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RESEARCH ARTICLE Open Access

Serendipitous discovery of light-induced
(In Situ) formation of an Azo-bridged
dimeric sulfonated naphthol as a potent
PTP1B inhibitor
Robert D. Bongard1, Michael Lepley2, Khushabu Thakur3, Marat R. Talipov3, Jaladhi Nayak2,
Rachel A. Jones Lipinski2,3, Chris Bohl1, Noreena Sweeney1, Ramani Ramchandran2*† , Rajendra Rathore3*†

and Daniel S. Sem1*†

Abstract

Background: Protein tyrosine phosphatases (PTPs) like dual specificity phosphatase 5 (DUSP5) and protein tyrosine
phosphatase 1B (PTP1B) are drug targets for diseases that include cancer, diabetes, and vascular disorders such as
hemangiomas. The PTPs are also known to be notoriously difficult targets for designing inihibitors that become
viable drug leads. Therefore, the pipeline for approved drugs in this class is minimal. Furthermore, drug screening
for targets like PTPs often produce false positive and false negative results.

Results: Studies presented herein provide important insights into: (a) how to detect such artifacts, (b) the importance
of compound re-synthesis and verification, and (c) how in situ chemical reactivity of compounds, when diagnosed and
characterized, can actually lead to serendipitous discovery of valuable new lead molecules. Initial docking of compounds
from the National Cancer Institute (NCI), followed by experimental testing in enzyme inhibition assays, identified an
inhibitor of DUSP5. Subsequent control experiments revealed that this compound demonstrated time-dependent
inhibition, and also a time-dependent change in color of the inhibitor that correlated with potency of inhibition. In
addition, the compound activity varied depending on vendor source. We hypothesized, and then confirmed by synthesis
of the compound, that the actual inhibitor of DUSP5 was a dimeric form of the original inhibitor compound, formed
upon exposure to light and oxygen. This compound has an IC50 of 36 μM for DUSP5, and is a competitive inhibitor.
Testing against PTP1B, for selectivity, demonstrated the dimeric compound was actually a more potent inhibitor of PTP1B,
with an IC50 of 2.1 μM. The compound, an azo-bridged dimer of sulfonated naphthol rings, resembles previously reported
PTP inhibitors, but with 18-fold selectivity for PTP1B versus DUSP5.

Conclusion: We report the identification of a potent PTP1B inhibitor that was initially identified in a screen for DUSP5,
implying common mechanism of inhibitory action for these scaffolds.
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Background
Protein tyrosine phosphatases (PTPs) play a central role
in cell biology, acting as a complement to the protein
kinase system, to control levels of phosphorylated pro-
teins in the cell. By the removal of the phosphate groups
that are added by protein kinases, the PTPs regulate
processes that range from cell growth and differentiation
to motility to adhesion, in both normal and disease
states [1, 2]. There are a wide variety of PTPs, and
within the human genome 107 PTPs are classified into
four classes. In this study, we focus on two class I PTPs.
One is the cysteine-based PTPs, which are specific for
phosphotyrosines. These are the so-called “classical
PTPs,” and include PTP1B [3]. A second category of
class I PTP is the dual specificity phosphatases (DUSPs).
Our studies initially focused on targeting DUSP5, which
in addition to phospho-tyrosine also dephosphorylates
and phospho-threonine residue. Ultimately, through ser-
endipity, we identified a DUSP5 inhibitor that was ac-
tually more potent and selective at inhibiting PTP1B
as well as protein tyrosine phosphatase, non-receptor
type 11 (SHP-2). The DUSPs, and their mitogen-
activated protein kinase (MAPK) partners, are in-
volved in various diseases, including cancer, diabetes,
and autoimmune disorders [4–7]. DUSP5, in particu-
lar, has been shown by the Ramchandran lab as im-
portant for early vascular patterning in vertebrates,
and a clinically relevant serine to proline mutation
(S147P) has been identified in patients with vascular
anomalies [8]. Recently, it was shown using DUSP5
knockout mice that DUSP5 negatively regulates
interleukin-33-mediated eosinophil survival and func-
tion, [9], and upon viral infection, DUSP5 is essential
for T cell survival [10]. Furthermore, DUSP5 knock-
out rats displayed autoregulation of cerebral blood
flow [11]. Thus, DUSP5 is an important new drug
target, and was pursued by the studies presented
herein – at least until it was discovered that our lead
compound was a more potent inhibitor of PTP1B.
PTP1B is a drug target for treatment of cancer [12, 13]

as well as type II diabetes and obesity [14]. While there
are presently no approved drugs targeting PTP1B [15], it
has been hotly pursued as a drug target by many
pharmaceutical companies and academic labs [15, 16] in
the hope that an inhibitor of PTP1B could be developed
as a drug for treating type II diabetes, which is antici-
pated to affect over 300 million people world-wide by
2030 [14, 17]. PTP1B works by dephosphorylating the
insulin receptor, and studies with knockout mice have
shown that decreased PTP1B activity is associated with
weight loss and enhanced insulin sensitivity [18]. PTP1B
was the first PTP to be cloned and characterized [19],
and was first characterized by crystallography in 1994
[20]. Despite this extensive knowledge base, and the

recognition of PTP1B’s important role as a drug target,
there are still no approved drugs that target PTP1B. It
has been suggested that there are unique challenges to
developing drugs for PTPs, in part due to the require-
ment that inhibitors be highly charged, which creates
bioavailability problems for drug lead molecules [16].
Adding to this challenge, it has been noted that a large
number of small molecules identified as PTP inhibitors
were later found to be false positives, that inhibit non-
specifically (e.g. hydrophobic; aggregation effects) or via
oxidation of the active site cysteine residue [15]. Such
screening artifacts are not unique to PTPs, and are a
growing concern as increasing numbers of labs partici-
pate in drug discovery and development efforts.
The studies presented herein provide a useful case

study concerning the purity and chemical identities of
small molecules and their degradation, role of careful
analysis of apparent screening artifacts such as time-
dependent inhibition, and the importance of serendipity
in drug discovery.

Methods
Preparation of RR535 and RR601
Commercial RR535
Synthesis of RR535 (in-house NCI2602 re-synthesis) was
achieved in a multi-step synthesis only in very poor yield
and therefore the protocol was abandoned. Fortunately,
an acid derivative of RR535 (5-amino-1-naphthol-3-sul-
fonic acid hydrate, TCI) was commercially available. It
was converted to RR535 by a reaction with equimolar
sodium hydroxide in water under an inert atmosphere
followed by precipitation by a layering technique with
pure acetone. The resulting precipitate was further puri-
fied by repeated re-precipitation (3 times) with a mixture
of water and layering with acetone to afford a pure sam-
ple of RR535.

Synthesis of RR601
A solution of 5-amino-1-naphthol-3-sulfonic acid
hydrate, TCI (1.0 g, 4.17 mmol) was added an aqueous
solution of NaOH (0.17 g, 4.17 mmol) under an argon
atmosphere. The resulting mixture was stirred vigor-
ously and the pH of the solution was checked to ensure
the complete conversion of the acid into RR535. Water
was evaporated by bubbling a constant stream of argon
through the solution for 12 h to yield RR535 in quantita-
tive amount. The resulting RR535 (1 g) was re-dissolved
in deionized water (10 mL) in a quartz tube equipped
with a magnetic stirring bar. The resulting solution was
vigorously stirred while a stream of air (or pure oxygen)
was passed through the reaction mixture and the tube
was exposed to a 120 W lamp for 18 h. The dark colored
reaction mixture was slowly evaporated by bubbling
argon through the solution at 45 °C to produce a black
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brown solid. This solid was further purified by repeated
re-precipitation (5 times) from a mixture of water and
acetone to afford a pure RR601 in 45% yield. NMR and
mass spectrometry (MS) was used to characterize RR601
Scheme 1.

In vitro ERK dephosphorylation western blot assay
GST-DUSP5 purified protein was generated using previ-
ously published methods [21]. The protein was diluted
in phospho-ERK buffer (30 mM Tris-HCl pH 7.0,
75 mM NaCl, 0.67 mM EDTA, 1 mM DTT, H2O) to a
concentration of 1.5–3.0 nM, depending on the purity.
Active ERK2 (R&D Systems, Minneapolis MN) and the
compounds to be tested were also diluted in this buffer
with an initial concentration of 30 nM for ERK2 and
serial dilutions for the compounds. 5 μL each of GST-
DUSP5 and diluted compound concentrations were in-
cubated for 5 mins after which 5 μL of 30 nM ERK2 was
added and allowed to incubate for 20 mins. After this
time 15 μL SDS-Loading buffer was added to each reac-
tion. Samples were boiled for 5 mins, loaded into lanes
of 12% Mini-Protean TGX gels (Bio-Rad Laboratories
Inc, Hercules CA), and run at 120 V. Protein samples
were then transferred to PVDF western blotting Mem-
branes (Roche Diagnostics, Indianapolis IN) at 90 V for
1 h. Membranes were treated and utilized in the iBind
Flex Western Device (Thermo Fisher Scientific, Waltham
MA) according to manufacturer protocols. Membranes
were probed for total and phospho-ERK using rabbit
anti-human p44/42 MAPK and mouse anti-human
phospho-p44/42 MAPK primary antibodies and HRP-
linked anti-rabbit and anti-mouse secondary anti-
bodies (Cell Signaling Technology Inc, Danvers MA).
Images were developed using a FluorChem HD2
imager (Bio-Techne, Minneapolis MN) after application of
SuperSignal West Femto and West Pico chemilumines-
cent substrate (Thermo Fisher Scientific).

IC50 calculation from the western blot assay
Densitometry analysis of western blot images was
performed using ImageJ software. IC50 values were

obtained using Graphpad Prism 6 software to perform
a non-linear least squares regression, which generated a
sigmoidal dose-response curve. From this analysis IC50

values were obtained for each inhibitor being tested:
NCI2602 (Additional file 1: Fig. S2), RR535 (Additional
file 1: Fig. S3) and RR601 (Additional file 1: Fig. S4). In
contrast to the IC50 assay determined in solution and
described in the next section, this assay was done with
full-length protein (containing both domains), and
using pERK as substrate. Thus, it is expected that
slightly different IC50 values might be obtained, since
the conformation of the active site is expected to be
affected by the presence of the ERK binding domain, in
the presence of pERK.

DUSP5 phosphatase domain protein synthesis and details
of pNPP assay
The DUSP5 phosphatase domain (DUSP5 PD(WT))
gene was synthesized by Blue Heron (Bothell, WA) and
the protein expressed and purified as previously de-
scribed [22]. To measure the enzymatic activity of wild
type phosphatase domain of DUSP5 {DUSP5 PD(WT)}
and the inhibitory capacity of selected compounds, an in
vitro phosphatase assay was utilized as previously de-
scribed [22]. Briefly, assays without and with inhibitors
were performed in Greiner 96-well clear bottom plates
with a total assay volume of 200 μL. The assay buffer
contained 100 mM Tris, 100 mM NaCl, 5 mM MgCl2 •
6H2O and 1 mM dithiothreitol (DTT) at pH 7.5. p-ni-
trophenyl phosphate (pNPP, Sigma Aldrich) 5 mM was
used as the substrate. DUSP5 PD(WT) dephosphorylates
pNPP to yield p-nitrophenolate, which absorbs at
405 nm, having an extinction coefficient of 18,000 M-1

cm-1. The reaction was initiated by the addition of 4 μL
of a 29 μM DUPSP5 PD(WT) enzyme stock and absorb-
ance was monitored at 25 °C over time using a Spectra-
max M5 microplate reader (Molecular Devices). Blanks
contained only buffer and pNPP. Negative controls
(without inhibitor) contained assay buffer with pNPP
and DUSP5 PD(WT).

Scheme 1 Synthesis of RR601
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Inhibition of DUSP5PD(WT) by NCI2602 (1-amio-5-napththol-
7-sulfonic acid), and effects of compound source and storage
conditions
The first small molecule inhibitor tested was procured
from three independent sources. First from the NCI
Diversity Chemical Library (NCI2602), then from a com-
mercial vendor (MP Biomedicals, Cat. No. 05211488,
CAS 489-78-1), and was synthesized in our laboratories
(RR535). These compounds should, in theory, all be the
same chemical structure, 1-amio-5-napththol-7-sulfonic
acid. Stock solutions (25 mM) of each inhibitor com-
pound, including RR601 (newly synthesized) and NSC-
87877 (Merck Millipore) were prepared in dimethyl
sulfoxide (Sigma-Aldrich). We first noticed a time-
dependent darkening of the stock solutions of NCI2602
stored in room light as well as stock solutions of RR535
and the MP Biomedicals compound that had been ex-
posed to room light for varying amounts of time. This
initial observation prompted us to study the effect of
light exposure and compound source on inhibitor po-
tency. Upon the addition of 4 μL of these respective in-
hibitor stock solutions to the assay buffer, the resulting
range in assay inhibitor concentrations were 0.1 μM to
1,000 μM for the various 1-amino-5-naphthol-7-sulfonic
acid sources, 0.1 μM to 300 μM for RR601 and 0.1 μM
to 300 μM for NSC-87877. Appropriate vehicles were
added to the blank and negative control wells. A mini-
mum of three replicate wells was run for each condition
and at each inhibitor concentration. The replicate wells
were averaged to give a single data point. The reaction
was initiated upon addition of 4 μL of a 29 μM enzyme
stock which was dispensed to each of the wells except
the blanks utilizing a single channel pipette. The result-
ing DUSP5 PD(WT) concentration in the assay buffer
was 0.58 μM. The plate was returned to the plate reader,
shaken, and absorbance recorded at 25 °C every thirty
seconds over a ten to sixty mins time course. In selected
experiments the plate was returned to the plate reader
following a 10 mins recording for one or two additional
10 mins absorbance recordings.

RR601 and NSC-87877 inhibition of PTP1B and SHP-2
activity
To examine the capacity of RR601 to inhibit protein-
tyrosine phosphatase 1B (PTP1B), (Creative Biomart),
activity, an in vitro phosphatase assay was adapted from
[23]. Assays with and without inhibitor were performed
in Corning 96-well clear bottom plates having a non-
binding surface, with a total assay volume of 200 μL.
The assay buffer contained 100 mM Tris, 100 mM NaCl,
1 mM EDTA at pH 7.0 and 2.2 mM pNPP as the sub-
strate. Serial dilutions of each of the RR601 and NSC-
87877 stocks were performed such that upon the

addition of 4 μL of a respective inhibitor stock to the
assay buffer, the resulting range in assay inhibitor con-
centrations were 0.03 μM to 100 μM for RR601 and
0.1 μM to 300 μM for NSC-87877. The reaction was ini-
tiated upon addition of 4 μL of a 5.0 μM PTP1B stock,
which was dispensed to each of the wells except the
blanks using a single channel pipette. The resulting
PTPB1 concentration in the assay buffer was 0.1 μM.
The plate was returned to the plate reader, shaken, and
absorbance recorded at 25 °C every thirty seconds over a
10 mins period when RR601(Fig. 8a) was used, or for 60
mins when NSC-87877 was used as the inhibitor
(Additional file 1: Fig. S1A). Since NSC-87877 has also
been reported to inhibit SHP-2, we also examined the
capacity of RR601 and NSC-87877 to inhibit SHP-2
(Creative Biomart). Assays were performed in 96-well
plates in a similar manner as reported above. The
assay buffer contained 50 mM HEPES (pH 7.4),
2 mM EDTA, 3 mM DTT and 100 mM NaCl. An ini-
tial experiment was performed to determine the kin-
etic parameters of the SHP-2 enzyme. The reaction
was initiated with the addition of 4 μL of a 0.35 μM
stock SHP-2 enzyme into wells containing 0, 1, 3, 9,
27 and 81 μM pNPP. The SHP-2 assay concentration
was 7 nM. Absorbance was recorded every 30 s over
a ten minute assay period at a temperature of 25 °C
(Additional file 1: Fig. S8). Initial velocities were fit to the
Michaelis-Menten equation:

v ¼ Vmax S½ �
Km þ S½ � ð1Þ

where v is the initial velocity, V
max the maximum vel-

ocity, Km the Michaelis constant, and [S] the pNPP con-
centration. Following the determination of the Michaelis
constant of the SHP-2 enzyme in the pNPP assay, inhib-
ition studies with RR601 and NSC-87877 were per-
formed over concentration ranges of 0.01–100 μM and
0.03–300 μM, respectively. Assay buffer contained
7.5 mM pNPP, roughly one-half the value of the Michae-
lis constant determined from the study above. Reactions
were initiated with the addition of 4 μL SHP-2 enzyme,
resulting in a final assay enzyme concentration of 7 nM.
Absorbance was recorded every 30 s over a 10 min reac-
tion period at 25 °C in the RR601 study and every 30 s
over a 60 min reaction period with NSC-87877.

IC50 calculation
Initial rate values obtained from the plate reader were
normalized to percent activity relative to the mean nega-
tive control rates. Graphpad Prism 6 software was
utilized to calculate a non-linear regression (curve fit)
using a variable slope model equation, constraining the

Bongard et al. BMC Biochemistry  (2017) 18:10 Page 4 of 15



top and bottom values to 100% activity and 0% activity,
respectively, using the following equation:

vi ¼ Bottomþ Top−Bottomð Þ
1þ 10 logIC50−xð Þ�Hill Slope ð2Þ

where vi is the initial rate.

Nephelometry
Nephelometry was performed to determine the relative
propensity of the inhibitor compounds to aggregate in
solution, based on the light scattering properties of the
molecular aggregates. Compound aggregation can lead
to artifact inhibitory effects, thus confounding a study of
mechanism of inhibition. Compounds were tested for
aggregation in a 96-well plate format, final volume
200 μL, using the phosphatase activity assay buffer at
pH 7.5 without added pNPP. Compound concentrations
ranging from 1 μM to 300 μM were generated by the
addition of 4 μL volumes of serially diluted compound
samples that were prepared from stock solutions of
RR601, or RR535 and MP Biomedical stock solutions
that had either been stored in the dark or exposed to
light for 17 days. Eight wells were used for blanks and
for each compound concentration. Plates were analyzed
at two separate gains to determine if the signals were at
saturating levels. Progesterone was used as a positive
control for compound aggregation. Data were collected
using a BMG NEPHELOStar Plus, equipped with a
635 nm laser.

Mechanism of DUSP5 PD(WT) inhibition by RR601
To investigate the mechanism of DUSP5 PD(WT) inhib-
ition by RR601, initial velocity inhibition profiles of
RR601 were obtained in a 96-well plate format by meas-
uring DUSP5 PD(WT) initial velocities in assay buffer
containing of 1, 3, 9, 27 and 81 mM pNPP and 0, 3, 10,
30 and 75 μM RR601 at each pNPP concentration. Reac-
tions were initiated by the addition of DUSP5 PD(WT)
to a final concentration of 0.6 μM in each of the wells,
excluding the blank. The data were fitted to a global
competitive inhibition model (Graphpad Prism) using
the following equation:

vi ¼ Vmax S½ �
Km 1þ I½ �

Ki

� �
þ S½ �

ð3Þ

where v is the initial velocity, Vmax the maximum vel-
ocity, Km the Michaelis constant, [S] the concentration
of pNPP, [I] the concentration of RR601 and Ki the in-
hibition constant.
The mechanism of RR601 inhibition of SHP-2 was

investigated in a similar manner. Initial velocities of
SHP-2 were determined in assay buffer containing 1,

2, 3, 10 and 30 mM pNPP along with 0.1, 0.3, 1, 2 and
3 μM RR601 at each pNPP concentration. The data
were fitted to a global competitive inhibition model
(Additional file 1: Fig. S9). For substrate concentrations
less than 30 mM, the data fit best to a competitive inhib-
ition model (Eq. 3).

Spectroscopic study of the effect of light exposure on
compound properties
It was observed that solutions of 1-amino-5-naphthol-
7-sulfonic acid (originally NCI2602) prepared from
solid material procured from different sources were dif-
ferent in color. Therefore, compound solutions were
studied spectrophotometrically. In addition, it was also
observed that solutions of RR535 and MP Biomedicals
stored on the bench top became darker with time. This
prompted a more systematic examination of the time-
dependent nature of the color change. Freshly prepared
15 mM solutions of RR535 and MP Biomedicals were
prepared in DMSO, from which 0.86 mM solutions in
DMSO were prepared. Samples of each 0.86 mM solu-
tion were added to quartz cuvettes and the absorbance
of each sample was recorded from 400 nm to 700 nm
(Hewlett Packard 8456 diode array spectrophotometer).
Each 0.86 mM sample was then divided into two equal
volumes, one volume of each was stored in a cryovial
on the benchtop exposed to room light while a second
volume of each was stored in a cryovial wrapped in foil
and placed in a drawer protected from light. Absorb-
ance was recorded seven days later, after which the
samples were returned to their respective bench top or
drawer locations, and again at seventeen days following
sample preparation. The remaining 15 mM RR535 and
MP Biomedicals samples were stored on the bench top
for seventeen days after which their inhibitory capacity
against DUSP5 PD(WT) activity was determined.

Additional analytical measurements
1H NMR spectra of the MP Biomedicals, RR535 and
RR601 compounds were collected for comparison. Also,
mass spectrometry (MALDI) of methanol extracts of
MP Biomedicals and RR535 compounds were performed
using a nitroanthracene matrix.

Results
Initial identification of NCI2602
In our previous work, we had identified Suramin
(Fig. 1), an FDA-approved compound that inhibited the
DUSP5 enzyme [22]. Suramin was previously reported
as an active site-directed, reversible, and tight binding
inhibitor of protein-tyrosine phosphatases [24], and is
an FDA approved drug for treatment of African tryp-
anosomiasis [25]. Because Suramin has off target effects
[26], and aggregates [22], we investigated the individual
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chemical moieties that comprise Suramin, and first pro-
cured a compound from the NCI Diversity Chemical
Library (NCI2602) that resembled this moiety (Fig. 1).
We first investigated the ability of NCI2602 to inhibit
DUSP5 in our published pNPP and pERK assays [21].

In the pNPP assay (Fig. 2a), we observed an IC50 of
78.5 ± 5.4 μM (± SE), while in our pERK western blot
assay (Fig. 2b), we observed an IC50 value of 1.7 μM±
1.2 μM, as the average obtained from the global fit of
three separate experiments. These data suggest that

Fig. 2 NCI2602 IC50 determinations for DUSP5 PD(WT) and DUSP5(WT) activities using pNPP and pERK as substrates, respectively. a DUSP5 PD(WT) initial
velocity versus increasing concentrations (1 to 1,000 μM) of NCI2602, MP Biomedicals and RR535 (two additional sources of NCI2602), using pNPP as the
substrate. Lines represent the data fit to Eq. 1 resulting in calculated IC50 values of 78.5 ± 5.4 μM and 593.5 ± 64.1 μM (calculated IC50 value ± SE) for NCI2602
and MP Biomedicals, respectively. The model was unable to fit the RR535 data (did not converge) at the assayed concentrations. Data points represent the
mean± SD of three or four trials, with four to eight wells at each compound concentration. b Relative DUSP5(WT) activity versus increasing concentrations of
NCI2602 utilizing pERK as the substrate. The data points, generated from normalized image intensities, represent the mean ± SD of three experiments.
A global model fit of the three data sets resulted in an estimated IC50 (± SE) value of 1.7 ± 1.2 μM. c Photographic images of 25 mM stock concentrations
of NCI2602, MP Biomedicals and RR535 used for the IC50 determinations in (a). d Absorbance spectra from 400 to 700 nm of 1.8 mM concentrations of
NCI2602, MP Biomedicals and RR535 in DMSO with DMSO as the blank

Fig. 1 Chemical structures of suramin and NCI2602
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NCI2602 is a moderately potent inhibitor of DUSP5 ac-
tivity. To confirm our findings above, we resynthesized
NCI2602, referred to as RR535, and also purchased com-
pound from a commercial vendor (MP Biomedicals,
05211488, CAS 489-78-1) and re-analyzed these com-
pounds which should, in theory, be identical to NCI2602
and behave the same in the DUSP5 PD(WT)-pNPP and
DUSP5-pERK assays. Surprisingly, the compound obtained
from MP Biomedicals and the resynthesized NCI2602
(RR535) were found to be less effective inhibitors than the
originally discovered NCI compound (Fig. 2a). The MP

Biomedicals compound IC50 was 593.5 ± 64.1 μM, while
the RR535 compound failed to show inhibition over the
concentration range tested. These data collectively suggest
that NCI2602 and the purchased compound are not identi-
cal in structure, form and purity.

Changes in NCI2602 color over time
To investigate the differences between NCI2602 and the
resynthesized or purchased compound, we first focused
on the color of these compounds from different sources.
The NCI2602 was dark grey to black in color, the MP

Fig. 3 Light-sensitive nature of MP Biomedicals and RR535 compounds (1-amino-5-naphthol-7-sulfonic acid). Photographic images of two sets of (a)
MP Biomedicals and (b) RR535 compounds at concentrations of 0.5, 1.5, 5.0 and 15.0 mM in DMSO which were either stored in the dark (•) or on the
bench top exposed to a twelve hour cycle of room light (☼) over a one week period. Light exposure resulted in darkening of both compounds relative to
the matched sample sets which were stored in the dark. c Absorbance spectra from 400 to 700 nm of 0.86 mM concentrations of MP Biomedicals and d)
RR535 that were either stored in the dark or exposed to room light for seven and seventeen days. Scans of each compound on the day they were prepared
from solid compound are included for comparison, demonstrating the light- and time-dependent increase in absorbance of both compounds
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Biomedicals was modestly lighter and the synthesized
RR535 was white in color. Photographic images of
25 mM samples of each compound in DMSO (Fig. 2c),
as well as absorbance spectra of each compound (Fig. 2d)
correlate with the observed color differences observed in
the solids. We rationalized that the change in color
could be associated with impurities in the NCI2602
preparations or light-induced changes that result in
alterations in color. To address the later possibility, we
incubated stock solutions of RR535 and MP Biomedicals
in the dark or on the bench top exposed to room light.
Stock solutions (15 mM) of RR535 and MP Biomedicals

were prepared in DMSO and serially diluted to 5.0 mM,
1.5 mM and 0.5 mM using DMSO. Half of each sample
was pipetted into matched 0.6 mL polypropylene micro-
centrifuge tubes, generating two sets of serially diluted

RR535 and MP Biomedicals solutions. One set of each was
stored on the bench top while the matched set was stored
in a drawer protected from light. Photographic images of
the samples of the MP Biomedical samples (Fig. 3a) or the
RR535 samples (Fig. 3b) following storage for 7 days on ei-
ther the bench top or the drawer were collected. The sam-
ples showed evidence of light-induced darkening when
compared to the paired samples that were stored protected
from light. Absorbance spectra collected from 1.5 mM
samples of MP Biomedicals (Fig. 3c) and RR535 (Fig. 3d)
stored for 7 and 17 days, diluted with DMSO to a final
concentration of 0.86 mM, displayed a light- and time-
dependent increase in absorbance over the visible range.
These results suggest that color of the resynthesized and
the purchased compound changed over time to light ex-
posure, and matched the NCI2602 compound color.

Fig. 4 Effect of light exposure and assay reaction time on MP Biomedicals and RR535 IC50 values for DUSP5. DUSP5 PD(WT) initial velocity,
monitored utilizing pNPP as the substrate, versus increasing concentrations of (a) MP Biomedicals and B) RR535 (1 to 300 μM) prepared from
stock solutions that were either stored in the dark or exposed to room light for 17 days. IC50 values were determined from rate data collected
during the first ten minutes of the reaction period. The calculated IC50 ± SE for MP Biomedicals that was stored in the dark was 588 ± 351 μM,
compared to 221 ± 11 μM for the same compound when stored exposed to room light (a). RR535 that was stored in the dark did not inhibit
DUSP5 PD(WT) activity over the concentration range tested, while the IC50 for light-exposed RR535 was 725 ± 206 μM (b). c MP Biomedicals IC50
values determined as in (a) from rate data collected between 15 and 25 min during the reaction period for compound stored in the dark or exposed
to room light were 360 ± 36 μM and 31 ± 1 μM, respectively. d RR535 IC50 values determined as in (b) from rate data collected between 15 and
25 min. Compound stored in the dark did not inhibit DUSP5 PD(WT) activity while light exposed RR535 had an IC50 of 78.8 ± 4.9 μM. Data points
represent the mean ± SD of four trials with four wells at each MP Biomedicals and RR535 concentration
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Effect of light exposure on RR535 and MP Biomedicals on
in vitro potency: DUSP5 PD(WT) activity assays
The observed color changes brought about by light
exposure led us to examine whether light exposure im-
pacted the inhibitory capacity of MP Biomedicals and
RR535 compounds with respect to DUSP5 PD(WT) ac-
tivity. Figure 4 shows IC50 curves generated from DUSP5
PD(WT) activity versus increasing concentrations of MP
Biomedicals (Fig. 4a) and RR535 (Fig. 4b) (1 to 300 μM)
prepared from stock solutions that had either been
stored in the dark or exposed to room light for 17 days,
using pNPP as the DUSP5 PD(WT) substrate. The data
shown in Fig. 4a and b were collected during the first 10
mins of the reaction period. The calculated IC50 values
for the MP Biomedicals compound that had been stored
in the dark or exposed to room light were 588 ± 351 μM
and 221 ± 11 μM, respectively. RR535 that was stored in
the dark did not inhibit DUSP5 PD(WT) activity over
the concentration range studied, while RR535 compound
exposed to room light had an IC50 value of 725 ±
206 μM. When DUSP5 PD(WT) activity was assayed be-
tween 15 and 25 mins during the reaction, the calculated
IC50 values for the MP Biomedicals compound that had
been stored in the dark or exposed to room light were
360 ± 36 μM and 31 ± 1 μM, respectively (Fig. 4c).
RR535 that was stored in the dark did not inhibit activity
over the concentration range tested, while the IC50 for
light-exposed RR535 was 78.8 ± 4.9 μM (Fig. 4d) when
assayed between 15 and 25 mins. There was no signifi-
cant difference between the initial assay reaction rates of
the negative controls recorded from 0 to 10 min or 15
to 25 min. These data collectively suggest that light in-
duced changes in the activity associated with these
compounds.
The exact nature of the light-induced change on

the structure of RR535 was not known, but was

hypothesized to involve the dimerization reaction
shown below based on the fact that arylamines are
known to undergo ready oxidation when exposed to
air and light forming highly colored azo dyes. Accord-
ingly, a deliberate light-induced transformation of
pure RR535 was carried out in the presence of air
(see Methods section) and the structure of the result-
ing dimeric azo dye (RR601) was established by mass
spectrometry and NMR spectroscopy.
This newly synthesized compound was called “RR601”

and was tested as an inhibitor of DUSP5.
Because we observed increased activity over time

for the original monomeric inhibitors (NCI2602,
RR535 and MP Biomedicals), we performed a time-
dependent light incubation profile for these com-
pounds. Inhibition as a function of time exposed to
light in the plate reader (Fig. 5) shows changes for
DUSP5 PD(WT) inhibition activity for MP Biomedi-
cals (Fig. 5a), RR535 (Fig. 5b), and RR601 (Fig. 5c) in-
hibitors. MP Biomedicals and RR535 compounds were
prepared from stock solutions exposed to light for
90 days while the RR601 stock was prepared from re-
cently synthesized compound. Compounds were tested
for their ability to inhibit DUSP5 PD(WT) activity in
the plate assay and IC50 values calculated from dose
response curves generated from activity data collected
over the first 10 mins of the assay reaction period,
then from 15 to 25 mins and from 30 to 40 mins, re-
spectively (Table 1). IC50 values for MP Biomedicals
and RR535 decreased with time however, RR601 was
unique in that its ability to inhibit did not change as
a function of time exposed to the light source in the
plate reader.
We also performed pERK assay with RR535 and

RR601 compounds (Additional file 1: Fig. S3 and
Additional file 1: Fig. S4), and found that indeed they

Fig. 5 Light-exposed MP Biomedicals and RR535 inhibit DUSP5 PD(WT) in a time-dependent manner while inhibition by RR601 is not time-dependent.
DUSP5 PD(WT) initial velocity monitored utilizing pNPP as the substrate versus increasing concentrations of (a) MP Biomedicals, (b) RR535 (0.1 to 300 μM)
prepared from compounds exposed to room light for 90 days, and (c) freshly prepared RR601 (0.1 to 300 μM). IC50 ± SE values were determined from rate
data collected during the first ten minutes, between 15 and 25 min and again between 30 and 40 min during the reaction period (Table 1). Data points
represent the mean ± SD of three trials with eight wells at each compound concentration
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inhibit DUSP5 activity with IC50’s 22.8 μM for RR535
and 4.8 μM for RR601. Thus, collectively our results
suggest that the azo-bridged dimer of RR535, referred to
as RR601, is actually the more potent inhibitor of
DUSP5.

Nephelometry measurements of RR535, MP Biomedicals
and RR601 aggregation
Since compound aggregation is a common source of
false positive inhibition, especially for polysulfonated
aromatic compounds [27], nephelometry experiments
were performed on all compounds (Fig. 6), to rule out

this type of artifact inhibition. Nephelometry experi-
ments were performed as described in our previous pub-
lication [22], to measure the propensity for RR535, MP
Biomedicals and RR601 compounds to aggregate in solu-
tion. In all panels, the positive control compound pro-
gesterone is seen to aggregate at approximately 100 μM,
and shown as an inflection in the curve. In Fig. 6 panels
a, b, d and e no other inflection is observed; in contrast,
several points begin to show light scattering in panels C
and F. Figures 6b and e show nephelometry (compound
aggregation) measurements for RR535 prepared from
stock solutions that had been stored in the dark or ex-
posed to room light for seventeen days. There was little
or no measurable aggregation of either sample over the
concentration range tested. Similarly, Fig. 6a and d show
nephelometry measurements as a function of increasing
concentrations of MP Biomedicals prepared from stock
solutions that had been stored in the dark or exposed to
room light for seventeen days. Here also, there was little
or no measurable compound aggregation over the
concentration range tested. In contrast, RR601 (Fig. 6c
and f) began to aggregate at approximately 30 μM. Since

Table 1 DUSP5 PD(WT) inhibitor IC50 values with time

Assay Reaction Period

Inhibitor Compounds 0 – 10 min 15 – 25 min 30 – 40 min

MP Biomedicals 32.5 ± 2.8 5.9 ± 0.2 3.3 ± 0.2

RR535 86.6 ± 8.0 16.5 ± 0.7 6.3 ± 0.2

RR601 36.9 ± 3.9 36.5 ± 1.5 34.5 ± 1.4

IC50 values (± SE) for MP Biomedicals, RR535, and RR601 were determined in
the presence of DUSP5 PD(WT) as described in Fig. 4. Data was collected during
three successive 10 min assays with pNPP as the substrate

Fig. 6 MP Biomedicals, RR535, and RR601 Nephelometry at two gain settings. Aggregation of MP Biomedicals (a and d), RR503 (B and E) and RR601 (C
and F) was measured in 96 well plates with increasing concentrations of compound at gain levels of 35 (a, b, and c), and 50 (d, e, and f). MP Biomedicals
and RR535 samples were prepared from stock solutions that were either stored in the dark or exposed to room light for 17 days. Stock solutions of RR601
were stored in the dark. Progesterone (25 to 400 μM) was used as the control. Data points at each compound concentration are the mean ± SD of eight
wells. Single wells were used for each progesterone concentration
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aggregation occurs at a concentration that is higher than
the IC50, inhibition is not due to aggregation effects.

Mechanism of RR601-mediated DUSP5 PD(WT) inhibition
RR601 inhibition of DUSP5 PD(WT) with pNPP as the
substrate showed no time dependence (Fig. 5c). RR601
was shown to be a competitive inhibitor versus DUSP5
PD(WT), in initial velocity studies varying concentra-
tions of pNPP and RR601. A global competitive

inhibition fit was performed, fitting the data to Eq. 3
(Fig. 7), resulting in best fit estimated values (± SE) for
Vmax (0.70 ± 0.02 μM ·min-1), Km (9.6 ± 0.9 mM) and Ki

(18.2 ± 2.5 μM). A Lineweaver-Burk double reciprocal
plot of the data (Additional file 1: Fig. S5) was also
consistent with a competitive inhibition mechanism.

RR601- and NSC-87877-mediated PTP1B and SHP-2
inhibition
On searching the literature and compound databases,
we noticed chemical structure similarities between NSC-
87877 (a reported inhibitor the tyrosine phosphatases
SHP2 (IC50 = 0.3 μM) and PTP1B (IC50 = 1.7 μM) [28])
and RR601, which inhibits DUSP5 PD(WT) (IC50 =
36 μM). This observation prompted us to investigate
whether the newly synthesized RR601 would also inhibit
PTP1B and SHP-2. Figure 8 show PTP1B and SHP-2 ac-
tivity versus increasing concentrations of RR601 using
pNPP as the substrate, and indicate surprisingly strong
inhibition of PTP1B and the related phosphatase, SHP-2
activity by RR601. The IC50 (± SE) values determined
from the fitted curves are 2.1 ± 0.2 μM and 1.1 ± 0.1 μM
in the presence of PTP1B and SHP-2, respectively. These
values are significantly below the aggregation point of
30 μM for RR601, based on nephelometry. Thus, RR601
is a more potent and selective inhibitor of PTP1B
(2 μM) and SHP-2 (1 μM) than it is for its originally
intended target, DUSP5 (36 μM). PTP1B and DUSP5,
while sharing the mechanism of being cysteine-based
phosphatases, have very different tertiary and primary
structures (Fig. 9). Thus, while the discovery that RR601
is a more potent inhibitor of PTP1B than of DUSP5 was
serendipitous, it is not surprising that 18-fold selectivity
could be obtained for PTP1B over DUSP5, given these
structural differences.
Interestingly, NSC-87877 in the same assay did not ini-

tially inhibit PTP1B activity (Additional file 1: Fig. S1A) at

Fig. 7 Global non-linear regression fit for competitive inhibition of
DUSP5 PD(WT) with RR601. DUSP5 PD(WT) reaction velocities were
measured in assay buffer containing 1, 3, 9, 27 and 81 mM pNPP in
the presence of 0, 3, 10, 30 and 75 μM RR601. The data was fit with
GraphPad curve fitting software. Best fit estimates (± SE) for Vmax, Km
and Ki are 0.70 ± 0.02 μM · min-1, 9.6 ± 0.9 mM and 18.8 ± 2.5 μM,
respectively

Fig. 8 RR601 inhibits PTP1B and SHP-2. PTP1B and SHP-2 initial velocities versus RR601 concentration were fit to Eq. (1) resulting in estimated RR601
IC50 ± SE values of 2.1 ± 0.2 for PTP1B and 1.1 ± 0.1 μM for SHP-2. Activity was monitored utilizing pNPP as the substrate. Data points represent the
mean ± SD of three or four trials with three to eight wells at each RR601 concentration
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the tested concentrations; however, continuous monitor-
ing of the assay over time revealed IC50 values of 723 ±
302 and 337 ± 130 μM after 50 and 60 mins, respectively,
of the reaction assay. Also, NSC-87877 did inhibit SHP-2
activity with an IC50 value of 168 ± 30 μM, with no change
in the IC50 value after 60 mins (Additional file 1: Fig. S1B).
NSC-87877 did not inhibit DUSP5 PD(WT) activity
(Additional file 1: Fig. S1C). Collectively, these data
suggest that RR601 shows more selectivity for PTP1B
and SHP-2 over DUSP5, similar to the less potent
NSC-87877.

Discussion
Protein tyrosine phosphatases (PTPs) are drug targets
for a wide range of diseases, ranging from vascular
anomalies and cancer (DUSP5) to diabetes (PTP1B)
[4–16]. Unfortunately, PTPs are also extremely chal-
lenging targets for developing drugs, as evidenced by

the fact that there are currently no FDA-approved
drugs that target PTPs [16]. Furthermore, drug
screening for PTP targets often produces false posi-
tive or false negative results. Studies presented herein
address a false positive and negative result, wherein
that actual active molecule is a product of light-
induced chemical reaction formed in situ, or upon ex-
tended storage of a compound by the compound
provider.
Our initial studies focused on identifying inhibitors of

DUSP5, as drug lead molecules to treat vascular anomal-
ies. Compounds were screened in silico first, via docking
studies, followed by enzyme inhibition studies. A lead
compound – NCI2602 – was identified from the National
Cancer Institute (NCI) database, and then obtained and
experimentally tested and found to be an inhibitor of
DUSP5. But, the compound was observed to have variable
potency depending on its source (NCI; commercial;

Fig. 9 Comparison of PTP1B and DUSP5 PD. a Structural overlay of PTP1B and DUSP5 PD(WT), based on crystal structures with pdb codes 3CWE
(PTP1B with a phosphonic acid inhibitor bound) and 2G6Z (DUSP5 PD), using Chimera. b Primary sequence alignment was done using Clustal Omega
pairwise alignment and guide tree algorithm [37], which indicated an extremely low percent identity of 9.5%
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internally synthesized; see Fig. 2). Furthermore, upon care-
ful study of mechanism of inhibition, the compound was
found to have a potency that increased over time, and only
after exposure to light and oxygen. Such exposure led to a
color change for the compound (Fig. 3), which correlated
with increased potency (Fig. 4). Re-synthesis of the com-
pound (referred to as RR535) led to the surprising result
that the in-house synthesized compound actually had little
enzyme inhibition activity, compared to compounds from
other sources (Fig. 2a). But, after exposure to light and
oxygen, it acquired enzyme inhibition activity. Thus, we
speculated that the compound underwent a chemical
modification in situ, and that modification was identified
as a light-induced dimerization to produce the azo-bridge
sulfonated napthol, RR601. This hypothesis was tested by
synthesizing and testing the dimeric RR601 compound,
which was found to be much more potent than the mono-
meric compound (RR535 or NCI2602) that was initially
screened. Since sulfonated compounds are known to pro-
duce false positive inhibition via aggregation effects [27], it
was of course possible that RR601 was not a true inhibitor.
But, based upon nephelometry experiments, the
sulfonated compounds tested – including RR601 –
showed less propensity for aggregation relative to the con-
trol aggregator progesterone (Fig. 6). Thus, the RR601
dimeric compound is a relatively potent inhibitor of
DUSP5 activity, with an IC50 of 36 μM. Proton NMR
(Additional file 1: Fig. S6) and mass spectrometry
(Additional file 1: Fig. S7) revealed differences between the
MP Biomedicals and RR535 compounds. Careful control ex-
periments to monitor compound stability, coupled with re-
synthesis of the original compound, and re-synthesis of the
proposed in situ reaction product, was crucial for identifying
the actual lead molecule (RR601), which is not the com-
pound structure that was advertised by the suppliers. The
above results provide a cautionary lesson on the importance
of verifying compound identity using chemical re-synthesis.
RR601 had modest potency as a DUSP5 inhibitor, our

originally intended drug target. But, its structural simi-
larity to NSC-87877 implied that RR601 could target
other cysteine phosphatases within the class I PTPs,
such as PTP1B, a known target of NSC-87877. PTP1B is
a widely pursued target for treating diabetes [15]. These
two PTPs, while in the same family and having similar
mechanisms, have very little structural similarity (Fig. 9),
suggesting it should be possible for an inhibitor to
inhibit one selectively over the other. Testing RR601
against PTP1B, for selectivity, demonstrated that the di-
meric RR601 was actually a more potent inhibitor of
PTP1B than of DUSP5, with an IC50 of 2.1 μM against
PTP1B. Interestingly, RR601 is an azo-bridged dimer of
sulfonated naphthol rings, and resembles previously re-
ported PTP inhibitors [28, 29], but with 18-fold selectiv-
ity for PTP1B. Since SHP-2 is also a reported target of

NSC-87877, we tested RR601 against SHP-2 and deter-
mined an IC50 of 1.1 μM. RR601 is therefore selective
versus DUSP5, but shows no selectivity between the
Class 1 phosphatases, PTP1B and SHP-2. Thus, we have
discovered a new molecule, in an established class of
PTP1B (Class 1 phosphatase) inhibitors, by serendipity.
In particular, our path to a potent and selective PTP1B
inhibitor began by first targeting DUSP5, and screening
a commercial library. Through a series of control experi-
ments, we discovered one weak inhibitor that displayed
light- and time-dependent inhibition of DUSP5, due to
in situ formation of a colored and more active form of
inhibitor. Based on a chemical understanding of the
potential light-induced reactivity of the compound in
question, it was demonstrated that the compound
formed an azo-bridged dimer. Such dye-like compounds,
comprised of polysulfonated aromatic rings tethered by
an azo bridge, are actually well-known PTP inhibitors
[28, 29]. In fact, a recent study of food dyes in this class
revealed that half of such compounds were actually PTP in-
hibitors, with several inhibiting in the low micromolar range
[29]. Of particular interest, compound NSC-87877 (see
Additional file 1: Table S1) bears some resemblance to the
azo-bridged polysulfonated aromatic PTP inhibitor discov-
ered herein, and has been reported as a potent and selective
inhibitor (300 nM) of the SHP-2 PTP [28]. Although, it
should be noted that our data indicate that NSC-87877 may
be less potent than previously reported, and is less potent
that the RR601 compound reported herein.
Importantly, the active compound we identified in our

screening efforts was not the structure advertised by the
supplier; however, it is still a unique and valuable lead
molecule. Our results therefore illustrate the importance
of verifying compound identity in drug discovery efforts,
and add another cautionary note in the growing concerns
being expressed over reproducibility of published research
studies, particular for preclinical drug development work
[30, 31]. A study by Amgen scientists of published aca-
demic research in oncology found that <50% of published
studies could be reproduced [31], with similar results
obtained in a report compiled by researchers at Bayer
[31, 32]. Some of these inconsistencies could be attributed
to false positives that can occur due to chemical contami-
nants that are nonspecific and reactive [33, 34]. In others,
results like what we report here could explain the discrep-
ancies. Mis-assignment of chemical structure (i.e. error in
identifying what a chemical structure actually is) can also
occur for compounds that show up as false positive or
negative hits in screening campaigns, because inhibitors are
only formed in situ during the screening process – as we
have observed in the studies reported herein. Such issues
can have serious consequences. For example, an anti-cancer
compound was patented and approved for human clinical
studies; but, the Janda lab at Scripps later showed the
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chemical structure of that drug lead molecule had actually
been mis-assigned [35]. The wrong molecule had been pat-
ented and approved for clinical studies. Although this is an
extreme case, the problem of compound identity mis-
assignment in drug discovery and development is consid-
ered to be common when high throughput screening
methods are used [36]. Our take home lesson from our
screening efforts is that compound structure verification by
NMR or other methods, followed by characterization of
physical properties, re-synthesis and re-testing against the
original target is a must. The value of comparative structure
assessments is underappreciated, and perhaps can pivot
drug discovery efforts in a new direction, as was the case
here. Collectively, our studies here point to a flexible, and
highly dynamic model for drug discovery that encompasses
multiple labs, orthogonal complementary approaches, and
keen observation with deductive reasoning as key elements
to making drug discovery valuable and fun in academics.

Conclusion
Studies presented herein provide lessons on the import-
ance of verifying mechanism of inhibition and compound
identity when performing screening campaigns to identify
enzyme inhibitors; and, on the value of being open to ser-
endipity. Compound re-synthesis and verification was
used to diagnose and characterize the in situ dimerization
of a DUSP5 enzyme inhibitor, resulting in the serendipit-
ous discovery of a new lead molecule for inhibiting both
DUSP5 and PTP1B. Initial docking and then enzymatic
screening of compounds from the National Cancer
Institute (NCI) resulted in identification of an inhibitor of
DUSP5 that showed time-dependent inhibition, with an
IC50 of 36 μM. The active form of the compound was
shown to be an azo-bridged dimer of sulfonated naphthol
rings, which formed upon exposure to light. It behaves as
a competitive inhibitor of DUSP5; and, is an even more
potent inhibitor of PTP1B, with an IC50 of 2.1 μM.
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