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Two-method Planned Missing Designs 
for Longitudinal Research 
Abstract 

We examine longitudinal extensions of the two-method measurement design, which 
uses planned missingness to optimize cost-efficiency and validity of hard-to-measure 
constructs. These designs use a combination of two measures: a “gold standard” that 
is highly valid but expensive to administer, and an inexpensive (e.g., survey-based) 
measure that contains systematic measurement bias (e.g., response bias). Using 
simulated data on four measurement occasions, we compared the cost-efficiency 
and validity of longitudinal designs where the gold standard is measured at one or 
more measurement occasions. We manipulated the nature of the response bias over 
time (constant, increasing, fluctuating), the factorial structure of the response bias over 
time, and the constraints placed on the latent variable model. Our results showed that 
parameter bias is lowest when the gold standard is measured on at least two 
occasions. When a multifactorial structure was used to model response bias over time, 
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it is necessary to have the “gold standard” measures included at every time point, in 
which case most of the parameters showed low bias. Almost all parameters in all 
conditions displayed high relative efficiency, suggesting that the 2-method design is 
an effective way to reduce costs and improve both power and accuracy in 
longitudinal research. 

Keywords intentionally missing data, missing data, planned missingness, structural 
equation modeling, simsem, two-method measurement 

Planned missing data designs allow more data of higher quality to be collected than is 
typically possible. In these designs, either variables or occasions of measurement (or 
both) are omitted for a subset of participants, resulting in a predetermined pattern of 
missing data. These designs are most frequently employed when time constraints or 
attention concerns prevent a researcher from administering all measures (e.g., survey 
items) to each participant. When participants are randomly assigned to a particular 
pattern of missingness, the planned missing data meet the missing completely at 
random (MCAR) assumption and no bias results from missing data. Planned missing 
designs are used to increase validity (e.g., to reduce fatigue, response reactivity, and 
unplanned missingness) and decrease costs; however, they are less efficient than 
complete-case designs, which must be factored into the power estimates for these 
designs (Graham, 2012). 

In contrast to other planned missing designs, the two-method design uses planned 
missing data to boost the power of a small study by dramatically increasing the total 
sample size. Beginning with a study in which a small sample is subjected to an 
expensive measurement scheme (e.g., direct observation), an additional inexpensive 
(but less valid) measure is administered to a large sample of participants. The result is a 
large sample of participants, most of whom have “missing data” on the original, 
expensive measure. With this design, expensive small-sample research is moved into 
the realm of affordable large-sample latent-variable research. Alternatively, the two-
method measurement design can be used to increase the validity of large-sample 
research by including an additional small-sample measure that provides a gold-
standard reference group. 

The two-method design is predicated on the existence of two types of measures of a 
construct of interest. The first type must be considered a “gold standard” measure, 
which is characterized by very high construct validity and accordantly high 
assessment costs. Examples of gold-standard measures include measuring carbon 
monoxide in the blood to assess smoking behavior (Graham, Taylor, Olchowski, & 
Cumsille, 2006, Olchowski, 2007), individually administering intelligence tests such as 
the WISC (Wechsler, 2004) to assess cognitive ability, direct classroom observations of 
attention such as the Classroom Observations of Conduct and Attention Deficit 
Disorders (Atkins, Pelham, & Licht, 1985), or repeated cortisol measures to assess stress 
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(Gatti et al., 2009; Levine, Zagoory-Sharon, Feldman, Lewis, & Weller, 2007). The cost to 
administer such measures can be prohibitive, limiting the number of participants or 
occasions of measurement that can be feasibly tested. As a result, researchers may 
conduct studies that are under-powered, particularly for the demands of statistical 
modeling procedures such as structural equation modeling or multilevel modeling 
(MacCallum, Browne, & Sugawara, 1996). 

The second type of measure is a less expensive but less valid proxy of the construct, 
which is easy to administer to a large number of participants. Examples of inexpensive 
measures include items on a self-report survey of smoking behavior, a paper-and-
pencil test of cognitive ability, a teacher report of attentiveness, or a self-report 
measure of stress. In each case, these measures contain a source of method-related 
variance in addition to the construct they aim to measure: in the case of surveys, for 
example, self-report or teacher-report contain systematic variance that is unrelated to 
the measured construct (Ready & Wright, 2011). Having a source of systematic 
method-related variance means that the inexpensive measure is a biased 
representation of the construct, and, if used alone, it results in biased parameter 
estimates (Graham et al., 2006). Table 1 contains examples of constructs with 
corresponding measures that would be good candidates to use in the context of the 
two-method framework. 

 

Faced with both types of measures, most researchers decide to use either the gold 
standard, recognizing that power may be attenuated, or use the inexpensive 
measure, recognizing that the construct will be contaminated with a source of 
systematic bias. In the two-method measurement design, both types of measure are 
administered. The variance that is shared across both measures reflects the construct 
of interest; the additional variance that is shared only among the indicators of the 
inexpensive measure reflects response bias associated with that measure. 

The two-method measurement design uses latent variable structural equation 
modeling to separate the method variance (response bias) from the construct 
variance in the inexpensive measure. As shown in Figure 1, this design uses the 
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information from both the gold-standard measure and the inexpensive measure to 
estimate the focal construct. The model contains two types of observed variables: a 
set of indicators belonging to the gold standard (e.g., several measures of carbon 
monoxide blood levels or several time periods’ worth of observations), and a set of 
indicators belonging to the inexpensive measure (e.g., several self-report indicators). 
Both types of measure load on the construct (e.g., smoking behavior). These loadings 
capture the proportion of variance in each indicator that is associated with the 
construct. A second construct, response bias, is also included as part of the 
measurement model; only the biased measure’s indicators load on this construct. 
These loadings reflect the amount of shared variance in the inexpensive measure that 
is independent of the construct, that is, the information that reflects the response bias 
in the inexpensive measure. The gold-standard measure does not have an additional 
response bias correction construct because it is assumed to be measured without bias, 
hence, its status as a gold standard. The gold-standard indicators become the 
anchors that define the core construct. If a measure existed that was both inexpensive 
and unbiased, this design is not needed because the measure can be administered to 
a large sample with high construct validity. 

 

Figure 1. Two-method design structure. 
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The planned missing aspect of the two-method design involves how the measures are 
implemented. Only a limited number of participants can be administered the gold-
standard measure, because it is expensive. A much larger number of participants is 
administered the inexpensive measure. By randomly assigning a small proportion (e.g., 
one-third) of participants to receive the expensive measure and administering the 
inexpensive measure to the entire (large) sample, the costs of conducting a large-
sample study are kept at an affordable level. 

Graham et al. (2006) conducted a series of simulation studies to find the ideal 
proportion of a sample who should receive the gold-standard measure in addition to 
the inexpensive measure, given a fixed total cost and desired level of efficiency. For 
example, given two measures of smoking behavior, an efficient design would be one 
where the effect of smoking (a latent variable measured by inexpensive and gold-
standard measures) on health (a dependent variable) can be estimated with a high 
degree of precision (i.e., a small confidence interval). As more participants receive the 
expensive measure, the total sample size decreases rapidly (given a fixed total cost), 
so efficiency decreases as this proportion rises. At the same time, if too few 
participants receive the expensive measure, the response bias in the inexpensive 
measure becomes harder to estimate, decreasing efficiency. As such, maximum 
efficiency is achieved somewhere in between. Graham et al.’s (2006) simulations 
revealed that this ideal proportion depends on the degree of reliability of the two 
types of measure (as the inexpensive measure becomes more reliable, fewer gold-
standard participants are needed), the amount of response bias in the inexpensive 
measure (as the inexpensive measure becomes more biased, more gold-standard 
participants are needed), the cost differential between the two types of measure (as 
the gold standard becomes more expensive in relation to the inexpensive measure, 
the most efficient design includes a smaller proportion of gold-standard participants), 
and the effect size relating the construct of interest to other constructs (as these 
structural relations become stronger, more gold-standard participants are needed). 
Their paper discusses how to estimate this proportion using information that is typically 
available prior to data collection. 

To our knowledge, no one has applied the two-method measurement design to 
examine the behavior of a construct over time. Rhemtulla and Little (2012) proposed 
that the two-method design could be extended to longitudinal scenarios by including 
the gold-standard measure at a subset of measurement occasions (e.g., the first and 
last time point). The current project aims to study this idea via simulation. In two studies, 
we examine the performance of parameter estimates in a longitudinal structural 
equation model when the gold standard is measured at one, two, or all occasions in a 
four-wave study. To enable comparison, we hold the total number of gold-standard 
data points collected constant at 200 across all time points, allowing designs where 
either 200 expensive measurements are collected at a single time point, 100 expensive 
measurements are collected at each of two time points, or 50 expensive 
measurements are collected at all four time points. These conditions are expected to 
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produce different results depending on whether the degree of response bias actually 
changes over time (e.g., if self-report bias increases over the course of a smoking-
cessation study). We explore three models of response bias: In Study 1, response bias is 
modeled using a single latent factor for all measurement occasions, with loadings on 
this factor either (a) fixed across occasions (“bias invariance constraint”) or (b) 
allowed to differ across occasions, and in Study 2, response bias is modeled using (c) a 
distinct latent response bias factor for each measurement occasion. We examine the 
results in terms of bias and efficiency of parameter estimates. 

Study 1: Method 

We used the simsem (0.5–3) package (Pornprasertmanit, Miller, & Schoemann, 2013) 
within R (2.15.2, R Core Team, 2012) to generate data, impose missing values, and 
estimate a range of analytic models. 

Population models 

The data generation model was a panel model with four measurement occasions (see 
Figure 2). At each occasion there are three gold-standard indicators of the core 
construct of interest (e.g., these might be three outcomes from a blood test, three 
components of an intelligence test score, or three hours’ worth of classroom attention 
observations) and three inexpensive/biased indicators (e.g., three items or parcels of 
items from a self-report measure). Lag-1 residual correlations (i.e., the correlation 
between the residual of the first indicator of the inexpensive measure at time 1 with 
that of the first indicator of the inexpensive measure at time 2) were .2. The regression 
coefficients over time for the core construct were .3 at lag-1 and .15 at lag-2. The 
unstandardized factor loadings of all 6 indicators on the core construct were .7. The 
total variance of each gold-standard indicator was 1. The total variance of the 
inexpensive indicators varied as a function of the amount of response bias. Rather 
than holding the total indicator variance constant, we held constant the ratio of 
reliable to residual variance at 49:51, where the reliable variance is composed of 
construct variance and response bias variance. The amount of reliable variance is a 
sum of the squared core-construct loading (always .7) and the squared response bias 
loading. For this reason, the parameter values mentioned previously are not 
standardized, the standardized factor loading of the inexpensive indicators are lower 
than the ones of the gold-standard indicators. The standardized regression coefficients 
are .287 from time 1 to time 2, .140 from time 1 to time 3, .292 from time 2 to time 
3, .145 from time 2 to time 4, and .298 from time 3 to time 4. The standardized factor 
loadings of the gold-standard indicators are .7 at time 1, .715 at time 2, .724 at time 3, 
and .726 at time 4. 

http://journals.sagepub.com/doi/10.1177/0165025414542711
http://journals.sagepub.com/doi/10.1177/0165025414542711
http://journals.sagepub.com/doi/10.1177/0165025414542711


 

Figure 2. Data generation model for Study 1. Residual variances and residual 
covariances (at lag 1 and 2) are not shown. 

Three population models were used; these differed in the amount of response bias in 
the inexpensive measure over time. In the uniform bias condition, this response bias 
was uniform over time, such that the inexpensive items had a .4 (unstandardized) 
loading on the response bias factor at every time point. In standardized terms, the 
inexpensive indicators had standardized loadings of .608, .624, .634, and .638 at times 
1–4 on the core construct and .347, .342, .338, and .337 at each time point on the 
response-bias factor. In the random bias condition, the response bias loadings at each 
measurement occasion were drawn from a uniform distribution with a range of .3 to .6 
(all three indicators within a time point always had the same loading). The 
standardized core-factor loadings are .640, .622, .601, and .589 at times 1–4. Finally, in 
the increasing bias condition, the response bias factor loadings were .3, .4, .5, and .6 
at times 1–4, corresponding to standardized response bias factor loadings 
of .276, .342, .397, and .446, and core factor loadings of .643, .624, .596, and .560. 

Data generation and missing data 

For each of the three population model conditions (i.e., uniform bias, random bias, 
increasing bias), complete data on both measures were generated with a total 
sample size of N = 500. Each cell had 500 replications. For each complete dataset, 
missingness was imposed according to nine different missing data designs. The number 
of gold-standard measurements collected over time was invariant at 200 in every 
condition, but these 200 measurements were distributed differently across occasions, 
in nine different ways. As shown in Table 2, either 50 participants were measured at 
each of the four occasions, 200 participants were measured at a single occasion, or 
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100 participants were measured at each of two occasions (occasions 1 and 2 or 
occasions 1 and 4). For the purpose of computing relative efficiency, we ran partial 
complete-data conditions where the gold standard was measured on all participants 
at just one occasion, at occasions 1 and 2, and at occasions 1 and 4. These six partial 
complete data designs were used for relative efficiency computations only. 

 

We examined two designs where the 100 participants receiving the gold standard on 
the final occasion was different from the group of 100 who received it on the first 
occasion—either 50 of the participants who received the gold-standard measure at 
the first occasion received it again (in which case a new 50 participants also received 
it at the last occasion, so there was 50% overlap) or none of the participants who 
received the measure at the first occasion received it again (i.e., a new 100 
participants received it at the last occasion, so there was 0% overlap). We included 
these variants because, for various practical reasons (e.g., attrition), it may be difficult 
to get the same subset of participants to receive the gold-standard measurement 
twice. Thus, we tested the robustness of these designs when the gold-standard group is 
not overlapping. We did not simulate attrition in this study, so the original participants 
who received the gold-standard measure were still included at the last time point, only 
they did not receive the gold-standard measure again. We deleted 5% of the data 
using a missing completely at random (MCAR) mechanism to approximate the effect 
of a small amount of unsystematic unplanned missingness. 

Analysis models 

The model shown in Figure 2 was fit to each complete and incomplete dataset; 
models were fit using the simsem package in R, which relies on lavaan (0.5–13; Rosseel, 
2012) for structural equation model estimation. Full information maximum likelihood 
was used to estimate model parameters both with complete data and with missing 
data (see Baraldi & Enders, 2010). Factorial invariance was imposed across 
measurement occasions by constraining factor loadings for all indicators to be equal 
across measurement occasions, while allowing the factor variance and mean to 
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change over time. Each data set was also analyzed a second time with an additional 
set of “bias invariance” (BI) constraints that forced estimated loadings on the response 
bias factor to also be invariant across occasions. Note that this constraint imposes a 
misspecification of the model when the amount of response bias in the inexpensive 
measure varies, that is, in the random bias and increasing bias population conditions. 

Outcomes 

We first examine rates of nonconvergence and improper solutions, where 
nonconverged cases are those where the maximum likelihood algorithm failed to 
derive model estimates, and improper solutions are those that resulted in at least one 
negative residual variance estimate. These cases were removed before computing 
bias and efficiency. We used absolute relative bias (ARB) to assess the accuracy of the 
point estimates of the loadings (on the construct and on the response bias factor) and 
of the structural regression paths. As shown below, ARB was calculated as the absolute 

value of the ratio of estimation bias to the true parameter value, 𝐴𝐴𝐴𝐴𝐵𝐵𝜃𝜃 = ��̄̂�𝜃−𝜃𝜃
𝜃𝜃
� × 100, 

where �̄̂�𝜃 is the population parameter value, and 𝜃𝜃 ˆ̄ is the average estimated parameter 
value across all converged replications. ARB was computed for each model 
parameter, and then averaged across construct loadings, response bias loadings, and 
structural regression paths to produce three values of ARB for each model (one for 
each generating population model). The reason for using absolute values is that for 
many models both positive and negative bias appeared across the range of 
parameters (e.g., positive bias on the construct loadings at occasion 1 and negative 
at occasion 4) so averaging across these would obscure the degree of bias. The 
direction of bias is described in the text. 

In addition to ARB, we computed relative efficiency (RE) for each parameter by 
comparing the empirical standard error of each parameter when estimated with and 
without missing data. The empirical standard error is the standard deviation of 
parameter estimates across replications (excluding those that did not converge or 
produced improper solutions). RE is the ratio of squared parameter empirical standard 
errors (i.e., the standard deviation of the estimates across all replications) of complete 

data to incomplete (planned missing) data, 𝐴𝐴𝐸𝐸�̂�𝜃 =
𝐸𝐸𝐸𝐸𝐸𝐸�̂�𝜃,𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

2

𝐸𝐸𝐸𝐸𝐸𝐸�̂�𝜃,𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 × 100, where 𝐸𝐸𝐸𝐸𝐸𝐸�̂�𝜃

2 =
1
𝑁𝑁
∑ (�̂�𝜃𝑖𝑖 − �̄̂�𝜃)2𝑁𝑁
𝑖𝑖=1  is the estimated parameter value for replication i, and N is the number 

of converged proper solutions in a condition. RE ranges from 0 to 1, where a value of 1 
means that the parameter estimates are as efficient as they would have been with no 
missing data, and lower values reflect efficiency loss and lower power in significance 
testing. 

The complete data comparison condition differed depending on when the gold-
standard measure was included. For example, the condition where 200 participants 



received the gold standard at occasion 3 and the factorial invariance constraint was 
applied was compared to a design with complete data on the gold standard at 
occasion 3 and the factorial invariance constraint applied. 

Simulation 1: Results 
Rates of convergence and improper solutions 

When the bias invariance (BI) constraint was imposed (in addition to factorial 
invariance constraints, which were always imposed), convergence was always 100% 
and there were no improper solutions. For conditions where the BI constraint was not 
imposed, the percent of replications that failed to converge or converged with an 
improper solution is listed in Table 3. In addition, there were 3 replications total that 
resulted in a negative standard error estimate; these were also removed but are not 
reported in Table 3. When the BI constraint was not imposed, convergence rates 
ranged from 76.2% to 98.4%. Convergence was highest when the gold standard was 
measured at all four measurement occasions and lowest when it was measured at 
occasions 1 and 2. It was also lower when the gold standard was measured at 
occasions 1 and 4 with less than complete overlap. In every condition, rates of 
improper solutions were higher than rates of non-convergence. 
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Absolute relative bias of parameter estimates 

Table 4 displays the absolute relative bias (ARB) for the response bias loadings, 
construct loadings, and structural regression paths by each generating population 
(i.e., response bias is stable, randomly varying, or increasing over time) and by each of 
the nine planned missing data designs modeled with and without the BI constraint, for 
a total of 18 designs. As recommended by Muthén, Kaplan, and Hollis (1987), ARB less 
than 10% is considered negligible. Values higher than 10% are bolded in Table 4. 

 

Equal bias over time 

When the generating population had a constant level of response bias over time, the 
only appreciable ARB appeared when the gold standard was measured only at 
occasion 4 and the BI constraint was not imposed (11.3% in the structural paths). In all 
other conditions, ARB was less than 10%, because this model was always correct: no 
matter when response bias was estimated, the available information was enough to 
characterize the response bias in the inexpensive measure at all four measurement 
occasions. 

When the amount of bias in the inexpensive measure did not vary, the assumption 
underlying the BI constraint was true, and imposing this constraint resulted in more 
accurate response bias loadings and structural parameter estimates than imposing 
only the factorial invariance constraint. ARB of loadings on the response bias factor 
ranged from 0.8% to 2.9% (mean = 1.7%) when the BI constraint was imposed, 
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compared to 2.3% to 5.9% (mean = 3.4%) when it was not. On the construct loadings, 
ARB ranged from 4.1% to 5.7% (mean = 5.0%) when the BI constraint was imposed, and 
from 4.4% to 6.5% (mean = 5.4%) when it was not. ARB of structural parameters ranged 
from 2.2% to 3.9% (mean = 3.1%) when the BI constraint was imposed and from 1.2% to 
11.3% (mean = 6.5%) when it was not. 

The number or location of occasions when the gold-standard measure was included 
had no noticeable effect on ARB of any parameter estimates when the BI constraint 
was imposed and a small effect when it was not. With only factorial invariance 
constrained, models where the gold standard was measured at 2 occasions rather 
than 1 had slightly higher ARB in the loadings (5.1%–6.4% for 2 occasions; 4.4%–4.9% for 
1 occasion) and slightly lower ARB in the structural parameters (3.1%–7.0% for 2 
occasions; 4.4%–11.3% for 1 occasion). Compared to 1 or 2 occasions, when the gold 
standard was measured at all 4 occasions, ARB on the loadings was high (6.3%) and 
ARB on the structural parameters was low (1.2%). 

Though none of these numbers represent substantial ARB, the model that has least ARB 
in structural parameters should be preferred. Thus, the most accurate design when the 
inexpensive measure has equal bias over time appears to be one where the gold 
standard is measured at occasion 1 (or two occasions on a fully overlapping group of 
participants), with both factorial invariance and equality of bias constraints. 

Random bias over time 

When the amount of bias in the inexpensive measure varied randomly over time, 
substantial bias appeared in both the response bias loadings and the structural paths 
when the BI constraint was applied. That is, when the amount of bias was constrained 
to be equal over time, but the true degree of bias varied randomly over time, loadings 
on the response bias construct showed around 19% ARB, and the average ARB of all 
structural paths ranged from 10.6% to 21.5% ARB. The bias in structural paths was not 
uniform across conditions or across structural parameters; for example, the regression 
path from time 1 to 2 was always positively biased, whereas that from time 2 to 3 was 
negatively biased (not shown). 

When the BI constraint was not imposed, the only appearance of ARB greater than 
10% was in the structural paths when the gold standard was measured only at the first 
occasion (11.6%). Each condition where the BI constraint was imposed had about 2% 
lower ARB in construct loadings compared to when it was not imposed, but construct 
loading ARB was never higher than 6% in any condition. 

The number or location of occasions when the gold-standard measure was included 
had little effect on ARB when the BI constraint was applied, except that smallest ARB in 
structural paths occurred in the condition where the gold standard was measured at 
occasions 1 and 4 on a fully overlapping group of participants (10.6%). When the BI 



constraint was not imposed, structural parameter estimate ARB was smallest when the 
gold standard was measured at all four occasions (3.7%), slightly greater when the 
gold standard was measured at 2 occasions (ranging from 4.5% to 5.9%), and highest 
when the gold standard was measured at just one occasion (ranging from 5.1% to 
11.6%). The proportion of overlapping cases had no effect. 

In sum, when the degree of bias in the inexpensive measure varies randomly over 
time, the most accurate models are those that do not constrain bias to be equal over 
time and where the gold standard is measured at every occasion, although designs 
where the gold standard is measured at any one or any two occasions also performed 
well. 

Increasing bias over time 

When the amount of bias in the inexpensive measure increased systematically over 
time, the pattern of parameter ARB strongly resembled that of the random bias 
condition. When the BI constraint was not imposed, no model had substantial ARB. 
When the BI constraint was imposed, however, models showed 21.8%–25.3% ARB in 
response bias loadings, and 20.9%–33.3% ARB in structural paths (see Table 4), with one 
exception: when the gold standard was measured at occasions 1 and 4 with fully 
overlapping cases, ARB in the structural parameter estimates was just 11.5%. Apart 
from this one condition, the location or number of occasions at which the gold 
standard was measured did not affect ARB. ARB in construct loadings was not large, 
ranging from 2.3% to 9.1%. As with the random bias condition, the assumption of equal 
bias variance across measurement occasions in this condition is false, and the 
consequences of imposing the BI constraint are substantial. 

The ARB in the structural path estimates showed the same pattern as when the 
population bias varied randomly. This bias was not uniform across conditions, or across 
structural parameters; the regression path from occasion 1 to 2 was always positively 
biased, as was the path from occasion 1 to 3; and the other three paths were always 
negatively biased. 

When the BI constraint was not imposed, ARB of the response bias loadings ranged 
from 1.2% to 3.8%, ARB in construct loadings ranged from 4.1% to 5.7%, and ARB in 
regression paths among latent variables ranged from 3.5% to 9.4%. There was no 
noticeable effect of the number or location of occasions when the gold standard was 
measured. This finding suggests that, even if bias systematically differs over time, 
whether the gold standard is measured at a single time point or at all 4 time points, 
bias in the inexpensive measure can be accurately estimated. In this situation, the 
most accurate design is any design where factorial invariance is imposed and 
response bias is freely estimated over time. 

Relative efficiency of parameters estimates 
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Table 5 displays the RE of each type of parameter for each condition. Recall that RE 
was computed by taking a ratio of the complete data sampling variance of each 
parameter estimate to the missing data sampling variance, where the complete data 
model contained the same variables as the incomplete data model. RE measures the 
degree to which information is retained as a result of missing data. For example, RE 
of .60 means that the parameter estimate is 60% as efficient as it would have been if 
every variable had complete data. 

 

 

 

 

 

 

 

Table 5. Percent average relative efficiency. 
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It is helpful to interpret RE in light of the percentage of observations that are missing. 
Recall that in order to compare missing data designs to complete data designs using 
the same model, the complete data design that is being compared differs according 
to the number of occasions on which the gold standard is measured. For example, a 
design with 50 participants measured on the gold-standard measure at each time 
point is compared to a complete data design where all 500 participants are 
measured on the gold-standard measure at each time point, representing a 10% 
subsample of the complete data design. A design with 200 participants getting the 
gold-standard measure at just one time point is compared to a complete data design 
where all 500 participants get the gold-standard measure at only that time point, 
representing a 40% subsample of the complete data design. In the former case, RE 
values greater than 10% represent a “savings” in terms of efficiency-per-observation. In 
the latter case, RE values greater than 40% represent such a savings. The subsample 
percentage for each model is given in Table 5 as a baseline for comparison. 

With eight exceptions, all parameters in all conditions displayed higher RE than 
subsample percentage. Five exceptions occurred when bias was stable across time, 
when the gold standard was measured at just one occasion, and when the BI 
constraint was not imposed. Four of these five exceptions affected the structural 
paths, the other affected construct loadings. 

The choice of constraint had a large effect on efficiency. In almost every condition 
and for every parameter type, the model with the BI constraint imposed produced 
more efficient estimates than the one without. For example, when the gold standard 
was measured on just 20% of the sample at 2 occasions, RE of structural parameter 
estimates ranged from 60.1% to 69.3% with the BI constraint imposed, compared to 
24%–26% without it. Construct and response bias loadings were also about 6% more 
efficient when the BI constraint was imposed. 

Whether bias was equal, varied randomly, or systematically increased over time, 
patterns of RE were almost identical. Imposing the BI constraint was almost always the 
most efficient strategy, but recall that these conditions also resulted in the most 
extreme ARB when the degree of bias in the inexpensive measure varied over time. 
High efficiency and high ARB are, of course, a poor combination, as it results in small 
confidence intervals around inaccurate parameter estimates, encouraging a false 
impression of accuracy. When the BI constraint was not imposed, RE rates suggest that 
all of these designs still represent a high cost savings in terms of efficiency per piece of 
data collected. The greatest efficiency relative to the subsample gains appear in the 
condition where the gold standard is measured at 2 occasions, followed by 1 
occasion, followed by all 4 occasions. 
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Method: Simulation 2 

In Study 1, the generating model and analysis models included just one response bias 
factor for all four measurement occasions. In reality, response bias is unlikely to be 
perfectly correlated across measurement occasions. Instead, it is more likely that 
response bias also follows a longitudinal structure similar to that of any core construct, 
correlated across time but nonetheless distinct. Thus, in simulation 2, we respecified the 
population generating model to include a separate response bias factor at each time 
point and replicated the random bias population condition of Study 1 using this more 
complex model (see Figure 3). The response bias factor correlations were specified to 
follow a simplex structure with lag 1 correlations of .7, lag 2 correlations of .49, and lag 
3 correlations of .343. Corresponding to this change in the population model, we 
investigated two analysis models: a) the same structure as the data generation model 
with a response bias factor at each time; and b) the model with one response bias 
factor that was used in Study 1 (Figure 2). 

 

Figure 3. Data generation model for Study 2. Residual variances and residual covariances (at 
lag 1 and 2) are not shown. 

For simulation 2 we only included the results of the analysis models that include the 
gold-standard measure at every time point. In order to capture a proper change in 
the response bias factor it is necessary to have the gold-standard measure at every 
time point; models lacking this characteristic would give biased parameter estimates, 
even with complete data. We confirmed this hypothesis by testing the design with 
complete data at one, two, or all time points. This analysis revealed the same trend: 
the only models with ARB lower than 10% were the ones that included the gold-
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standard measure at every measurement occasion. Thus, to model separate response 
bias constructs at each wave, the gold standard must be measured at every wave. 
With the gold standard at only a subset of occasions, the only plausible model is a 
single response bias factor to account for bias across all occasions. 

Rates of convergence and improper solutions 

Table 6 shows the percent of nonconvergence and improper solutions. The improper 
solutions include results with at least one negative variance estimate, or at least one 
negative standard error estimate. 

 

The analysis models with one bias factor had low percent of improper solutions (9.4%) 
and almost no convergence failures (0.2%). When the BI constraint was applied, the 
models had no convergence failures. The analysis model with four response bias 
factors, in contrast, showed severe estimation problems. When only the FI constraint 
was applied, there were a total of 37.8% estimation problems, with most of them being 
improper solutions (31.8%). When the BI constraint was also applied, there was a total 
of 36.2% estimation problems, and most of these (20.4%) were failures to converge. 

The problems of nonconvergence and improper solutions are due to empirical 
underidentification (Kenny & Kashy, 1992). This issue is common in multi-trait multi-
method (MTMM) models, and the multifactorial response bias structure resembles an 
MTMM model. To gauge the seriousness of the estimation problems, we randomly 
selected four data sets that did not converge properly with four response bias factors 
in the simulation and attempted to fix the estimation problems. By trying different sets 
of starting values, one data set converged properly. Another data set converged 
properly after removing one indicator of the inexpensive measure at one time point; 
and we were unable to get the two remaining data sets to converge without 
improper solutions by adding starting values, additional constraints, or by excluding 
individually problematic indicators. This informal investigation suggests that in applied 
situations it may be possible to raise the likelihood of a proper model solution 
somewhat, but not in every case. These models would certainly require more patience 
and labor, with unknown results. 

Given these estimation problems, we analyzed the results with improper solutions 
included, because excluding a large proportion of the replications would lead to 
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skewed results. Following Kolenikov and Bollen (2012) and Savalei and Kolenikov (2008) 
a negative residual variance may not be evidence of model misspecification. In 
particular, as some of our residual variances were close to zero, sampling variability 
would be expected to lead to some negative variance estimates. Thus, we present 
results both excluding all improper solutions, as well as including those improper 
solutions where the negative residual variance was less than 2.58 standard errors from 
zero (the 99% confidence interval). The last column on Table 6 shows the percentage 
of convergence including improper solutions. The smallest percentage of replications 
used in an analysis, given this criterion, was 78.2% for the model with bias invariance 
constraint. 

Absolute relative bias of parameter estimates 

Table 7 displays the ARB for the response bias loadings, construct loadings, and 
structural regression paths by each response bias factor structure (i.e., 1 bias factor, 4 
bias factors, and 4 bias factors with improper solutions included). Because ARB less 
than 10% is considered negligible (Muthén et al., 1987), values higher than 10% are 
bolded. 

 

One bias factor 

The model with response bias loadings unconstrained across time show non-negligible 
ARB on response bias loadings, with an average ARB of 53.9%. The construct loadings 
had negligible ARB of 7.6%. In the case of the structural paths, the model’s ARB is small 
but non-negligible (11.5%). 

The model with the BI constraint applied showed negligible ARB in the response bias 
loadings of 8.3%, no substantial ARB in the construct loadings (5.3%), but high levels of 
ARB (22%) in the structural paths. The ARB in the structural paths was not uniform across 
structural parameters; the regression path from time 1 to time 2 tended to be 
negatively biased, as did the path from time 2 to time 3, and the path from time 3 to 
time 4. The regression paths from time 1 to time 3, and from time 2 to time 4 were 
always positively biased. 
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Four bias factors 

When four bias factors were modeled, construct loadings were accurately estimated 
(ARB was never higher than 10%). For the response bias loadings, the model with 
unconstrained bias loadings had negligible bias (3.7%), but non-negligible bias when 
the BI constraint was applied (20.9%). In the case of structural paths both models (with 
and without the bias invariance constraint) showed negligible bias, with response bias 
loadings unconstrained (6.2%) and constrained (7.0%). 

These results are limited to the low number of proper convergent results. When 
improper solutions were included in the analysis, both models have high ARB on the 
response bias loadings (unconstrained bias loading = 44.4%, constraint response bias 
loadings = 19.3%), but the ARB was never higher than 10% for the construct loadings or 
structural paths. 

Relative efficiency of parameters estimates 

Table 8 displays the RE of each type of parameter for each condition. Recall that a RE 
higher than the percentage of subsample of the complete data design represents a 
“savings” in terms of efficiency-per-observation. All parameters in all conditions 
displayed higher RE than subsample percentage, indicating a savings in efficiency. 

 

For the model with four response bias factors and the response bias loadings 
unconstrained, the RE for the response bias loadings was 18.6%, RE for the construct 
loadings was 15.1%, and RE for the structural paths was 12.3%. For the model with the BI 
constraints imposed, the RE for the response bias loadings was 19.7%, RE for the 
construct loadings was 16.1%, and RE for the structural paths was 12.1%. The analysis 
model with only one response bias factor had lower RE than the four response bias 
factor model on the response bias loadings (unconstraint bias loadings = 15.9%, 
constraint bias loadings = 14.1%), but it has higher RE for the construct loadings 
(unconstrained bias loadings = 27.9%, constrained bias loadings = 34.3) and structural 
paths (unconstrained bias loadings = 23.3%, constrained bias loadings = 48.4). 
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General discussion 

We examined the performance of the two-method measurement design in 
longitudinal models. Simulation 1 showed that when the amount of bias in the 
inexpensive measure does not change over time, all designs produce unbiased 
estimates. Under more realistic conditions, when the bias randomly varies or increases 
across time, models that impose an equality of response bias constraint result in 
substantial bias, especially in the structural paths (i.e., regression coefficients between 
factors over time, which are typically the parameters of most interest). Imposing the BI 
constraint results in least accurate parameter estimation when the amount of bias in 
the inexpensive measure increases over time. When the gold-standard measure is 
included at two or more occasions, this bias is smaller. Measuring the gold standard at 
both the first and last occasions on the same group of participants resulted in the most 
accurate parameter estimates, but the degree of parameter bias was always 
unacceptably high as long as the BI constraint was imposed. When the BI constraint 
was not imposed, no substantial bias appeared in any condition. 

Almost every factor in simulation 1 resulted in parameter estimates that were more 
efficient per piece of data collected than a complete data design. In all cases, 
models that imposed the BI constraint resulted in much more efficient estimates – but 
when response bias is not equal over time, substantially biased parameter estimates 
emerged. When the factorial structure of the response bias across time is multifactorial 
(simulation 2) the gold-standard measure and a response bias factor must be included 
at every time point. These features are necessary to estimate properly the change in 
the response bias across time. 

This multifactorial structure increases the rate of improper solutions and convergence 
failures due to empirical underidentification. Even when the multifactorial model is 
more theoretically appropriate, it is in practice difficult to estimate. When the 
multifactorial model converges, it is likely to result in less biased estimates (especially 
for the structural paths) whereas imposing the BI constraint led to higher ARB on the 
response bias loadings, while it didn’t impacted the construct loadings, and structural 
paths. 

Recommendations 

When choosing the details of the two-method measurement design and analysis 
model for longitudinal research, it is important to consider whether the degree of bias 
in the inexpensive measure is likely to be relatively stable over time, or whether it is 
likely to change; and it is relevant to consider the factorial structure of the response 
bias over time. Given that the overlapping of the gold-standard measure didn’t had a 
noticeable effect it is possible for the researchers to think of designs where the 



participants randomly receive the gold-standard measure, this depending on the 
resources and nature of the gold-standard measure. 

When bias is equal over time, the most accurate and efficient design is any one where 
both the factorial invariance and equality of bias constraints are imposed across 
measurement occasions. Whether the gold standard is measured at 1, 2, or all waves, 
makes little difference when the response bias is unifactorial. When the bias in the 
inexpensive instrument changes over time, however, the most accurate and efficient 
design is one where the gold standard is measured at more than one occasion, and 
only factorial invariance over time is constrained. 

When the response bias factor is expected to change over time, the only 
recommended design is to include the gold-standard measure at every time point. 
Other designs are biased even with complete data. The only way to estimate properly 
the four response bias factors is with this design. The other option is to estimate the 
model with only one response bias factor, but it still requires the gold-standard 
measure at each wave. Imposing factorial invariance (as we did for every model 
studied) never led to biased parameter estimates because factorial invariance was 
true in the data generating model. When the factorial structure differs from the 
analysis structure model even factorial invariance models can lead to biased results. 
Before using the factorial invariance constraint, therefore, it is important to test that 
factor loadings and intercepts are actually invariant over measurement occasions. To 
test if the factorial invariance constraint is appropriate, we recommend estimating a 
Confirmatory Factor Analysis (CFA) on the target factor (with the unconstrained 
response bias factor included in the model) without constraints, then estimating a 
model with the factor loadings constrained to be equal over measurement occasions 
while the factor variance at each occasion is freely estimated. 

Our results suggest that bias invariance constraints should be imposed only in cases 
where there is good evidence that bias does not change over time. Substantial 
change in model fit between a model in which BI is not constrained and the one in 
which it is constrained would be evidence of changing bias; nonsignificant change 
between models would support the BI constraint. It is also important to test the 
factorial structure of the response bias over time. We recommend starting with the 
more appropriate theoretical structure and working to resolve estimation problems by 
changing starting values. Many improper convergence problems can be worked 
around by changing starting values or placing justifiable constraints on parameters. 
Models with a multifactorial structure of the response bias require due diligence. 

Limitations and future research 

A principal limitation is that there are no applied data (that we know and have access 
to) that show how the type of response bias we consider here might actually behave 
over time. Given this limitation we chose three possible ways in which bias may 



behave over time, and 2 different factorial structures. Further applied research will give 
a better perspective on the behavior of the bias across time. In this research both the 
gold-standard measure and the biased measure had three indicators, but the number 
of indicators per type of measure could vary. In many cases the gold-standard 
measure may consist of one or two indicators. It is of special interest to see how these 
models may be affected by sample size and percent of sample that receives the 
gold-standard measure. Further research could give guidance about the minimum 
sample necessary to have a stable two-method design. It may be that smaller samples 
need a higher percent of the sample receiving the gold-standard measure. Another 
factor to include in future research is the effect of attrition, which is common in 
longitudinal studies. 
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	Two-method Planned Missing Designs for Longitudinal Research
	Abstract
	We examine longitudinal extensions of the two-method measurement design, which uses planned missingness to optimize cost-efficiency and validity of hard-to-measure constructs. These designs use a combination of two measures: a “gold standard” that is highly valid but expensive to administer, and an inexpensive (e.g., survey-based) measure that contains systematic measurement bias (e.g., response bias). Using simulated data on four measurement occasions, we compared the cost-efficiency and validity of longitudinal designs where the gold standard is measured at one or more measurement occasions. We manipulated the nature of the response bias over time (constant, increasing, fluctuating), the factorial structure of the response bias over time, and the constraints placed on the latent variable model. Our results showed that parameter bias is lowest when the gold standard is measured on at least two occasions. When a multifactorial structure was used to model response bias over time, it is necessary to have the “gold standard” measures included at every time point, in which case most of the parameters showed low bias. Almost all parameters in all conditions displayed high relative efficiency, suggesting that the 2-method design is an effective way to reduce costs and improve both power and accuracy in longitudinal research.
	Keywords intentionally missing data, missing data, planned missingness, structural equation modeling, simsem, two-method measurement
	Planned missing data designs allow more data of higher quality to be collected than is typically possible. In these designs, either variables or occasions of measurement (or both) are omitted for a subset of participants, resulting in a predetermined pattern of missing data. These designs are most frequently employed when time constraints or attention concerns prevent a researcher from administering all measures (e.g., survey items) to each participant. When participants are randomly assigned to a particular pattern of missingness, the planned missing data meet the missing completely at random (MCAR) assumption and no bias results from missing data. Planned missing designs are used to increase validity (e.g., to reduce fatigue, response reactivity, and unplanned missingness) and decrease costs; however, they are less efficient than complete-case designs, which must be factored into the power estimates for these designs (Graham, 2012).
	In contrast to other planned missing designs, the two-method design uses planned missing data to boost the power of a small study by dramatically increasing the total sample size. Beginning with a study in which a small sample is subjected to an expensive measurement scheme (e.g., direct observation), an additional inexpensive (but less valid) measure is administered to a large sample of participants. The result is a large sample of participants, most of whom have “missing data” on the original, expensive measure. With this design, expensive small-sample research is moved into the realm of affordable large-sample latent-variable research. Alternatively, the two-method measurement design can be used to increase the validity of large-sample research by including an additional small-sample measure that provides a gold-standard reference group.
	The two-method design is predicated on the existence of two types of measures of a construct of interest. The first type must be considered a “gold standard” measure, which is characterized by very high construct validity and accordantly high assessment costs. Examples of gold-standard measures include measuring carbon monoxide in the blood to assess smoking behavior (Graham, Taylor, Olchowski, & Cumsille, 2006, Olchowski, 2007), individually administering intelligence tests such as the WISC (Wechsler, 2004) to assess cognitive ability, direct classroom observations of attention such as the Classroom Observations of Conduct and Attention Deficit Disorders (Atkins, Pelham, & Licht, 1985), or repeated cortisol measures to assess stress (Gatti et al., 2009; Levine, Zagoory-Sharon, Feldman, Lewis, & Weller, 2007). The cost to administer such measures can be prohibitive, limiting the number of participants or occasions of measurement that can be feasibly tested. As a result, researchers may conduct studies that are under-powered, particularly for the demands of statistical modeling procedures such as structural equation modeling or multilevel modeling (MacCallum, Browne, & Sugawara, 1996).
	The second type of measure is a less expensive but less valid proxy of the construct, which is easy to administer to a large number of participants. Examples of inexpensive measures include items on a self-report survey of smoking behavior, a paper-and-pencil test of cognitive ability, a teacher report of attentiveness, or a self-report measure of stress. In each case, these measures contain a source of method-related variance in addition to the construct they aim to measure: in the case of surveys, for example, self-report or teacher-report contain systematic variance that is unrelated to the measured construct (Ready & Wright, 2011). Having a source of systematic method-related variance means that the inexpensive measure is a biased representation of the construct, and, if used alone, it results in biased parameter estimates (Graham et al., 2006). Table 1 contains examples of constructs with corresponding measures that would be good candidates to use in the context of the two-method framework.
	/
	Faced with both types of measures, most researchers decide to use either the gold standard, recognizing that power may be attenuated, or use the inexpensive measure, recognizing that the construct will be contaminated with a source of systematic bias. In the two-method measurement design, both types of measure are administered. The variance that is shared across both measures reflects the construct of interest; the additional variance that is shared only among the indicators of the inexpensive measure reflects response bias associated with that measure.
	The two-method measurement design uses latent variable structural equation modeling to separate the method variance (response bias) from the construct variance in the inexpensive measure. As shown in Figure 1, this design uses the information from both the gold-standard measure and the inexpensive measure to estimate the focal construct. The model contains two types of observed variables: a set of indicators belonging to the gold standard (e.g., several measures of carbon monoxide blood levels or several time periods’ worth of observations), and a set of indicators belonging to the inexpensive measure (e.g., several self-report indicators). Both types of measure load on the construct (e.g., smoking behavior). These loadings capture the proportion of variance in each indicator that is associated with the construct. A second construct, response bias, is also included as part of the measurement model; only the biased measure’s indicators load on this construct. These loadings reflect the amount of shared variance in the inexpensive measure that is independent of the construct, that is, the information that reflects the response bias in the inexpensive measure. The gold-standard measure does not have an additional response bias correction construct because it is assumed to be measured without bias, hence, its status as a gold standard. The gold-standard indicators become the anchors that define the core construct. If a measure existed that was both inexpensive and unbiased, this design is not needed because the measure can be administered to a large sample with high construct validity.
	/
	Figure 1. Two-method design structure.
	The planned missing aspect of the two-method design involves how the measures are implemented. Only a limited number of participants can be administered the gold-standard measure, because it is expensive. A much larger number of participants is administered the inexpensive measure. By randomly assigning a small proportion (e.g., one-third) of participants to receive the expensive measure and administering the inexpensive measure to the entire (large) sample, the costs of conducting a large-sample study are kept at an affordable level.
	Graham et al. (2006) conducted a series of simulation studies to find the ideal proportion of a sample who should receive the gold-standard measure in addition to the inexpensive measure, given a fixed total cost and desired level of efficiency. For example, given two measures of smoking behavior, an efficient design would be one where the effect of smoking (a latent variable measured by inexpensive and gold-standard measures) on health (a dependent variable) can be estimated with a high degree of precision (i.e., a small confidence interval). As more participants receive the expensive measure, the total sample size decreases rapidly (given a fixed total cost), so efficiency decreases as this proportion rises. At the same time, if too few participants receive the expensive measure, the response bias in the inexpensive measure becomes harder to estimate, decreasing efficiency. As such, maximum efficiency is achieved somewhere in between. Graham et al.’s (2006) simulations revealed that this ideal proportion depends on the degree of reliability of the two types of measure (as the inexpensive measure becomes more reliable, fewer gold-standard participants are needed), the amount of response bias in the inexpensive measure (as the inexpensive measure becomes more biased, more gold-standard participants are needed), the cost differential between the two types of measure (as the gold standard becomes more expensive in relation to the inexpensive measure, the most efficient design includes a smaller proportion of gold-standard participants), and the effect size relating the construct of interest to other constructs (as these structural relations become stronger, more gold-standard participants are needed). Their paper discusses how to estimate this proportion using information that is typically available prior to data collection.
	To our knowledge, no one has applied the two-method measurement design to examine the behavior of a construct over time. Rhemtulla and Little (2012) proposed that the two-method design could be extended to longitudinal scenarios by including the gold-standard measure at a subset of measurement occasions (e.g., the first and last time point). The current project aims to study this idea via simulation. In two studies, we examine the performance of parameter estimates in a longitudinal structural equation model when the gold standard is measured at one, two, or all occasions in a four-wave study. To enable comparison, we hold the total number of gold-standard data points collected constant at 200 across all time points, allowing designs where either 200 expensive measurements are collected at a single time point, 100 expensive measurements are collected at each of two time points, or 50 expensive measurements are collected at all four time points. These conditions are expected to produce different results depending on whether the degree of response bias actually changes over time (e.g., if self-report bias increases over the course of a smoking-cessation study). We explore three models of response bias: In Study 1, response bias is modeled using a single latent factor for all measurement occasions, with loadings on this factor either (a) fixed across occasions (“bias invariance constraint”) or (b) allowed to differ across occasions, and in Study 2, response bias is modeled using (c) a distinct latent response bias factor for each measurement occasion. We examine the results in terms of bias and efficiency of parameter estimates.
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	We used the simsem (0.5–3) package (Pornprasertmanit, Miller, & Schoemann, 2013) within R (2.15.2, R Core Team, 2012) to generate data, impose missing values, and estimate a range of analytic models.
	The data generation model was a panel model with four measurement occasions (see Figure 2). At each occasion there are three gold-standard indicators of the core construct of interest (e.g., these might be three outcomes from a blood test, three components of an intelligence test score, or three hours’ worth of classroom attention observations) and three inexpensive/biased indicators (e.g., three items or parcels of items from a self-report measure). Lag-1 residual correlations (i.e., the correlation between the residual of the first indicator of the inexpensive measure at time 1 with that of the first indicator of the inexpensive measure at time 2) were .2. The regression coefficients over time for the core construct were .3 at lag-1 and .15 at lag-2. The unstandardized factor loadings of all 6 indicators on the core construct were .7. The total variance of each gold-standard indicator was 1. The total variance of the inexpensive indicators varied as a function of the amount of response bias. Rather than holding the total indicator variance constant, we held constant the ratio of reliable to residual variance at 49:51, where the reliable variance is composed of construct variance and response bias variance. The amount of reliable variance is a sum of the squared core-construct loading (always .7) and the squared response bias loading. For this reason, the parameter values mentioned previously are not standardized, the standardized factor loading of the inexpensive indicators are lower than the ones of the gold-standard indicators. The standardized regression coefficients are .287 from time 1 to time 2, .140 from time 1 to time 3, .292 from time 2 to time 3, .145 from time 2 to time 4, and .298 from time 3 to time 4. The standardized factor loadings of the gold-standard indicators are .7 at time 1, .715 at time 2, .724 at time 3, and .726 at time 4.
	/
	Figure 2. Data generation model for Study 1. Residual variances and residual covariances (at lag 1 and 2) are not shown.
	Three population models were used; these differed in the amount of response bias in the inexpensive measure over time. In the uniform bias condition, this response bias was uniform over time, such that the inexpensive items had a .4 (unstandardized) loading on the response bias factor at every time point. In standardized terms, the inexpensive indicators had standardized loadings of .608, .624, .634, and .638 at times 1–4 on the core construct and .347, .342, .338, and .337 at each time point on the response-bias factor. In the random bias condition, the response bias loadings at each measurement occasion were drawn from a uniform distribution with a range of .3 to .6 (all three indicators within a time point always had the same loading). The standardized core-factor loadings are .640, .622, .601, and .589 at times 1–4. Finally, in the increasing bias condition, the response bias factor loadings were .3, .4, .5, and .6 at times 1–4, corresponding to standardized response bias factor loadings of .276, .342, .397, and .446, and core factor loadings of .643, .624, .596, and .560.
	For each of the three population model conditions (i.e., uniform bias, random bias, increasing bias), complete data on both measures were generated with a total sample size of N = 500. Each cell had 500 replications. For each complete dataset, missingness was imposed according to nine different missing data designs. The number of gold-standard measurements collected over time was invariant at 200 in every condition, but these 200 measurements were distributed differently across occasions, in nine different ways. As shown in Table 2, either 50 participants were measured at each of the four occasions, 200 participants were measured at a single occasion, or 100 participants were measured at each of two occasions (occasions 1 and 2 or occasions 1 and 4). For the purpose of computing relative efficiency, we ran partial complete-data conditions where the gold standard was measured on all participants at just one occasion, at occasions 1 and 2, and at occasions 1 and 4. These six partial complete data designs were used for relative efficiency computations only.
	/
	We examined two designs where the 100 participants receiving the gold standard on the final occasion was different from the group of 100 who received it on the first occasion—either 50 of the participants who received the gold-standard measure at the first occasion received it again (in which case a new 50 participants also received it at the last occasion, so there was 50% overlap) or none of the participants who received the measure at the first occasion received it again (i.e., a new 100 participants received it at the last occasion, so there was 0% overlap). We included these variants because, for various practical reasons (e.g., attrition), it may be difficult to get the same subset of participants to receive the gold-standard measurement twice. Thus, we tested the robustness of these designs when the gold-standard group is not overlapping. We did not simulate attrition in this study, so the original participants who received the gold-standard measure were still included at the last time point, only they did not receive the gold-standard measure again. We deleted 5% of the data using a missing completely at random (MCAR) mechanism to approximate the effect of a small amount of unsystematic unplanned missingness.
	The model shown in Figure 2 was fit to each complete and incomplete dataset; models were fit using the simsem package in R, which relies on lavaan (0.5–13; Rosseel, 2012) for structural equation model estimation. Full information maximum likelihood was used to estimate model parameters both with complete data and with missing data (see Baraldi & Enders, 2010). Factorial invariance was imposed across measurement occasions by constraining factor loadings for all indicators to be equal across measurement occasions, while allowing the factor variance and mean to change over time. Each data set was also analyzed a second time with an additional set of “bias invariance” (BI) constraints that forced estimated loadings on the response bias factor to also be invariant across occasions. Note that this constraint imposes a misspecification of the model when the amount of response bias in the inexpensive measure varies, that is, in the random bias and increasing bias population conditions.
	We first examine rates of nonconvergence and improper solutions, where nonconverged cases are those where the maximum likelihood algorithm failed to derive model estimates, and improper solutions are those that resulted in at least one negative residual variance estimate. These cases were removed before computing bias and efficiency. We used absolute relative bias (ARB) to assess the accuracy of the point estimates of the loadings (on the construct and on the response bias factor) and of the structural regression paths. As shown below, ARB was calculated as the absolute value of the ratio of estimation bias to the true parameter value, 𝐴𝑅𝐵𝜃=𝜃−𝜃𝜃×100, where 𝜃 is the population parameter value, and 𝜃 is the average estimated parameter value across all converged replications. ARB was computed for each model parameter, and then averaged across construct loadings, response bias loadings, and structural regression paths to produce three values of ARB for each model (one for each generating population model). The reason for using absolute values is that for many models both positive and negative bias appeared across the range of parameters (e.g., positive bias on the construct loadings at occasion 1 and negative at occasion 4) so averaging across these would obscure the degree of bias. The direction of bias is described in the text.
	In addition to ARB, we computed relative efficiency (RE) for each parameter by comparing the empirical standard error of each parameter when estimated with and without missing data. The empirical standard error is the standard deviation of parameter estimates across replications (excluding those that did not converge or produced improper solutions). RE is the ratio of squared parameter empirical standard errors (i.e., the standard deviation of the estimates across all replications) of complete data to incomplete (planned missing) data, 𝑅𝐸𝜃=𝐸𝑆𝐸𝜃,𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒2𝐸𝑆𝐸𝜃,𝑚𝑖𝑠𝑠𝑖𝑛𝑔2×100, where 𝐸𝑆𝐸𝜃2=1𝑁𝑖=1𝑁(𝜃𝑖−𝜃)2 is the estimated parameter value for replication i, and N is the number of converged proper solutions in a condition. RE ranges from 0 to 1, where a value of 1 means that the parameter estimates are as efficient as they would have been with no missing data, and lower values reflect efficiency loss and lower power in significance testing.
	The complete data comparison condition differed depending on when the gold-standard measure was included. For example, the condition where 200 participants received the gold standard at occasion 3 and the factorial invariance constraint was applied was compared to a design with complete data on the gold standard at occasion 3 and the factorial invariance constraint applied.
	When the bias invariance (BI) constraint was imposed (in addition to factorial invariance constraints, which were always imposed), convergence was always 100% and there were no improper solutions. For conditions where the BI constraint was not imposed, the percent of replications that failed to converge or converged with an improper solution is listed in Table 3. In addition, there were 3 replications total that resulted in a negative standard error estimate; these were also removed but are not reported in Table 3. When the BI constraint was not imposed, convergence rates ranged from 76.2% to 98.4%. Convergence was highest when the gold standard was measured at all four measurement occasions and lowest when it was measured at occasions 1 and 2. It was also lower when the gold standard was measured at occasions 1 and 4 with less than complete overlap. In every condition, rates of improper solutions were higher than rates of non-convergence.
	/
	Table 4 displays the absolute relative bias (ARB) for the response bias loadings, construct loadings, and structural regression paths by each generating population (i.e., response bias is stable, randomly varying, or increasing over time) and by each of the nine planned missing data designs modeled with and without the BI constraint, for a total of 18 designs. As recommended by Muthén, Kaplan, and Hollis (1987), ARB less than 10% is considered negligible. Values higher than 10% are bolded in Table 4.
	/
	When the generating population had a constant level of response bias over time, the only appreciable ARB appeared when the gold standard was measured only at occasion 4 and the BI constraint was not imposed (11.3% in the structural paths). In all other conditions, ARB was less than 10%, because this model was always correct: no matter when response bias was estimated, the available information was enough to characterize the response bias in the inexpensive measure at all four measurement occasions.
	When the amount of bias in the inexpensive measure did not vary, the assumption underlying the BI constraint was true, and imposing this constraint resulted in more accurate response bias loadings and structural parameter estimates than imposing only the factorial invariance constraint. ARB of loadings on the response bias factor ranged from 0.8% to 2.9% (mean = 1.7%) when the BI constraint was imposed, compared to 2.3% to 5.9% (mean = 3.4%) when it was not. On the construct loadings, ARB ranged from 4.1% to 5.7% (mean = 5.0%) when the BI constraint was imposed, and from 4.4% to 6.5% (mean = 5.4%) when it was not. ARB of structural parameters ranged from 2.2% to 3.9% (mean = 3.1%) when the BI constraint was imposed and from 1.2% to 11.3% (mean = 6.5%) when it was not.
	The number or location of occasions when the gold-standard measure was included had no noticeable effect on ARB of any parameter estimates when the BI constraint was imposed and a small effect when it was not. With only factorial invariance constrained, models where the gold standard was measured at 2 occasions rather than 1 had slightly higher ARB in the loadings (5.1%–6.4% for 2 occasions; 4.4%–4.9% for 1 occasion) and slightly lower ARB in the structural parameters (3.1%–7.0% for 2 occasions; 4.4%–11.3% for 1 occasion). Compared to 1 or 2 occasions, when the gold standard was measured at all 4 occasions, ARB on the loadings was high (6.3%) and ARB on the structural parameters was low (1.2%).
	Though none of these numbers represent substantial ARB, the model that has least ARB in structural parameters should be preferred. Thus, the most accurate design when the inexpensive measure has equal bias over time appears to be one where the gold standard is measured at occasion 1 (or two occasions on a fully overlapping group of participants), with both factorial invariance and equality of bias constraints.
	When the amount of bias in the inexpensive measure varied randomly over time, substantial bias appeared in both the response bias loadings and the structural paths when the BI constraint was applied. That is, when the amount of bias was constrained to be equal over time, but the true degree of bias varied randomly over time, loadings on the response bias construct showed around 19% ARB, and the average ARB of all structural paths ranged from 10.6% to 21.5% ARB. The bias in structural paths was not uniform across conditions or across structural parameters; for example, the regression path from time 1 to 2 was always positively biased, whereas that from time 2 to 3 was negatively biased (not shown).
	When the BI constraint was not imposed, the only appearance of ARB greater than 10% was in the structural paths when the gold standard was measured only at the first occasion (11.6%). Each condition where the BI constraint was imposed had about 2% lower ARB in construct loadings compared to when it was not imposed, but construct loading ARB was never higher than 6% in any condition.
	The number or location of occasions when the gold-standard measure was included had little effect on ARB when the BI constraint was applied, except that smallest ARB in structural paths occurred in the condition where the gold standard was measured at occasions 1 and 4 on a fully overlapping group of participants (10.6%). When the BI constraint was not imposed, structural parameter estimate ARB was smallest when the gold standard was measured at all four occasions (3.7%), slightly greater when the gold standard was measured at 2 occasions (ranging from 4.5% to 5.9%), and highest when the gold standard was measured at just one occasion (ranging from 5.1% to 11.6%). The proportion of overlapping cases had no effect.
	In sum, when the degree of bias in the inexpensive measure varies randomly over time, the most accurate models are those that do not constrain bias to be equal over time and where the gold standard is measured at every occasion, although designs where the gold standard is measured at any one or any two occasions also performed well.
	Increasing bias over time
	When the amount of bias in the inexpensive measure increased systematically over time, the pattern of parameter ARB strongly resembled that of the random bias condition. When the BI constraint was not imposed, no model had substantial ARB. When the BI constraint was imposed, however, models showed 21.8%–25.3% ARB in response bias loadings, and 20.9%–33.3% ARB in structural paths (see Table 4), with one exception: when the gold standard was measured at occasions 1 and 4 with fully overlapping cases, ARB in the structural parameter estimates was just 11.5%. Apart from this one condition, the location or number of occasions at which the gold standard was measured did not affect ARB. ARB in construct loadings was not large, ranging from 2.3% to 9.1%. As with the random bias condition, the assumption of equal bias variance across measurement occasions in this condition is false, and the consequences of imposing the BI constraint are substantial.
	The ARB in the structural path estimates showed the same pattern as when the population bias varied randomly. This bias was not uniform across conditions, or across structural parameters; the regression path from occasion 1 to 2 was always positively biased, as was the path from occasion 1 to 3; and the other three paths were always negatively biased.
	When the BI constraint was not imposed, ARB of the response bias loadings ranged from 1.2% to 3.8%, ARB in construct loadings ranged from 4.1% to 5.7%, and ARB in regression paths among latent variables ranged from 3.5% to 9.4%. There was no noticeable effect of the number or location of occasions when the gold standard was measured. This finding suggests that, even if bias systematically differs over time, whether the gold standard is measured at a single time point or at all 4 time points, bias in the inexpensive measure can be accurately estimated. In this situation, the most accurate design is any design where factorial invariance is imposed and response bias is freely estimated over time.
	Relative efficiency of parameters estimates
	Table 5 displays the RE of each type of parameter for each condition. Recall that RE was computed by taking a ratio of the complete data sampling variance of each parameter estimate to the missing data sampling variance, where the complete data model contained the same variables as the incomplete data model. RE measures the degree to which information is retained as a result of missing data. For example, RE of .60 means that the parameter estimate is 60% as efficient as it would have been if every variable had complete data.
	Table 5. Percent average relative efficiency.
	/
	It is helpful to interpret RE in light of the percentage of observations that are missing. Recall that in order to compare missing data designs to complete data designs using the same model, the complete data design that is being compared differs according to the number of occasions on which the gold standard is measured. For example, a design with 50 participants measured on the gold-standard measure at each time point is compared to a complete data design where all 500 participants are measured on the gold-standard measure at each time point, representing a 10% subsample of the complete data design. A design with 200 participants getting the gold-standard measure at just one time point is compared to a complete data design where all 500 participants get the gold-standard measure at only that time point, representing a 40% subsample of the complete data design. In the former case, RE values greater than 10% represent a “savings” in terms of efficiency-per-observation. In the latter case, RE values greater than 40% represent such a savings. The subsample percentage for each model is given in Table 5 as a baseline for comparison.
	With eight exceptions, all parameters in all conditions displayed higher RE than subsample percentage. Five exceptions occurred when bias was stable across time, when the gold standard was measured at just one occasion, and when the BI constraint was not imposed. Four of these five exceptions affected the structural paths, the other affected construct loadings.
	The choice of constraint had a large effect on efficiency. In almost every condition and for every parameter type, the model with the BI constraint imposed produced more efficient estimates than the one without. For example, when the gold standard was measured on just 20% of the sample at 2 occasions, RE of structural parameter estimates ranged from 60.1% to 69.3% with the BI constraint imposed, compared to 24%–26% without it. Construct and response bias loadings were also about 6% more efficient when the BI constraint was imposed.
	Whether bias was equal, varied randomly, or systematically increased over time, patterns of RE were almost identical. Imposing the BI constraint was almost always the most efficient strategy, but recall that these conditions also resulted in the most extreme ARB when the degree of bias in the inexpensive measure varied over time. High efficiency and high ARB are, of course, a poor combination, as it results in small confidence intervals around inaccurate parameter estimates, encouraging a false impression of accuracy. When the BI constraint was not imposed, RE rates suggest that all of these designs still represent a high cost savings in terms of efficiency per piece of data collected. The greatest efficiency relative to the subsample gains appear in the condition where the gold standard is measured at 2 occasions, followed by 1 occasion, followed by all 4 occasions.
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	In Study 1, the generating model and analysis models included just one response bias factor for all four measurement occasions. In reality, response bias is unlikely to be perfectly correlated across measurement occasions. Instead, it is more likely that response bias also follows a longitudinal structure similar to that of any core construct, correlated across time but nonetheless distinct. Thus, in simulation 2, we respecified the population generating model to include a separate response bias factor at each time point and replicated the random bias population condition of Study 1 using this more complex model (see Figure 3). The response bias factor correlations were specified to follow a simplex structure with lag 1 correlations of .7, lag 2 correlations of .49, and lag 3 correlations of .343. Corresponding to this change in the population model, we investigated two analysis models: a) the same structure as the data generation model with a response bias factor at each time; and b) the model with one response bias factor that was used in Study 1 (Figure 2).
	/
	Figure 3. Data generation model for Study 2. Residual variances and residual covariances (at lag 1 and 2) are not shown.
	For simulation 2 we only included the results of the analysis models that include the gold-standard measure at every time point. In order to capture a proper change in the response bias factor it is necessary to have the gold-standard measure at every time point; models lacking this characteristic would give biased parameter estimates, even with complete data. We confirmed this hypothesis by testing the design with complete data at one, two, or all time points. This analysis revealed the same trend: the only models with ARB lower than 10% were the ones that included the gold-standard measure at every measurement occasion. Thus, to model separate response bias constructs at each wave, the gold standard must be measured at every wave. With the gold standard at only a subset of occasions, the only plausible model is a single response bias factor to account for bias across all occasions.
	Table 6 shows the percent of nonconvergence and improper solutions. The improper solutions include results with at least one negative variance estimate, or at least one negative standard error estimate.
	/
	The analysis models with one bias factor had low percent of improper solutions (9.4%) and almost no convergence failures (0.2%). When the BI constraint was applied, the models had no convergence failures. The analysis model with four response bias factors, in contrast, showed severe estimation problems. When only the FI constraint was applied, there were a total of 37.8% estimation problems, with most of them being improper solutions (31.8%). When the BI constraint was also applied, there was a total of 36.2% estimation problems, and most of these (20.4%) were failures to converge.
	The problems of nonconvergence and improper solutions are due to empirical underidentification (Kenny & Kashy, 1992). This issue is common in multi-trait multi-method (MTMM) models, and the multifactorial response bias structure resembles an MTMM model. To gauge the seriousness of the estimation problems, we randomly selected four data sets that did not converge properly with four response bias factors in the simulation and attempted to fix the estimation problems. By trying different sets of starting values, one data set converged properly. Another data set converged properly after removing one indicator of the inexpensive measure at one time point; and we were unable to get the two remaining data sets to converge without improper solutions by adding starting values, additional constraints, or by excluding individually problematic indicators. This informal investigation suggests that in applied situations it may be possible to raise the likelihood of a proper model solution somewhat, but not in every case. These models would certainly require more patience and labor, with unknown results.
	Given these estimation problems, we analyzed the results with improper solutions included, because excluding a large proportion of the replications would lead to skewed results. Following Kolenikov and Bollen (2012) and Savalei and Kolenikov (2008) a negative residual variance may not be evidence of model misspecification. In particular, as some of our residual variances were close to zero, sampling variability would be expected to lead to some negative variance estimates. Thus, we present results both excluding all improper solutions, as well as including those improper solutions where the negative residual variance was less than 2.58 standard errors from zero (the 99% confidence interval). The last column on Table 6 shows the percentage of convergence including improper solutions. The smallest percentage of replications used in an analysis, given this criterion, was 78.2% for the model with bias invariance constraint.
	Absolute relative bias of parameter estimates
	Table 7 displays the ARB for the response bias loadings, construct loadings, and structural regression paths by each response bias factor structure (i.e., 1 bias factor, 4 bias factors, and 4 bias factors with improper solutions included). Because ARB less than 10% is considered negligible (Muthén et al., 1987), values higher than 10% are bolded.
	/
	The model with response bias loadings unconstrained across time show non-negligible ARB on response bias loadings, with an average ARB of 53.9%. The construct loadings had negligible ARB of 7.6%. In the case of the structural paths, the model’s ARB is small but non-negligible (11.5%).
	The model with the BI constraint applied showed negligible ARB in the response bias loadings of 8.3%, no substantial ARB in the construct loadings (5.3%), but high levels of ARB (22%) in the structural paths. The ARB in the structural paths was not uniform across structural parameters; the regression path from time 1 to time 2 tended to be negatively biased, as did the path from time 2 to time 3, and the path from time 3 to time 4. The regression paths from time 1 to time 3, and from time 2 to time 4 were always positively biased.
	When four bias factors were modeled, construct loadings were accurately estimated (ARB was never higher than 10%). For the response bias loadings, the model with unconstrained bias loadings had negligible bias (3.7%), but non-negligible bias when the BI constraint was applied (20.9%). In the case of structural paths both models (with and without the bias invariance constraint) showed negligible bias, with response bias loadings unconstrained (6.2%) and constrained (7.0%).
	These results are limited to the low number of proper convergent results. When improper solutions were included in the analysis, both models have high ARB on the response bias loadings (unconstrained bias loading = 44.4%, constraint response bias loadings = 19.3%), but the ARB was never higher than 10% for the construct loadings or structural paths.
	Relative efficiency of parameters estimates
	Table 8 displays the RE of each type of parameter for each condition. Recall that a RE higher than the percentage of subsample of the complete data design represents a “savings” in terms of efficiency-per-observation. All parameters in all conditions displayed higher RE than subsample percentage, indicating a savings in efficiency.
	/
	For the model with four response bias factors and the response bias loadings unconstrained, the RE for the response bias loadings was 18.6%, RE for the construct loadings was 15.1%, and RE for the structural paths was 12.3%. For the model with the BI constraints imposed, the RE for the response bias loadings was 19.7%, RE for the construct loadings was 16.1%, and RE for the structural paths was 12.1%. The analysis model with only one response bias factor had lower RE than the four response bias factor model on the response bias loadings (unconstraint bias loadings = 15.9%, constraint bias loadings = 14.1%), but it has higher RE for the construct loadings (unconstrained bias loadings = 27.9%, constrained bias loadings = 34.3) and structural paths (unconstrained bias loadings = 23.3%, constrained bias loadings = 48.4).
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	We examined the performance of the two-method measurement design in longitudinal models. Simulation 1 showed that when the amount of bias in the inexpensive measure does not change over time, all designs produce unbiased estimates. Under more realistic conditions, when the bias randomly varies or increases across time, models that impose an equality of response bias constraint result in substantial bias, especially in the structural paths (i.e., regression coefficients between factors over time, which are typically the parameters of most interest). Imposing the BI constraint results in least accurate parameter estimation when the amount of bias in the inexpensive measure increases over time. When the gold-standard measure is included at two or more occasions, this bias is smaller. Measuring the gold standard at both the first and last occasions on the same group of participants resulted in the most accurate parameter estimates, but the degree of parameter bias was always unacceptably high as long as the BI constraint was imposed. When the BI constraint was not imposed, no substantial bias appeared in any condition.
	Almost every factor in simulation 1 resulted in parameter estimates that were more efficient per piece of data collected than a complete data design. In all cases, models that imposed the BI constraint resulted in much more efficient estimates – but when response bias is not equal over time, substantially biased parameter estimates emerged. When the factorial structure of the response bias across time is multifactorial (simulation 2) the gold-standard measure and a response bias factor must be included at every time point. These features are necessary to estimate properly the change in the response bias across time.
	This multifactorial structure increases the rate of improper solutions and convergence failures due to empirical underidentification. Even when the multifactorial model is more theoretically appropriate, it is in practice difficult to estimate. When the multifactorial model converges, it is likely to result in less biased estimates (especially for the structural paths) whereas imposing the BI constraint led to higher ARB on the response bias loadings, while it didn’t impacted the construct loadings, and structural paths.
	When choosing the details of the two-method measurement design and analysis model for longitudinal research, it is important to consider whether the degree of bias in the inexpensive measure is likely to be relatively stable over time, or whether it is likely to change; and it is relevant to consider the factorial structure of the response bias over time. Given that the overlapping of the gold-standard measure didn’t had a noticeable effect it is possible for the researchers to think of designs where the participants randomly receive the gold-standard measure, this depending on the resources and nature of the gold-standard measure.
	When bias is equal over time, the most accurate and efficient design is any one where both the factorial invariance and equality of bias constraints are imposed across measurement occasions. Whether the gold standard is measured at 1, 2, or all waves, makes little difference when the response bias is unifactorial. When the bias in the inexpensive instrument changes over time, however, the most accurate and efficient design is one where the gold standard is measured at more than one occasion, and only factorial invariance over time is constrained.
	When the response bias factor is expected to change over time, the only recommended design is to include the gold-standard measure at every time point. Other designs are biased even with complete data. The only way to estimate properly the four response bias factors is with this design. The other option is to estimate the model with only one response bias factor, but it still requires the gold-standard measure at each wave. Imposing factorial invariance (as we did for every model studied) never led to biased parameter estimates because factorial invariance was true in the data generating model. When the factorial structure differs from the analysis structure model even factorial invariance models can lead to biased results. Before using the factorial invariance constraint, therefore, it is important to test that factor loadings and intercepts are actually invariant over measurement occasions. To test if the factorial invariance constraint is appropriate, we recommend estimating a Confirmatory Factor Analysis (CFA) on the target factor (with the unconstrained response bias factor included in the model) without constraints, then estimating a model with the factor loadings constrained to be equal over measurement occasions while the factor variance at each occasion is freely estimated.
	Our results suggest that bias invariance constraints should be imposed only in cases where there is good evidence that bias does not change over time. Substantial change in model fit between a model in which BI is not constrained and the one in which it is constrained would be evidence of changing bias; nonsignificant change between models would support the BI constraint. It is also important to test the factorial structure of the response bias over time. We recommend starting with the more appropriate theoretical structure and working to resolve estimation problems by changing starting values. Many improper convergence problems can be worked around by changing starting values or placing justifiable constraints on parameters. Models with a multifactorial structure of the response bias require due diligence.
	A principal limitation is that there are no applied data (that we know and have access to) that show how the type of response bias we consider here might actually behave over time. Given this limitation we chose three possible ways in which bias may behave over time, and 2 different factorial structures. Further applied research will give a better perspective on the behavior of the bias across time. In this research both the gold-standard measure and the biased measure had three indicators, but the number of indicators per type of measure could vary. In many cases the gold-standard measure may consist of one or two indicators. It is of special interest to see how these models may be affected by sample size and percent of sample that receives the gold-standard measure. Further research could give guidance about the minimum sample necessary to have a stable two-method design. It may be that smaller samples need a higher percent of the sample receiving the gold-standard measure. Another factor to include in future research is the effect of attrition, which is common in longitudinal studies.
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