VII and VIII are published elsewhere.22,23) 

Structural Analysis of Silver(I) Complexes of (Mono)arenes. Silver(I) complexes of simple benzenoid 
donors fall into three classes with α = 95°, 130°, and 155° (typical deviation ±3°). 

The first group of the complexes, with α ≅ 95°, is composed of silver/arene complexes having the 
stoichiometric ratio of 1:1. These crystals have coordinationally active atoms (typically oxygens) in the 
counteranions, and, as a result, the silver(I) ion has a trend toward higher coordination numbers. For 
example, in the phenylcyclohexane/AgClO4 complex with α = 91.5° (entry 1, Table 4), the silver(I) ion 
has a coordination number of 5.2c In the benzene/AgClO4 complex with α = 96.9° (entry 2, Table 4), the 
silver(I) ion has a coordination number of 6.32 In the first case, the silver(I) ion has a coordination 
intermediate between square pyramidal and octahedral, and in the second case, a distorted octahedral 
coordination: The observed α values in these complexes are those required for a nondistorted 
octahedral coordination and hybridization of the silver(I) ion. The 1:1 stoichiometry of these complexes 
results in a μ2 functionality of coordinated benzene rings and leads to formation of polymeric chains 
(...Ar...Ag...Ar...Ag...) in their crystals. 
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All known silver/bis(monoarene) complexes with a 2:1 stoichiometry only have α values of either 
∼130° or ∼150° and coordination number 4. This corresponds either to a distorted tetrahedral silver(I) 
coordination/hybridization (generic value α = 109.5°) or to a distorted linear 
coordination/hybridization (generic value α = 180°) with additional coordination in the equatorial 
plane: We could find no structures that deviate perceptibly from either one of these two types of 
coordination, and this indicates that they correspond to two relatively sharp potential energy minima. 
We also were unable to find any factors other than crystal packing forces to make one or another 
coordination the most favorable in particular crystals. We conclude that potential energies of the 
corresponding coordination/electron states of silver(I) are nearly equivalent. 

 

There is only one example known of a silver/tris(monoarene) complex with a 3:1 stoichiometry (entry 
9, Table 4).33 Remarkably, its structure also follows all the regularities found for other 
silver/bis(monoarene) complexes (including values of the α angles). 

Structural Analysis of Calixarene and Other Polyaromatic Complexes of Silver(I). The principal 
rationale for the use of calixarene ligands is the favorable distance (about 5 Å) between opposed 
benzene rings, which is well suitable for silver(I) intercalation if one consider only its ionic radius. 
However, a scrupulous analysis of the resulting structures (entries 7−9, Table 1) shows that the steric 
conditions for silver/arene complexation are not completely met in these complexes. In particular, the 
α angle has an unfavorable value of ∼193° that is far from the optimal value ∼155°:As a result, the 
angular distortion results in a large separation of opposed aryl groups in the uncomplexed calixarene 
donor. A more detailed consideration of the geometric features shows that the distance between 
upper rims of the benzene rings that participate in the silver(I) coordination is 5.5 Å in uncoordinated 
calixarene but only 4.5 Å in the complexed one. [Such a contraction is required to maintain an optimal 
separation d = 2.41 Å between the silver(I) ion and the coordinated benzene nuclei since this can be 
achieved only by rotation (clamping) of the benzene rings toward each other.] In the resulting 
configuration, these rings are inclined toward the center of the cavity and cause the “inverted” 
distortion of the α angle (note in the uncomplexed donor they are inclined outward from the 
cavity): To relieve this angular distortion, the silver(I) ion moves outward from the cavity (toward the 
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equatorial oxygen ligands), and this causes increased values of Δ ∼ 1.75 Å (typical value 1.55 Å) and β 
∼ 37° (typical value 32°) in these calixarene complexes. 

 

 

In a less conformationally rigid but topologically closely related cyclophane donor,34 the “inversion” of 
the α angle over 180° is avoided (α = 172.5°), but the presence of coordinationally active amino 
nitrogens in the bridges of the molecule forces an atypical square-planar coordination of silver(I) that 
does not favor an effective silver(I) complexation. (Compare the similar consequences of trigonal 
symmetry degeneration in the deltaphane complexes above.) 

 

There has also been an attempt to use a larger box-shaped poly(arene) moiety for silver(I) 
complexation35 that actually failed owing to steric restrictions: The silver(I) ion in this complex cannot 



coordinate to the opposed benzene rings which are too distant (the separation is ∼8 Å), and instead, it 
coordinates to two neighboring arene groups under very unfavorable geometrical conditions (entry 11, 
Table 1). The generally constrained situation is relieved only by participation of an additional toluene 
solvate that coordinates to the silver(I) ion at much more characteristic geometric values. 

 

A relatively straightforward attempt was undertaken in a silver(I) tetraarylborate complex (entry 1, 
Table 1)36 in which the multidentate arene substrate functions also as the counteranion. The latter 
greatly increases the total strength of the silver−ligand interactions due to contribution of Coulombic 
forces. Indeed in this complex, the silver(I) cation deeply penetrates into the central boron cleft of the 
anion giving short contacts with the ipso and ortho carbons of two of the four aryl groups. However, 
the Ag+···Ar separations (2.43 and 2.53 Å) are unexpectedly longer than the standard value (2.41 Å), 
and the silver(I) ion is strongly shifted toward the axes of the benzene rings (Δ = 1.40 and 1.41 Å 
instead of the optimal 1.53 Å value). These structural features indicate that the Coulombic attraction 
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Ag+···B- takes a place, but at the expense of substantial distortions in the silver/arene coordination. A 
conflict between Coulombic and coordination interactions results in a general hindering of the system 
that is not satisfactory for effective complexation. The most apparent manifestation of this conflict is a 
very much contracted α angle at the silver(I) ion (80.2°) that is incompatible with the 4-coordinated 
silver/arene complexes,37 being far from the optimal 130° or 155° values. Such a contracted value of α 
is forced by the tetrahedral angle (γ ∼ 109°) between the axes of the coordinated benzene rings; and it 
cannot be further extended beyond 70° (180° − γ) without even more severe distortions in silver(I) 
coordination:38 
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	Abstract
	Silver(I) complexes with aromatic donors are thoroughly analyzed (with aid of the Cambridge Crystallographic Database) to identify the basic structural factors inherent to the bonding of an arene ligand. Most strikingly, the distance parameter d (whic...

	/
	Introduction
	Among the various σ- and π-complexes of silver(I) with organic ligands,1,2 those derived from arene donors have the desired structural diversity for the construction of organometallic (solid-state) devices as electrical conductors, photoactive switches, chemical sensors, etc.3,4 This possibility stems in large part from the active synthetic interest in polycyclic hydrocarbons that bear two or more aromatic groups in interesting arrays, including diarylalkanes (-alkenes and -alkynes), cyclophanes, tryptycenes, triangulanes, deltaphanes, cylindrophanes, etc.5-7 Critical to crystal engineering is the spontaneous self-assembly of the active silver(I) center within a proscribed environment, whether it links a di- or trifunctional aromatic ligand in a polymeric (linear) structure or is encapsulated deep within a 3-dimensional cage such as a calixarene.8,9 Despite numerous ingenious designs of novel ligands, however, the systematics for the precise placement of silver(I) has not evolved and it remains as a largely ad hoc operation.
	To address this structural problem, we inquire as to the basic nature of the arene bonding to silver(I). Historically, Mulliken conceived the π-interaction of arene with silver(I) to be dominated by charge transfer;10 but this formulation is not amenable to experimental test owing to the absence of distinctive (resolved) absorption bands in most (colorless) complexes.11 The alternative Dewar−Chatt−Duncanson model is most widely accepted, and it predicts the η2 bonding of silver(I) to a pair of ring carbon centers (arising from π-back-donation)12 though it is not commonly observed.13
	Our analysis initially considered (mono)benzenoid ligands with the thought that these may provide some clues for a better understanding of the general stereoelectronic requirements of silver/arene coordination that is unbiased by either distortion or steric hindrance introduced by the chemical linking of two or more aromatic groups. Indeed, a search through the Cambridge Crystallographic Database (CCD) reveals more than 70 entries of intermolecular structures of which more than half (40) involve two or three arene ligands bound to silver(I), independent of whether the arene/Ag molar ratios are less than 2:1 or 3:1.14 Most importantly, the following three critical structural features are found to be inherent to all the silver/arene complexes of rather wide ligand diversity.
	A. The separation of silver(I) from the mean plane of the coordinated benzene (see I) lies within a narrow range, being d = 2.41 ± 0.05 Å, i.e., ±2% over all structures.
	B. Silver(I) shows no preference toward either η1 or η2 coordination of arenes.15 [Note that η1coordination is tantamount to σ-bonding of silver(I) to an arene center.] Most importantly, the position of Ag is always restricted to a narrow arc over the periphery of the coordinated benzene ring, and its (azimuthal) position can be quantitatively gauged by its deviation Δ from the centroid axis (see I). Indeed the angular parameter β and the linear Δ as measures of deviation show remarkable constancy with β = 32° ± 3° and Δ = 1.53 ± 0.2 Å over the range of all structures,16being only slightly subject to packing forces.
	/
	C. The “grab” angle α between the planes of the coordinated benzene (see II)17 falls within three sharply delineated regions of 95°, 130°, and 155° (typically within ±3°) roughly corresponding to octahedral, tetrahedral, and linear hybridization of silver. Accordingly, the known silver/bis(monoarene) complexes can be divided into separate structural groups composed of three different coordination geometries, and they all abide by structural requirements A and B described above (for details see Table 4).
	We believe that structural requirements A−C are equally applicable to cyclic (poly)arene ligands which have been elaborately designed to capture silver(I) deep within their cavities. Let us consider deltaphane III and (2.2.2)paracyclophane IV as illustrative examples18 in which the size of the internal cavity matches the ionic radius of silver(I); and AgI was thus expected to occupy the center of the cavities and perfectly entombed within. However, NMR studies revealed a high kinetic lability of these complexes, and X-ray crystallography demonstrated the silver(I) contact to occur only with the carbon atoms of the upper rims of both cylinder-shaped donors and not in the middle of the cavity. Our more detailed consideration of the available crystallographic data revealed some large deviations of silver(I) from an expected ideal trigonal coordination (Table 1) and an unusually enhanced thermal motion of silver.19 Such structural “anomalies” are easily accounted for and even predicted from structural facets A−C. For example, AgI sits over the rim of the coordinated benzene rings but at a distance a little too distant (d = 2.47 Å in IV) from the standard value of 2.41 Å. However, the principal reason for ineffective silver(I) coordination lies in the angular distortion of α, which is forced to be 120° instead of the desired value of α = 130°; and importantly the 3-fold symmetry of the (poly)arene ligand forces Ag to adopt an undesirable trigonal pyramidal coordination. As such, we conclude that the increased lability and thermal motion of silver(I) reflect a tendency to resolve this degenerate symmetry. The point is strongly supported by structural data on the less symmetrical homologue in which the additional methylene bridge removes the 3-fold symmetry.20 As a result, Ag shifts aside (from the remaining mirror plane) to achieve the more natural (distorted) tetrahedral coordination. Even in this complex, however, the pair of potential minima are not well separated and three crystallographically independent units show different degrees of Ag deviation from the local mirror plane.
	/
	The same analyses of silver/arene complexes based on structural facets A−C of different macrocyclic aromatic ligands such as the calixarenes, other cyclophanes, etc. (for some details see Experimental Section) show why all previous attempts to totally encapsulate silver(I) heretofore have been unsuccessful. In order to achieve this goal, we identify the desirable structural features of the aromatic ligand to include two (not three) linked benzene rings so that the grab angle in the complex will be close to either 130° or 155° and the distance between benzene centers will not be less than 3.5 Å (but not exceed 5 Å). Moreover, the local symmetry of the desired ligand should accord with the silver(I) coordination (e.g., 2-fold symmetry is allowed but not 3-fold) and possess only a narrow site wherein the steric limitations of silver(I) coordination are satisfied (since multiple or extended sites will reduce the efficiency of complexation).
	A literature search revealed that these optimal structural features are inherent to the cis-stilbenoid ligand V previously utilized by Gano and co-workers21 and its close bicyclic relative VI which we developed for nitrosonium complexation.22
	/
	Table 1.  Geometrical Parameters of Silver(I)/Bis- and Tris(arene) Complexes with Polynuclear Tethered Ligands
	a In parentheses:  ratio between coordinated benzene rings and silver(I).b The symbol “-” means that all other distances Ag···C are larger than 2.71 Å (rAg + rC + 0.5 Å).c “η1.5” used for hapticities intermediate between η1 and η2.d Parameters are given only for one of four crystallographically nonequivalent units.e Parameters are given only for one of three crystallographically nonequivalent units.f With toluene molecule.
	In these bis-arene ligands, the silver(I) complexation that occurs between the pair of (more or less) cofacial aryl groups will determine its penetration into the cleft. Although Gano and co-workers21afound that silver(I) sits somewhat outside the cleft formed by the cofacial phenyl groups in V (i.e., on the rim), we thought that the unique combination of steric and electronic factors in these cis-stilbenoid ligands can be optimized by (a) introduction of suitable (electron-donor) substituents on the aromatic complexing sites, (b) modulating the cleft opening by modification of the bicyclic bridge that controls the steric strain around the double bond, and (c) regulating the rotational freedom of the aryl groups with ortho substituents.
	Results and Discussion
	We focused in this study on four stilbenoid ligands in Chart 1 as prototypes for the study of silver(I) penetration into the ligand cavity. For comparison, data from Gano's ligand (1,2-di-tert-butyl-cis-stilbene, V) are also included.
	Synthesis of the Stilbenoid Ligands. Ligands VII, VIII, and X were prepared by a general procedure described earlier based on the palladium-catalyzed coupling of a 1,2-dibromoalkene with an aryl Grignard reagent,23 e.g., Ligand IX was prepared via the cycloaddition 1,5-cyclooactadiene and diphenylcyclopentadienone and isolated as colorless crystals in 62% yield.24
	/
	Chart 1
	/
	/
	Cyclic Voltammetry of the Stilbenoid Ligands. The donor strengths of the stilbenoid ligands were evaluated by their reversible oxidation potentials.25 Cyclic voltammetry carried out at a platinum anode showed reversible electrochemical behavior when a 5 mM solution in dichloromethane containing 0.1 M tetrabutylammonium tetrafluoroborate was swept at 100 mV s-1. The trend in the E°ox values listed in Table 2 followed the decreasing trend of the methylated benzenes established earlier.26 As such, we conclude that they are largely unaffected by steric changes or the nature of the bicyclic bridge.
	Table 2.  Donor Strengths of Stilbenoid Ligands and Formation Constants of Their Complexes with Silver(I)
	a PMB = pentamethylphenyl, Ph = phenyl, MES = mesityl, But = tert-butyl.b In dichloromethane at 25 °C.c In 3:1 v/v mixture of dichloromethane and methanol.d From Gano et al. in ref 21a.
	Preparation and Isolation of Silver(I) Complexes with cis-Stilbenoid Ligands. A uniform procedure was followed in the preparation of the crystalline complexes by the dissolution of equimolar amounts of silver(I) trifluoromethanesulfonate (AgOTf) and the appropriate stilbenoid ligand in anhydrous tetrahydrofuran. The colorless solution was evaporated to dryness in vacuo, and the residue was redissolved in dichloromethane. The colorless solution was carefully layered with either n-hexane or toluene and allowed to deposit colorless crystals. The silver/stilbene complexes are stable at room temperature and showed no signs of decomposition over a period of months.
	Evaluation of Formation Constants in Solution. The formation constants of the silver(I) complexes with ligands VII−IX were evaluated in a 3:1 v/v mixture of dichloromethane-d2 and methanol-d4 by the NMR method described earlier.18,21a The magnitudes of the Kform values in Table 2 are substantially larger than those of simple (mono)arene complexes (Kform ∼ 2.4−3.9 M-1in aqueous solutions),27 but less than that [Kform = (3.7 ± 0.3) × 103 M-1] obtained for V in pure chloroform by Gano and co-workers.21a
	X-ray Crystallographic Structures of Silver(I) Complexes with Stilbenoids. Crystallographic data on the 1:1 silver(I)/stilbene complexes VII−IX were collected at low temperature (either 93 or 123 K) and refined to R1 ≤ 3.6%, and the pertinent structural parameters are listed in Table 3. As a basis for comparison, crystallographic data were also collected for the free (uncomplexed) ligands, and they are available from the Cambridge Crystallographic Data Center together with those for their silver complexes.
	The ORTEP structures for VII−IX are illustrated in Figures 1−3, respectively, and they uniformly show that Ag is incorporated within the cleft of the stilbenoid donors, and the bonding to both aromatic moieties is essentially the same (with a local 2-fold axis through the silver(I) ion and the middle of the C/C double bond), i.e., Although the silver(I) complex VII packs in the unit cell as single molecules and VIII and IX pack as dimeric units (with trifluoromethanesulfonato bridges), the basic structural unit illustrated by XI remains intact in all structures. However, the bonding of silver(I) to the aromatic moiety varies between η1 and η2 (see column 5, Table 3).
	/
	The most important structural parameter for this study is the distance between silver(I) and the olefinic center, which is given by the parameter L in structure XI. We consider the parameter L to be a reliable measure of the penetration of Ag into the donor cavity, and it is listed in the last column of Table 3. In the Ag complex VII, silver(I) penetrates deeply into the cleft, and the value of L is only 3.5 Å (more or less within van der Waals contact of silver cation and the double bond28). Such a close proximity occurs with the silver/arene bonding parameters α, β, and Δ of 113°, 24°, and 1.0 Å, which are significantly less than the optimal values of 130°, 32°, and 1.5 Å, as originally outlined in structures I and II (vide supra). (Note that the silver/ arene separation as measured by d is the only structural parameter that remains invariant at 2.5 Å.)
	/
	Figure 1 ORTEP diagram of the monomeric [VIIAgOTf(H2O)] complex. Thermal ellipsoids are shown at the 50% probability level.
	/
	Figure 2 ORTEP diagram of the dimeric [VIIIAgOTf(μ2-OTf)(H2O)AgVIII] complex. Thermal ellipsoids are shown at the 50% probability level.
	/
	Figure 3 ORTEP diagram of the dimeric [IXAg(μ2-OTf)(μ2-H2O)OTfAg···AgOTf(μ2-H2O)(μ2-OTf)AgIX] complex with an unusually short Ag···Ag contact of 3.234(1) Å. Thermal ellipsoids are shown at the 50% probability level.
	Table 3.  Geometrical Parameters of Silver(I)/Bis(arene) Complexes with cis-Stilbenoid Ligands
	a In parentheses:  ratio between coordinated benzene rings and silver(I).b The symbol “-” means that all other Ag···C distances are larger than 2.71 Å (rAg + rC + 0.5 Å). In parentheses:  coordination site within Ph ring (ipso, ortho, meta, or para).c “η1.5” used for hapticities intermediate between η1 and η2.d In parentheses:  values for an uncomplexed ligand.e First two lines and last two lines refer to two symmetrically nonequivalent units, respectively.f First two lines:  parameters with participation of unsubstituted Ph groups. Last two lines:  with participation of methylated Ph groups.
	The opposite extreme of silver penetration is found in Gano's silver(I) complex21a (L = 4.7 Å) in which Ag is situated on the rim at the very periphery of the bis(arene) complexing site. Although the bonding parameters of α = 135°, β = 25°, and Δ = 1.2 Å are close to optimal values (see structures I and II), silver coordination to arene is highly asymmetric with one benzene nucleus much more tightly bound than the other (see column 6, Table 3). This suggests a very shallow or wide shape of the potential energy minimum from silver(I) coordination [possibly with several minima that should reduce the effectiveness of complex formation as described in the tris(arene) complexes above]. The systematic variation in depth of Ag penetration into the various stilbenoid clefts is illustrated in Figure 4.
	/
	Figure 4 Progressive structural changes in silver(I)/stilbenoid complexes with increasing values of γ (cleft opening between benzene rings). See text and Table 3.
	It is particularly important to note that the cleft between the phenyl groups of the cis-di-tert-butylstilbene in Gano's complex is the narrowest of all the stilbenoid ligands examined in this study. Let us therefore define γ as the cleft parameter for maintaining the dihedral angle α between the mean aromatic planes in stilbenoid ligands (see structure XI). If so, Figure 5dramatically illustrates the linear correlation that pertains between L (penetration) and γ (cleft).29In other words, the degree to which Ag penetrates the stilbenoid cavity is solely determined by the (dihedral) cleft angle, which modulates the precise location of Ag within the cavity. In essence, such a conclusion derives from the distance d as the invariant parameter for all silver/arene complexes. [Thus, it is easy to conclude that Ag will slide into the cleft (with a certain value of γ) up to an L at which the distance criterion (d) is fulfilled]. Minor adjustments of the ligand morphology to accommodate the d constant include a slight variation in the aryl twist angle (which in turn is influenced by ortho substituents) as well as some contraction of the cleft angle γ. The latter is indicated in Table 3 (column 9) by the comparative values of γ in the free ligand relative to that in the complex (always smaller). The hapticity of the silver/arene bonding is a “soft” parameter, and it is readily accommodated by changes in α, β, and Δ as listed in columns 10, 7 and 8.
	/
	Figure 5 Silver penetration L (see structure XI) as a function of dihedral angle α between benzene rings (see structure II). Correlation factor for the linear approximation is R = 0.9995 (Gano's structure V·Ag was not included in the computation).
	Silver(I) Complexes of Bifunctional Stilbenoid Ligands. Crystal engineering inherent to the encapsulation of silver(I) into the stilbenoid ligands can be extended to a polymeric chain by employing the bifunctional ligand X (see Chart 1). The synthesis of this tetraarylethylene followed from our earlier studies30a and involved the standard palladium-catalyzed coupling of 1,2-dibromostilbene with pentamethylphenylmagnesium bromide (compare eq 1). Indeed, X-ray crystallographic analysis shows that both pairs of syn-aryl groups are cofacially disposed about the ethylenic linkage in much the same manner as those in the cis-stilbenes VII−IX. Treatment of X with 1 equiv of silver trifluoromethanesulfonate in tetrahydrofuran and workup as described above yielded sharply melting colorless crystals of the silver(I) complex. X-ray crystallographic analysis of the silver(I) complex revealed the novel (linear) polymeric structure shown in Figure 6, in which each tetraarylethylene ligand is connected to two silver(I) in a regular alternating sequence with two different penetration distances characteristic of a pair of syn-phenyl groups (L = 4.82 Å) and syn-pentamethylphenyl groups (L = 4.07 Å).
	/
	Figure 6 Infinite regular chain formed along 2-fold axis in structure X(AgOTf)2. Note the head-to-tail arrangement and μ2 bridging function of triflate ligands.
	Despite the difference in the overall structure of the polymeric chain in Figure 6 from that in the stilbenoid mono- and dimeric analogues (Figures 1−3), the relevant penetrations of Ag into both clefts of X are unaffected. The latter is demonstrated by the exact inclusion of both sets of L and γ parameters for silver(I) complex X in the linear correlation shown in Figure 5. The latter confirms our above conclusion that the distance parameter d is the overriding factor that establishes the degree to which Ag can penetrate a stilbenoid cavity.
	Conclusion
	Structural analysis of a wide variety of both mono(arene) and poly(arene) complexes of silver(I) reveals a surprisingly consistent set of optimal (bonding) parameters:  d = 2.4 Å, Δ = 1.5 Å, and α = 130° or 150° (within a rather narrow range) when 2-fold symmetry pertains in arene/Ag interactions. The hapticity (η1 or η2) is not a rigid bonding mode for silver(I), and a continuum of intermediate values (η1.5) are commonly found. We hope these conclusions will aid in the appropriate design of poly(arene) ligands for effective silver(I) encapsulation.
	Experimental Section
	Materials. The 2,3-diphenylbicyclooctene derivative (IX, 9,12-dimethyl-10,11-diphenyltetracyclo[6.4.0.04,12.05,9]dodec-10-ene) was prepared by heating a mixture of commercially available dimeric 3,4-diphenyl-2,5-dimethylcyclopentadienone (2.5 g, 10 mmol) and freshly distilled 1,4-cyclooctadiene (10 mL) in a sealed tube at 80 °C for 72 h. The excess 1,4-cycloocatadiene was removed in vacuo, and the chromatographic purification of the resulting crude syrup on silica gel, using a 1:1 mixture of hexane and ethyl acetate as an eluent, afforded the pure 2,3-diphenylbicyclooctene derivative IX in good yield (2.1 g, 62%); mp 142−144 °C (dichloromethane/ethanol); 1H NMR (CDCl3) δ 0.94 (s, 6H), 1.75 (br d, 4H), 1.82 (br s, 4H), 1.95 (br d, 4H), 6.88−7.07 (m, 10H); 13C NMR (CDCl3) δ 22.97, 24.86, 45.63, 47.38, 125.11, 126.86, 130.02, 141.86, 142.18; GC−MS m/z 340 (M+), 340 calcd for C26H28. An efficient general procedure for the synthesis of 2,3-bis(pentamethylphenyl)bicyclo[2.2.2]oct-2-ene (VII), 2,3-bis(2,4,6-trimethylphenylbicyclo[2.2.2]oct-2-ene (VIII), and 1,2-bis(pentamethylphenyl)-1,2-diphenylethylene (X) (mp 157−159 °C (dichloromethane−ethanol); 1H NMR (CDCl3) δ 2.05 (s, 12H), 2.12 (s, 6H), 2.15 (s, 12H), 7.08 (m, 10H); 13C NMR (CDCl3) δ 16.46, 16.68, 20.07, 125.68, 127.22, 130.98, 131.79, 131.85, 132.83, 139.00, 141.59, 143.35; GC−MS m/z 470 (M+), 470 calcd for C36H40) has been described previously.23 Silver trifluoromethanesulfonate (Aldrich) was stored in a Vacuum Atmospheres HE-493 drybox kept free of oxygen.
	Dichloromethane (Mallinckrodt analytical reagent) was repeatedly stirred with fresh aliquots of concentrated sulfuric acid (∼20 vol %) until the acid layer remained colorless. After separation, it was washed successively with water, aqueous sodium bicarbonate, water, and aqueous sodium chloride and dried over anhydrous calcium chloride. The dichloromethane was distilled twice from P2O5 under an argon atmosphere and stored in a Schlenk flask equipped with a Teflon valve fitted with Viton O-rings. The hexane was distilled from P2O5 under an argon atmosphere and then refluxed over calcium hydride (∼12 h). After distillation from CaH2, the solvents were stored in the Schlenk flasks under an argon atmosphere.
	Instrumentation. The 1H and 13C NMR spectra were obtained on a General Electric QE-300 FT NMR spectrometer. Electrochemical apparatus and the procedure for the determination of the oxidation potentials has been described elsewhere.30b The equilibrium constants for stilbenoid donor/silver complexes were determined according to a published procedure.18,21a
	Preparation of Crystalline Stilbene/Silver Complexes. General Procedure. Equimolar solutions of CF3SO3Ag (0.2 mmol, 0.01 M) and of the stilbene (0.2 mmol, 0.01 M) in anhydrous tetrahydrofuran were mixed at 22 °C and under an argon atmosphere. After the mixture was stirred for 1 h at 22 °C, the solvent was removed in vacuo. The resulting solid was redissolved in dichloromethane. The cloudy solution was filtered through glass wool (under an argon atmosphere) and carefully layered with hexane. After standing for several days, the bilayeredmixture deposited colorless single crystals of high quality. Note that these silver/diaryl olefin complexes were stable at room temperature for months without showing any sign of decomposition.
	Table 4.  Comparison of the Geometrical Parameters of Silver(I)/Bis(arene) Complexes with Mononuclear Ligands
	a The symbol “-” means that all other Ag···C distances are longer than 2.71 Å (rAg + rC + 0.5 Å).b “η1.5” used for hapticities intermediate between η1 and η2.
	X-ray Crystallography. The intensity data for all the compounds were collected with the aid of a Siemens SMART diffractometer equipped with a 1K CCD detector using Mo Kα radiation (λ = 0.71073 Å), at −180 °C unless otherwise specified. The structures were solved by direct methods31 and refined by a full-matrix least-squares procedure with IBM Pentium and SGI O2computers. (The details of the X-ray structure of various compounds are on deposit and can be obtained from Cambridge Crystallographic Data Center, U.K.) 2,3-Bis(pentamethylphenyl)bicyclo[2.2.2]oct-2-ene (VII)/Ag+CF3SO3- Complex. Brutto formula:  C30H40·CF3SO3Ag·H2O, MW = 675.58, monoclinic, space group P21/c, at −150 °C a = 17.0787(3) Å, b = 14.5611(3) Å, and c = 12.6883(4) Å, β = 111.754(1)o, Dc = 1.531 g cm-3, V = 2930.7(1) Å3, Z = 4. The total number of reflections measured was 24367, of which 12740 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0228 and wR2 = 0.0554 for 11322 reflections with I > 2σ(I). 2,3-Bis(2,4,6-trimethylphenyl)bicyclo[2.2.2]oct-2-ene (VIII)/Ag+CF3SO3- Complex. Brutto formula:  2C27H32·2CF3SO3Ag·H2O, MW = 1220.93, triclinic, space group P1̄, a = 12.8222(7) Å, b = 13.9994(7) Å, and c = 15.5853(8) Å, α = 94.850(1)°, β = 93.037(1)°, γ = 106.372(1)o, Dc = 1.534 g cm-3, V = 2643.0(2) Å3, Z = 2. The total number of reflections measured was 36667, of which 22079 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0356 and wR2 = 0.0801 for 15475 reflections with I > 2σ(I). 9,12-Dimethyl-10,11-diphenyltetracyclo[6.4.0.04,12.05,9]dodec-10-ene (IX)/Ag+CF3SO3- Complex.Brutto formula:  C26H28·2CF3SO3Ag·H2O, MW = 872.38, monoclinic, space group P21/n, a = 6.1411(8) Å, b = 36.618(5) Å, and c = 13.486(2) Å, β = 100.599(3)o, Dc = 1.944 g cm-3, V = 2981.0(7) Å3, Z = 4. The total number of reflections measured was 33402, of which 9115 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0492 and wR2 = 0.1108 for 5849 reflections with I > 2σ(I). 1,2-Bis(pentamethylphenyl)-1,2-diphenylethylene (X)/Ag+CF3SO3- Complex. Brutto formula:  2C38H40·2CF3SO3Ag, MW = 986.56, monoclinic, space group C2/c, a = 19.5429(5) Å, b = 14.1980(4) Å, and c = 16.4689(5) Å, β = 123.8240(10)o, Dc = 1.726 g cm-3, V = 3796.2(2) Å3, Z = 4. The total number of reflections measured was 26514, of which 8222 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0191 and wR2 = 0.0502 for 7282 reflections with I > 2σ(I).
	Neutral 9,12-Dimethyl-10,11-diphenyltetracyclo[6.4.0.04,12.05,9]dodec-10-ene (IX). Brutto formula:  C26H28, MW = 340.48, triclinic, space group P1̄, a = 5.9876(2) Å, b = 11.6951(4) Å, and c= 13.9555(5) Å, α = 76.047(1)°, β = 81.328(1)°, γ = 83.152(1)o, Dc = 1.211 g cm-3, V = 934.06(6) Å3, Z = 2. The total number of reflections measured was 13264, of which 7886 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0458 and wR2 = 0.1247 for 6677 reflections with I > 2σ(I).
	Neutral 1,2-Bis(pentamethylphenyl)-1,2-diphenylethylene (X). Brutto formula:  C36H40, MW = 472.68, monoclinic, space group P21/c, a = 17.0401(5) Å, b = 9.6913(3) Å, and c = 17.3737(5) Å, β = 106.389(1)o, Dc = 1.141 g cm-3, V = 2752.5(1) Å3, Z = 4. The total number of reflections measured was 33158, of which 11876 reflections were symmetrically nonequivalent. Final residuals were R1 = 0.0428 and wR2 = 0.0668 for 8426 reflections with I > 2σ(I). (Note that X-ray structure data for the neutral stilbenoid donors VII and VIII are published elsewhere.22,23)
	Structural Analysis of Silver(I) Complexes of (Mono)arenes. Silver(I) complexes of simple benzenoid donors fall into three classes with α = 95°, 130°, and 155° (typical deviation ±3°).
	The first group of the complexes, with α ≅ 95°, is composed of silver/arene complexes having the stoichiometric ratio of 1:1. These crystals have coordinationally active atoms (typically oxygens) in the counteranions, and, as a result, the silver(I) ion has a trend toward higher coordination numbers. For example, in the phenylcyclohexane/AgClO4 complex with α = 91.5° (entry 1, Table 4), the silver(I) ion has a coordination number of 5.2c In the benzene/AgClO4 complex with α = 96.9° (entry 2, Table 4), the silver(I) ion has a coordination number of 6.32 In the first case, the silver(I) ion has a coordination intermediate between square pyramidal and octahedral, and in the second case, a distorted octahedral coordination: The observed α values in these complexes are those required for a nondistorted octahedral coordination and hybridization of the silver(I) ion. The 1:1 stoichiometry of these complexes results in a μ2 functionality of coordinated benzene rings and leads to formation of polymeric chains (...Ar...Ag...Ar...Ag...) in their crystals.
	/
	All known silver/bis(monoarene) complexes with a 2:1 stoichiometry only have α values of either ∼130° or ∼150° and coordination number 4. This corresponds either to a distorted tetrahedral silver(I) coordination/hybridization (generic value α = 109.5°) or to a distorted linear coordination/hybridization (generic value α = 180°) with additional coordination in the equatorial plane: We could find no structures that deviate perceptibly from either one of these two types of coordination, and this indicates that they correspond to two relatively sharp potential energy minima. We also were unable to find any factors other than crystal packing forces to make one or another coordination the most favorable in particular crystals. We conclude that potential energies of the corresponding coordination/electron states of silver(I) are nearly equivalent.
	/
	There is only one example known of a silver/tris(monoarene) complex with a 3:1 stoichiometry (entry 9, Table 4).33 Remarkably, its structure also follows all the regularities found for other silver/bis(monoarene) complexes (including values of the α angles).
	Structural Analysis of Calixarene and Other Polyaromatic Complexes of Silver(I). The principal rationale for the use of calixarene ligands is the favorable distance (about 5 Å) between opposed benzene rings, which is well suitable for silver(I) intercalation if one consider only its ionic radius. However, a scrupulous analysis of the resulting structures (entries 7−9, Table 1) shows that the steric conditions for silver/arene complexation are not completely met in these complexes. In particular, the α angle has an unfavorable value of ∼193° that is far from the optimal value ∼155°:As a result, the angular distortion results in a large separation of opposed aryl groups in the uncomplexed calixarene donor. A more detailed consideration of the geometric features shows that the distance between upper rims of the benzene rings that participate in the silver(I) coordination is 5.5 Å in uncoordinated calixarene but only 4.5 Å in the complexed one. [Such a contraction is required to maintain an optimal separation d = 2.41 Å between the silver(I) ion and the coordinated benzene nuclei since this can be achieved only by rotation (clamping) of the benzene rings toward each other.] In the resulting configuration, these rings are inclined toward the center of the cavity and cause the “inverted” distortion of the α angle (note in the uncomplexed donor they are inclined outward from the cavity): To relieve this angular distortion, the silver(I) ion moves outward from the cavity (toward the equatorial oxygen ligands), and this causes increased values of Δ ∼ 1.75 Å (typical value 1.55 Å) and β ∼ 37° (typical value 32°) in these calixarene complexes.
	/
	/
	In a less conformationally rigid but topologically closely related cyclophane donor,34 the “inversion” of the α angle over 180° is avoided (α = 172.5°), but the presence of coordinationally active amino nitrogens in the bridges of the molecule forces an atypical square-planar coordination of silver(I) that does not favor an effective silver(I) complexation. (Compare the similar consequences of trigonal symmetry degeneration in the deltaphane complexes above.)
	/
	There has also been an attempt to use a larger box-shaped poly(arene) moiety for silver(I) complexation35 that actually failed owing to steric restrictions: The silver(I) ion in this complex cannot coordinate to the opposed benzene rings which are too distant (the separation is ∼8 Å), and instead, it coordinates to two neighboring arene groups under very unfavorable geometrical conditions (entry 11, Table 1). The generally constrained situation is relieved only by participation of an additional toluene solvate that coordinates to the silver(I) ion at much more characteristic geometric values.
	/
	A relatively straightforward attempt was undertaken in a silver(I) tetraarylborate complex (entry 1, Table 1)36 in which the multidentate arene substrate functions also as the counteranion. The latter greatly increases the total strength of the silver−ligand interactions due to contribution of Coulombic forces. Indeed in this complex, the silver(I) cation deeply penetrates into the central boron cleft of the anion giving short contacts with the ipso and ortho carbons of two of the four aryl groups. However, the Ag+···Ar separations (2.43 and 2.53 Å) are unexpectedly longer than the standard value (2.41 Å), and the silver(I) ion is strongly shifted toward the axes of the benzene rings (Δ = 1.40 and 1.41 Å instead of the optimal 1.53 Å value). These structural features indicate that the Coulombic attraction Ag+···B- takes a place, but at the expense of substantial distortions in the silver/arene coordination. A conflict between Coulombic and coordination interactions results in a general hindering of the system that is not satisfactory for effective complexation. The most apparent manifestation of this conflict is a very much contracted α angle at the silver(I) ion (80.2°) that is incompatible with the 4-coordinated silver/arene complexes,37 being far from the optimal 130° or 155° values. Such a contracted value of α is forced by the tetrahedral angle (γ ∼ 109°) between the axes of the coordinated benzene rings; and it cannot be further extended beyond 70° (180° − γ) without even more severe distortions in silver(I) coordination:38
	/
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