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Abstract 
Successful crystallization and X-ray crystallographic analyses of the highly metastable (1∶1) complexes of 
bromine with benzene and toluene establish the unique (localized) structure B that differs in notable ways from 
the long-accepted (delocalized) structure A. Furthermore, we demonstrate the (highly structured) charge-
transfer complexes [C6H6,Br2] and [CH3C6H5,Br2] to be the pre-reactive intermediates that are converted (via an 
overall Br+ transfer) to the Wheland intermediates in electrophilic aromatic bromination. The role of the dative 
ion pairs [C6H6˙+ Br2˙−] and [CH3C6H5˙+ Br2˙−] in the rate-limiting activation processes is underscored. 
 

More than 52 years ago, Benesi and Hildebrand published their seminal studies describing the unique spectral 
(UV-vis) changes that accompany the spontaneous complexation of various aromatic hydrocarbons (ArH) with 
iodine in nonpolar solvents (CCl4, C6H14, etc).1 Keefer and Andrews (and others) in extending such spectroscopic 
studies also found the magnitudes of the (thermodynamic) equilibrium constants KCT for the formation of these 
intermolecular (1∶1) complexes 

 

(1) 

to be uniformly limited, typically with KCT < 3 M−1 for the halogens X2 = I2, Br2, and Cl2 or the interhalogens XY =
IBr, ClF, etc.2 

Immediately following the Benesi–Hildebrand report, Mulliken published another landmark paper in 1950,3 in 
which he assigned these new spectral bands to the unusual electronic (charge-transfer) transition from the 
ground-state complex [D,A] to the dative excited state [D˙+,A˙−], where D is the generic representation of 
electron donors (such as aromatic hydrocarbons, etc.) and A identifies the electron acceptors (such as X2, XY, etc.) 
in eqn. (1). 

Despite the subsequent explosion in the number and types of papers dealing with the various facets of electron 
donor/acceptor, or EDA, complexes,4–6 reports of their reactivity as intermediates in (irreversible) chemical 
reactions are sparse. In the latter context, there are two reviews7,8—both now more than 25 years old—that 
unfortunately failed to kindle widespread interest in the kinetic (as opposed to static) aspects of these 
interesting EDA complexes. To make the point, we now focus simply on the benzene/bromine dyad as a 
prototypical donor/acceptor pair. In this system, the intermolecular (1∶1) complex is transient since its 
diagnostic (charge-transfer) absorption band with energy hνCT slowly disappears as bromobenzene and hydrogen 
bromide are coproduced. However, these simultaneous chemical events may not be directly coupled, since 
Colter and Dack8correctly pointed out that the reversible formation of the EDA complex (KEDA) may be an 
unrelated side process independent of electrophilic bromination (kBr): 

 

(2) 

Mechanistically, such a parallel process in which the EDA complex is an innocent bystander cannot be kinetically 
distinguished from the sequential process [eqn. (3)], in which it lies squarely on the pathway to electrophilic 
aromatic bromination: 

 

(3) 

Various spectroscopic (IR, NQR, NMR, etc.) techniques have been applied to deduce the structures of [C6H6,Br2] 
and related complexes,9–11 but to date the classic X-ray crystallographic determination by Hassel and Strømme in 
195812 stands alone as the principal structural standard (for the weak binding of bromine to benzene) by which 
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all others are invariably compared.13 Their structure A reveals the non-covalently bound dibromine acceptor to 
lie in an axial orientation relative to the benzene plane. The Br–Br bond (2.28 Å), which has essentially the same 
length as that found in elemental bromine, lies across an inversion center on (or near) the 6-fold symmetry axis 
of benzene at an intermolecular bromine–benzene separation of D = 3.36 Å that is significantly closer than the 
van der Waals contact distance of 3.55 Å.14 As such, structure A represents the electronic interaction of a 
completely delocalized benzene donor with the bromine acceptor—much in the way predicted by Mulliken 
theory.3,15 However, our careful perusal of Hassel and Strømme's experimental details raised some serious 
questions as to the definitiveness of structure A.16 Accordingly, in this paper we re-examine the X-ray 
crystallography of the benzene/dibromine complex and extend our consideration to the corresponding 
toluene/dibromine complex for completeness. Furthermore, the availability of the bromine complexes in 
crystalline form allows us to directly effect the electrophilic bromination of benzene according to eqn. (3), since 
under these solid-state conditions only nearest neighbors react, and diffusional (second-order) processes are 
largely precluded.17 

 

   

Results 
Spectral (UV-vis) changes accompanying the bromine complexation to arene donors 
Benzene. 
When pure benzene was added incrementally in small amounts to a dilute (5 mM) solution of bromine in carbon 
tetrachloride, the red-brown color changed almost imperceptibly. However, inspection of the UV-vis spectrum 
readily revealed the progressive growth of a new absorption band at λmax = 285 nm [see Fig. 1(A)]. Benesi–
Hildebrand treatment of the absorbance data yielded the formation constant KEDA = 1.0 M−1, in agreement with 
the earlier determination.2 In the [C6H6,Br2] complex, the “local” band of the bromine moiety was unchanged 
relative to the absorption of free bromine, as shown by the series of invariant spectra at λ > 350 nm in Fig. 1(A). 
The latter is underscored in Fig. 1(B), which was obtained by repeating the foregoing experiments and merely 
inserting a filter (consisting of the same 5 mM solution of Br2 in carbon tetrachloride) in the reference beam of 
the spectrometer. Such spectral features of the [C6H6,Br2] complex are wholly consistent with Mulliken's 
formulation of weak complexes in which the new UV-vis absorption relates to the electronic transition (hνCT) 
corresponding to:18 

 

(4) 
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Fig. 1 (A) Spectral (UV-vis) changes attendant upon the incremental addition of benzene aliquots to a dilute 
solution of 5 mM bromine in carbon tetrachloride at bromine∶benzene ratios of 1∶2 to 1∶40 (bottom to top). 
For comparison, the spectra of the solutions in CCl4∶5 mM Br2 alone ( ) and 0.1 M C6H6 alone (⋯⋯). 
(B) Similar to A [except for the insertion of a 5 mM Br2 in CCl4 filter (blank solution) in the reference beam of 
the spectrometer] to isolate the progressive growth of the charge-transfer band (λCT = 285 nm). 

 

 

Toluene. 
The spectral changes attendant upon the incremental additions of pure toluene to a 5 mM solution of bromine 
in carbon tetrachloride are shown in Fig. 2. The red-shift of the charge-transfer absorption band of the 
toluene/bromine complex toλmax = 295 nm follows from the Mulliken correlation of its increased donor strength 
(E°ox = 2.25 V) relative to that of benzene (E°ox = 2.62 V).19 

 

 
Fig. 2 UV-vis spectral changes upon the addition of toluene in incremental amounts to a dilute solution of 5 
mM bromine in carbon tetrachloride at bromine∶toluene ratios of 1∶5 to 1∶20 (bottom to top), showing the 
growth of the charge-transfer band (λCT = 295 nm). For comparison, the spectra of the solutions in CCl4∶5 mM 
Br2 alone ( ) and 0.1 M toluene alone (⋯⋯). 
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Crystallization of the bromine complexes of arenes donors 
Benzene. 
Owing to the low value of the formation constant KEDA, the benzene/bromine complex was necessarily 
prepared in situ by the low-temperature crystallization of the pure components in a sealed glass capillary.20 For 
example, the equimolar mixture of benzene and bromine remained liquid at −30 °C, but crystal nucleation was 
readily initiated by carefully brushing liquid nitrogen over the capillary with a cotton applicator. By a series of 
local (manual) warmings all but one small crystal was alternately dissolved/melted, and the remaining single 
crystal was allowed to grow along the capillary axis at −40 °C. The brown color of the crystal was almost 
indistinguishable from the color of the residual liquid (compare Fig. 1), but its slow growth could be continuously 
monitored under a microscope using crossed polarizers. Most interestingly, the crystal exhibited a phase change 
as the temperature was gradually decreased to −70 °C, but only a very slow cooling rate of ∼1 °C min−1 resulted 
in the apparent single-crystal-to-single-crystal phase transformation of the [C6H6,Br2] complex. 

Toluene. 
An equimolar mixture of toluene and bromine was visually indistinguishable from the brown benzene complex. 
Most notably, a series of carefully controlled studies showed that the toluene complex (visually) bleached within 
2–3 h in the temperature range of −40 to −50 °C. In order to successfully grow a single crystal of the 
toluene/bromine complex, various molar mixtures were examined at lower temperatures. When a 2∶1 molar 
ratio of toluene and bromine was employed, the resulting brown liquid began to crystallize at −70 °C to produce 
bright orange crystals. After some manual local warmings, all but one crystal was suppressed in the capillary. 
The single crystal of the 1∶1 complex consisted of a bright orange prism positioned along the capillary axis, and 
the surrounding liquid (presumably consisting of the excess of toluene) was pale yellow and glassy (clear and 
isotropic under polarized light) at −150 °C. 

X-Ray crystallography of the bromine complexes of benzene and toluene 
X-Ray crystallographic analyses of the 1∶1 bromine complexes of benzene and toluene were uniformly carried 
out at −150 °C to obviate the dynamic disorder observed at higher temperatures. As a result, our structural 
conclusions about the bromine binding in these complexes differ in substantial ways from those obtained by 
Hassel and Strømme at higher temperatures (−40 to −50 °C).12a 

Bromine binding to benzene. 
In striking contrast to the axial (delocalized) structure A, we found that bromine does not coordinate to benzene 
symmetrically. Instead, bromine is positioned over the rim (not the center) of the benzene ring as in 
structure B—being shifted by δ = 1.44 Å from the main (C6) symmetry axis. In structure B, the dibromine 
molecule is essentially oriented perpendicular to the benzene plane, and tilted by only α = 5.1 deg off 
the C6 axis.  

 

   
The molecular structure of the [C6H6,Br2] complex in Fig. 3 shows an asymmetric coordination of bromine to 
benzene as given by the shortest pair of Br⋯C distances of d1 = 3.18 Å and d2 = 3.36 Å, both of which are 
substantially shorter than the sum of the van der Waals radii of 3.55 Å. Otherwise, the intermolecular complex 
shows little deviation of the Br–Br bond of l = 2.30 Å, which is only slightly longer than that in free bromine (l =
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2.28 Å). The precision of the bond-length determination in our experiments (σCC = 0.006 Å) is insufficient to 
allow the detection of small polarization effects in the benzene donor since such changes in (multiple) C–C 
bonds are typically less than 0.005 Å.21 

 

 

 Fig. 3 Molecular diagram showing the localized (over-atom/bond) coordination of Br2 to benzene. Thermal 
ellipsoids of non-hydrogen atoms are shown at the 50% probability level. 

 

 

Bromine binding to toluene. 
As in the localized structure B, bromine is also positioned over the rim (not above the center) of the toluene ring 
in the form of non-equivalent dyads, the structural parameters of which are listed in Table 1. The closest 
approach of bromine occurs at the normal distances D = 3.01–3.17 Å, which are on the average somewhat 
shorter than that in the benzene complex. In all cases, there is an asymmetric coordination of bromine, as given 
by the pair of shortest Br⋯C distances d1 and d2 inTable 1. More precisely, the coordination of bromine to the 
aromatic ring can be evaluated as the hapticity (η) for coordination,22 so that η = 1 when d1 = D (“over-atom” 
coordination) and η = 2 when d1 = d2 (“over-bond” coordination). For intermediate cases, the hapticity can be 
estimated as a function of the relative (separation) values: (d12 − D2)1/2 and (d22 − D2)1/2 by using the geometric 
relationship: 

 

(5) 

In the toluene complex, the hapticities evaluated in this way vary from 1.70 to 1.86, and thus lie closer to the 
“over-bond” coordination model. Importantly, the “over-bond” coordinated bromine is shifted toward 
the ortho- and para- carbons of toluene [see Fig. 4 and S2 (ESI)]. 
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 Fig. 4 Localized bonding of bromine to the ortho- (top) and para- (bottom) centers of toluene in the charge-
transfer complex. 

 

 

Table 1 Principal geometric parameters of the dibromine complexes of benzene and toluene 

Interacting 
molecules Da/Å 

αb/de
g δc/Å d1d/Å d2e/Å ηf lg/Å lavh/Å 

  
a Distance of bromine to the mean aromatic plane.b Angle between the vector of the Br–Br bond and the normal to the 
aromatic plane.c Deviation of the coordinated Br from the main axis of benzene.d The shortest Br⋯C distance.e Second 
shortest Br⋯C distance.f Hapticity of the coordination.g The Br–Br bond length.h The average C–C bond length in the aromatic 
ring. 
Benzene 
complex 

                                                                     

Br1A–
Br1⋯(C1...C3A) 

3.154(8
) 

5.1(5) 1.44(1) 3.18(1) 3.36(1) 1.5
2 

2.301(2
) 

1.39(2)                                                      

Toluene 
complexes 

                                                                     

Br2–
Br1⋯(C1A...C6A
) 

3.009(3
) 

5.4(2) 1.397(4
) 

3.053(4) orth
o 

3.150(4) met
a 

1.7
0 

2.307(1
) 

1.389(6
)                                                      
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Interacting 
molecules Da/Å 

αb/de
g δc/Å d1d/Å d2e/Å ηf lg/Å lavh/Å 

  
Br1–
Br2⋯(C1B...C6B
) 

3.172(3
) 

20.7(2
) 

1.472(4
) 

3.229(4) orth
o 

3.292(4) ipso 1.8
2 

2.307(1
) 

1.385(6
)                                                      

Br3A–
Br3⋯(C1A...C6A
) 

3.099(3
) 

4.6(2) 0.936(4
) 

3.146(4) para 3.259(4) met
a 

1.7
0 

2.291(1
) 

1.389(6
)                                                      

Br4A–
Br4⋯(C1B...C6B
) 

3.133(3
) 

7.9(2) 1.414(4
) 

3.196(4) para 3.241(4) met
a 

1.8
6 

2.304(1
) 

1.385(6
)                                                      

 

General structural features of weak arene/Br2 complexes. 
The charge-transfer complex [C6H6,Br2] is presently the weakest EDA complex of dibromine studied in the solid 
state. Although the intermolecular C⋯Br separation of D = 3.18 Å is 0.37 Å closer than the equilibrium van der 
Waals distance,14 the contraction is perceptibly less than those previously reported in a series of complexes with 
slightly polarizable and weakly nucleophilic donors.23 [For example, the X⋯Br distance contraction (relative to 
the corresponding equilibrium van der Waals separations) is 0.55 Å in the acetone/Br2 complex (O⋯Br 2.82 
Å),24 0.56 Å in the acetonitrile/Br2 complex (N⋯Br 2.84 Å),25 0.57 Å in the [Te2Cl10]2−/Br2 complex (Cl⋯Br 3.03 
Å),26 and 0.60 Å in the [Se2Br10]2−/Br2complex (Br⋯Br 3.10 Å)26,27]. Moreover, the average C⋯Br separation of 
3.156 Å in the toluene/Br2 complex is somewhat shorter than that in the benzene complex, as expected from the 
better donor strength of toluene.28 

The weak C(arene)⋯Br charge-transfer interaction is reflected in an almost unperturbed geometry of the 
coordinated dibromine. [The Br–Br bond lengths are actually very sensitive to coordination/polarization effects 
and readily elongate from 2.284 Å in the non-coordinated molecule (bond order n = 1) to 2.53 Å in the 
symmetric [Br3]− anion29 (bond order n = 1/2).] As such, the Br–Br bond lengths of 2.301(2) Å in the benzene 
complex and an average of 2.302(1) Å in the toluene complex do not exhibit much elongation during complex 
formation. For comparison, the Br–Br bond lengths vary within a narrow range (2.28 to 2.33 Å) in the weakly 
coordinated acetone, acetonitrile, dioxane and methanol complexes.24,25,30,31 

In the absence of significant polarization, dibromine can be coordinated equally well from either end (owing to 
the acceptor σ*-orbital which is localized on both bromine centers) and this explains why dibromine has often 
been found in crystals to be symmetrically coordinated to a pair of donor molecules (in a bridging manner), 
especially in complexes with weak donors.12b,c[However, it is important to note that in solution, 2∶1 complexes of 
dibromine with benzene (and toluene) are only found at very high Br2 concentrations.] In the benzene and 
toluene complexes, dibromine is also positioned symmetrically between the coordinated benzene rings forming 
infinite (weak) ⋯Ar⋯Br–Br⋯Ar⋯Br–Br⋯Ar⋯ chains through the crystal, and there are no specific interactions 
other than van der Waals contacts between the chains. Although the chains are highly symmetrical in the 
benzene/dibromine crystals—with 2-fold axes (through the diagonals of the benzene rings and through the 
centers of the dibromine molecules) across the chains—the chains in the toluene/dibromine crystals are less so. 
Two of the three dibromines (Br3–Br3A and Br4–Br4A) occupy inversion centers and are thus symmetrically 
coordinated, but the third dibromine (Br1–Br2) does not show crystallographic symmetry. Indeed, the latter 
exhibits some signs of larger polarization as a result of a less symmetric coordination (Table 1), and it has the 
shortest contact, C⋯Br 3.053(4) Å, as well as the longest Br–Br bond length, 2.307(1) Å, in the series. 
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Interestingly, a similar asymmetric coordination of dibromine is found in the complex with methanol,30 in which 
the O⋯Br distance is shorter (2.705 vs. 2.723 Å) and the Br–Br bond length is longer (2.324 vs. 2.303 Å) than 
those in the closely related (but symmetric) dioxane complex.31 This structural effect predicts that polarization in 
isolated donor/acceptor dyads (such as those extant in dilute solutions) will be somewhat stronger than that 
observed in (crystalline) polymeric chains. 

Solid-state (thermal) transformation of arene/Br2 complexes via electrophilic 
bromination 
Benzene/bromine. 
Crystals of the EDA complex are surprisingly reactive, especially if one considers that equimolar solutions of 
benzene and bromine dissolved in carbon tetrachloride remained unchanged at room temperature for 
prolonged periods if protected from adventitious light. The crystalline 1∶1 complex consisting of [C6H6,Br2] 
melted at −14 °C. Nonetheless, even at −78 °C, the brown crystals slowly evolved hydrogen bromide, and 
essentially quantitative yields of bromobenzene were found upon workup: 

 

(6) 

Although the solid-state conversion was deliberately kept low (<0.5%) to minimize disruption of the crystal 
structure, we consider the electrophilic substitution in eqn. (6) to represent a crystalline (first-order) process. 
The higher conversion achieved with increasing temperature (Table 2) probably also represented crystalline 
transformations of the [C6H6,Br2] complex, although there is some ambiguity owing to the phase change 
observed between −60 and −70 °C (vide supra) that may have allowed some (but limited) diffusional separation 
of benzene from bromine for second-order reactivity. Be that as it may, careful scrutiny revealed the solid-state 
transformation of [C6H6,Br2] to be singularly uncomplicated by side products.32 

Table 2 Solid-state (thermal) transformation of the benzene/bromine complex via electrophilic 
bromination at different temperaturesa 
  Bromobenzene yield(%) 
    
T/°C After 3 h After 6 h 
  
a In the dark, without solvent, using 2 mmol each of benzene and bromine. 
−78 <0.03 0.08                                                            

−60 0.05 0.1                                                            

−40 0.1 0.2                                                            

−20 1 1.5                                                            

 

 
Toluene/bromine. 
Crystals were derived from an equimolar mixture of pure donor and acceptor. The bright-orange crystals of 
[PhCH3,Br2] slowly evolved hydrogen bromide on standing at −78 °C in the dark. Workup of the reaction mixture 
after 6 h yielded a roughly 1∶2 mixture of ortho- and para-bromotoluene: 
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(7) 

but no benzyl bromide could be detected.33 The conversion and yields of bromotoluenes obtained at low 
temperatures are listed in Table 3. It is noteworthy that the molar ratio of the ortho and para isomers of 
bromotoluene obtained from the solid-state transformation of the charge-transfer complex was the same as 
that obtained in carbon tetrachloride solution. 

Table 3 Thermal transformation of the neat toluene/bromine complex to bromotoluenes at low 
temperaturesa 
  Bromotoluene yieldb(%) 
T/°C ortho para 
  
a In the dark, without solvent, using 2 mmol each of toluene and bromine.b After 6 h; benzyl bromide <0.05% in all cases. 
−78 5.0 13                                                            

−70 6.2 15                                                            

−65 7.4 22                                                            

−60 12 32                                                            

−50 16 44                                                            

 

 

Hexamethylbenzene/bromine. 
The complex prepared in a sealed tube from equimolar amounts of hexamethylbenzene and bromine in 
dichloromethane solution was allowed to stand undisturbed in a cold bath at −40 °C. After more than a week, 
the mixture deposited a dark red salt with the composition: C6(CH3)6Br+Br3−.34 X-Ray crystallographic analysis 
indicated the formation of a cationic bromoarenium σ-adduct: 

 

(8) 

The unit cell consisted of a honeycomb of anionic polybromine networks with cages populated by the cationic σ-
complex. Since these cages have a local plane of symmetry the σ-complex structure was sufficiently disordered 
to afford poor precision. However, the molecular diagram of the well-ordered structure of the same cationic σ-
complex obtained as the hexafluoroantimonate salt is illustrated in Fig. 5.35 
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 Fig. 5 Molecular structure of the cationic bromohexamethylbenzenium σ-adduct, showing the ion pairing to 
(A) tribromide anion and (B) to hexafluoroantimonate anion. 

 

 

Charge-transfer photoreactions of arene/bromine complexes 
The spectral characteristics of the UV-vis absorption of the arene/Br2 complexes [as described in eqn. (4)] 
suggested the possibility of their photoactivation by the deliberate irradiation of the charge-transfer band.36 For 
the benzene complex, the charge-transfer band (hνCT = 285 nm) occurs in a well-defined (UV) window between λ
= 275 and 350 nm (see Fig. 1), which was well suited for the filter combination we prepared to only allow 

transmission of light with 280 < λ < 350 nm—hereinafter referred to as λexc = 320 nm (see Experimental). 

Benzene. 
The specific irradiation (λexc = 320 nm) of the charge-transfer absorption band of a crystalline sample of 
[C6H6,Br2] complex at −78 °C for 6 h led to a 0.10% conversion to bromobenzene that was uncontaminated by 
other by-products. However, the dark control carried out in a side-by-side experiment led to 0.08% 
bromobenzene. Moreover, when an equimolar (liquid) mixture of neat benzene and bromine was similarly 
irradiated at 0 °C (6 h), it resulted in a 5% conversion to bromobenzene; at 25 °C (6 h) conversion was 12%. 
However, both of these were close to the bromobenzene conversion rates of 4.5% at 0 °C and 11% at 25 °C in 
the dark control for the same period of time (vide supra). 

Toluene. 
An equimolar mixture of neat toluene and dibromine cooled at −78 °C as red-brown crystals was irradiated 
with λexc = 320 nm for 6 h. Workup of the partially converted reaction mixture resulted in a mixture ortho- 
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and para-bromotoluenes in 5% and 14%, respectively. However, the dark control resulted in ortho- and para-
bromotoluenes in 5% and 13% yields, respectively (Table 3). When an equimolar mixture of toluene and 
bromine was cooled to only −65 °C, it remained as a clear brown liquid. Irradiation at λexc for 6 h led to a mixture 
of ortho- and para-bromotoluenes in 9% and 25% yields, respectively, together with traces (0.1%) of benzyl 
bromide.33 When compared to the thermal control (see Table 3), the slightly enhanced yields of ortho- and para-
bromotoluenes were 1.6% and 3.0%. Although such conversions were low, they could be carried out 
reproducibly (within ±1%). Considering the experimental difficulty of carrying out such low-temperature 
photoirradiations, we consider these experiments to be indicative of the inefficient charge-transfer 
photoactivation of the [ArH,Br2] complexes for electrophilic bromination of both benzene and toluene:36 

 

(9) 

the quantum yields of which were estimated to be <10−2. 

Discussion 
The successful crystallization and X-ray crystallographic analyses of the metastable bromine complexes of 
benzene and toluene bear directly on the mechanism of electrophilic aromatic bromination in several important 
ways. 

First, the molecular structure in Fig. 3 shows the preorganized bromine complex of benzene to have the discrete 
localized structure B in which the binding of bromine occurs at a specific carbon center of benzene and not as in 
the delocalized structure A originally proposed by Hassel and Strømme.12a,37 Such a highly localized structure is 
strongly reminiscent of the transition state for electrophilic bromination. Yet it is formed in a rapid pre-
equilibrium step (with essentially no energy barrier). The dibromine moiety remains largely intact (with only a 
slight elongation of the Br–Br bond) in the pre-reactive benzene complex (structure B). Moreover, the rather 
close bromine proximity to the benzene chromophore at an intermolecular distance of D = 3.15 Å derives from 
charge-transfer forces that are sufficient to bind the donor/acceptor pair at a separation ∼0.4 Å closer than that 
allowed by van der Waals contacts.18 Such a significant charge-transfer interaction is even more clearly shown in 
the bromine complexation to toluene. Thus, the molecular structure in Fig. 4 readily shows bromine to gravitate 
specifically to the electron-rich ortho and para carbons. It is singularly notable that the dibromine is poised over 
only those carbon centers in the pre-reactive toluene complex that are expected to lead to the transition state 
for the preferential ortho- and para-brominations. In the benzene complex, a pair of dibromines coordinates 
each benzene ring from opposite sides in the meta positions. Otherwise there is no obvious steric reason to 
favor such a coordination, but the meta positions are known to be relatively more electron-rich in arenes with 
acceptor substituents. Despite the quasi-chain structures of the crystalline [C6H6, Br2] and [CH3C6H5, Br2] 
complexes, there is no doubt that their charge-transfer character derives from discrete intermolecular (1∶1) 
interactions of Br2 with benzene (and toluene). 

Second, the availability of the crystalline charge-transfer complex forms the topochemical basis17 for the direct 
(pairwise) interaction of the arene donor and the bromine acceptor in the absence of diffusion. As such, the 
bromination results in Tables 2 and 3 (showing exceptionally high solid-state reactivity relative to that in 
solution) prove that electrophilic aromatic bromination of benzene and toluene proceeds via the corresponding 
charge-transfer complex as described in eqn. (3).38 Thus, the complex is not merely an innocent bystander in the 
bromination process [as suggested in eqn. (2)]. 

Third, the subsequent steps leading to the electrophilic bromination process are also fairly clear but more 
difficult to prove unambiguously. Thus, the observation of the bromoarenium σ-adduct ion pair from 
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hexamethylbenzene and dibromine [eqn. (8)], together with the molecular structures in Fig. 3 and 4, suggests 
that the bromine attachment coincides with the collapse of the charge-transfer complex: 

 

(10) 

Such an attachment to the fully-substituted hexamethylbenzene donor is reversible [eqn. (8)].39 However, when 
the point of attachment occurs at an unsubstituted carbon center (as in benzene or toluene) the subsequent 
rapid loss of the α-proton renders the interchange effectively irreversible.40 Thus, the composite of the molecular 
structures in Fig. 3 and 5 represents a close-to-ideal transformation adhering to the principle of least motion.40d 

Since the transfer of Br+ in eqn. (10) is most likely to constitute the rate-limiting step, let us consider what the 
electronic character of the prereactive arene/bromine complex reveals about the activation process for 
electrophilic bromination. According to Mulliken,3,15 the characteristic new absorption bands in Fig. 1 and 
2 derive from the ground-state polarization of the weak [ArH,Br2] complex that leads to charge-transfer upon 
the absorption of light:41 

 

(11) 

Such an electronic (nonadiabatic) transition to the dative state [ArH˙+,Br2˙−] in eqn. (11) corresponds to the 
(electron) depopulation of the arene HOMO at the expense of the bromine LUMO, and the resultant 
destabilization of both the donor and the acceptor moieties.42 It is thus particularly noteworthy that such an 
electronic transition (hνCT) has been found to correlate linearly with the activation energy (log kBr) for 
electrophilic bromination of a wide series of aromatic donors:18 

 

(12) 

Indeed, the direct relationship [expressed by eqn. (12) and illustrated in Fig. 6] indicates that those electronic 
factors leading to the charge-transfer excited state of the [ArH,Br2] complex and to the transition state 
[ArH⋯Br2]‡ for electrophilic aromatic substitution are very closely related.43 The direct relationship between 
them is difficult to establish experimentally since the photo-excitation represents a nonadiabatic (vertical) 
process whereas the thermal activation is adiabatic and accompanied by solvation changes.44Nonetheless, the 
direct photoexcitation of [ArH,Br2] complexes according to eqn. (9) points to the dative ion-radical pair as the 
reactive intermediate: 

 

(13) 

However, its rapid deactivation by back electron transfer (kBET) expectedly leads to an inefficient photoprocess, 
owing to the highly exergonic driving force for relaxation back to the charge-transfer complex relative to the 
mesolytic dissociation of Br2˙−, which is relatively slow.45,46 We believe that the predominant thermal process for 
electrophilic aromatic brominations also follows an analogous (adiabatic) pathway,47 but the final mechanistic 
proof must await more definitive (time-resolved spectroscopic) studies36,48 on the temporal behavior of the 
charge-transfer ion pair [C6H6˙+,Br2˙−]. 
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 Fig. 6 Linear correlation of the rate (log kBr) of electrophilic aromatic bromination with the charge-transfer 
transition energy (hνCT) of the bromine complexes with various arene donors (as identified).18 

 

Conclusions 
The metastable (1∶1) bromine complexes of benzene (structure B) and of toluene are established as the critical 
pre-reactive intermediates in electrophilic bromination according to mechanistic eqn. (3). Its subsequent (rate-
controlling) transformation to the bromoarenium σ-adduct (i.e., Wheland intermediate) in eqn. (10) evokes the 
considerable, if not complete, charge-transfer character established by the correlation in Fig. 6. As such, the 
dative ion pair [ArH˙+,Br2˙−] is the best (valence-bond) representation of the rate-limiting transition state.43a 

Experimental 
Materials 
Benzene (EM Science, Merck) and toluene (EM Science, Merck) were purified by repeated shaking with 
successive portions of cold concentrated H2SO4 until the acidic layer was colorless. The aromatic layer was 
washed with water, aqueous NaHCO3, followed by several washings with water, and dried over CaCl2. The arene 
was then refluxed (∼9 h) and distilled from sodium under an argon atmosphere and stored in Schlenk flasks 
under argon. Hexamethylbenzene (Aldrich) was purified by recrystallization from absolute ethanol. Bromine (EM 
Science, Merck) was initially washed by shaking with several portions of H2SO4 and it was then refluxed (∼4 h) 
over solid KBr and distilled. Predistilled bromine was refluxed (∼9 h) over P2O5 and distilled under an argon 
atmosphere and stored in flasks equipped with Schlenk adapters under an argon atmosphere. All-glass syringes 
with Teflon needles or Teflon cannulas (without any steel elements) were used for all operations with bromine. 
Dichloromethane (EM Science, Merck) and carbon tetrachloride (Aldrich) were repeatedly stirred with H2SO4, 
until the acidic layer was colorless. After separation, the organic layer was washed with water, aqueous NaHCO3, 
water, and dried over CaCl2. The solvent was refluxed (∼9 h) and distilled from P2O5 under an argon atmosphere 
and it was again refluxed (∼9 h) and distilled from CaH2 under an argon atmosphere. Dichloromethane and 
carbon tetrachloride were stored in Schlenk flasks equipped with Teflon valves fitted with Viton O-rings under 
an argon atmosphere. Authentic samples of bromobenzene, ortho- and para-bromotoluene, and benzyl bromide 
for comparison with the products of photo- and thermo- reactions were from Aldrich. 
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General 
The X-ray crystallographic analyses were carried out with a Siemens–Bruker SMART diffractometer (λ MoKα =
0.71073 Å) equipped with a 1K CCD detector and an LT-2 low-temperature device. Gas chromatography was 
performed on a Hewlett–Packard 5890A gas chromatograph equipped with a HP 3392 integrator. Gas 
chromatography-mass spectrometry analyses were carried out on a Hewlett–Packard 5890 gas chromatograph 
interfaced to a HP 5970 mass spectrometer (EI, 70 eV). 1H NMR spectra were recorded with a General Electric 
QE-300 NMR spectrometer. UV-vis absorption spectra were recorded on a Hewlett–Packard 8453 diode-array 
spectrometer. 

The mixtures obtained from the thermal and photo transformations were dissolved in chloroform and the 
products (bromobenzene, ortho- and para-bromotoluenes and benzyl bromide) were identified by GC-MS 
analysis by comparison of their retention parameters and mass-spectral checking patterns with authentic 
samples, and with the aid of NMR 1H spectroscopy. Yield of the products was quantified by gas chromatography 
using the internal standard method.49 

Measurement of the charge-transfer spectra of [ArH,Br2] complexes 
In a 1 cm quartz cuvette under an argon atmosphere, the pure arene (benzene or toluene) was incrementally 
added to a solution of 0.005 M bromine in carbon tetrachloride so that the bromine∶arene ratio was increasing 
from 1∶1 to 1∶40. The growth of the charge-transfer band was observed at λmax = 285 nm for the 
benzene/bromine complex and at 295 nm for the toluene/bromine complex (see Fig. 1 and 2). In the case of 
toluene, each spectral measurement was carried out with fresh portions of the bromine solution, owing to the 
extreme sensitivity of the toluene/bromine mixture under the spectral conditions (to interference from free-
radical chain reactions). 

In situ Crystallization of the bromine complexes of benzene and toluene 
Equimolar amounts of benzene and dibromine were mixed (with the aid of a glass microsyringe attached to a 
Teflon needle) at +5 °C under an argon atmosphere and kept at 0 °C. Small amounts of the mixture were 
transferred into glass capillaries (d = 0.4 mm) and the contents of the capillaries frozen. The sealed capillary was 
attached (with wax) to a hollow copper pin, leaving a ∼7 mm tip exposed. The pin was mounted onto the 
diffractometer equipped with an LT-2 low temperature device. The capillary was placed at an angle of χ = 54° 
under the vertically oriented cooling nozzle, so that the exposed part of the capillary and the pin tip were both 
positioned well within the laminar flow of nitrogen. The brown color of the crystal was almost indistinguishable 
from the color of the residual liquid, and its formation and growth were continuously monitored under a 
polarizing microscope. The initial crystal showed very poor diffraction (similar to the earlier description by 
Hassel and Strømme12). However, as the temperature was gradually decreased through −70 °C, the crystal 
exhibited a phase transition, but only a slow cooling rate (∼1 °C min−1) induced a single-crystal-to-single-crystal 
phase transformation. The resulting bright orange crystal (although cracked and surrounded by smaller 
satellites) was in a trigonal space group (as opposed to the monoclinic modification studied by Hassel and 
Strømme12 at −40 to −50 °C), but it showed a bright high-angle diffraction pattern of regular quality at −150 °C. 

The crystallization of the toluene complex was in many details similar to that for the benzene complex. Crystals 
grown from an equimolar mixture at higher than −70 °C were brown and exhibited extremely poor diffraction—
much like the higher-temperature crystalline modification of the benzene/dibromine complex. Below −70 °C, 
the color of the crystals changed to bright orange and the diffraction intensity increased dramatically (in a 
manner similar to the transformation observed for the benzene analog). To grow a single crystal of the 
toluene/dibromine complex, we employed a 2∶1 molar ratio of toluene and dibromine. The resulting brown 
liquid began to crystallize below −70 °C (i.e., below the transformation point of the 1∶1 mixture) to produce 
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bright orange crystals. After some manual local warming, all but one crystal was suppressed in the capillary. The 
single crystal consisted of a bright orange prism positioned along the capillary axis. 

X-Ray crystal structure analysis of the arene/dibromine complexes 
The diffraction data were collected at −150 °C. The data were corrected for absorption and other effects using 
the SADABS program.50 The structures were solved using direct methods51 and refined on F2 by a least-squares 
procedure.52 

CCDC reference numbers 162148 and 162149. See http://www.rsc.org/suppdata/nj/b1/b110169m/ for 
crystallographic data in CIF or other electronic format. 

Benzene/dibromine complex. 
Formula C6H6Br2 (M = 237.93); trigonal, space group P32212; a = b = 8.721(2), c = 8.701(2) Å, U = 573.1(2) Å3, Z =
3; Dcalc = 2.068 g cm−3, μ(MoKα) = 105.1 cm−1; 7294 reflections were collected over a reciprocal hemisphere (θmax

= 29°) of which 605 reflections (Rint = 0.048) were symmetrically non-equivalent. Bromine atoms were refined 
anisotropically, whereas the carbon atoms and the hydrogens (calculated from a riding geometric model) were 
refined isotropically. The final discrepancy factors were R1 = 0.063 and wR2 = 0.178 for 549 reflections with I
2σ(I). The absolute structure was determined with a Flack parameter of χ = −0.1(3). 

Toluene/dibromine complex. 
Formula C7H8Br2 (M = 251.95); triclinic, space group P-1; a = 5.516(1), b = 11.715(2), c = 13.551(3) Å,α =
79.76(1), β = 80.89(1), γ = 85.56(1)°, U = 849.8(3) Å3, Z = 4; Dcalc = 1.969 g cm−3, μ(MoKα) = 94.5 cm−1; 19 282 
reflections were collected over the reciprocal sphere (θmax = 29°) of which 4356 reflections (Rint = 0.077) were 
symmetrically non-equivalent. All non-hydrogen atoms were refined anisotropically; the hydrogens were 
positioned using a riding and rotating geometric model and refined isotropically. The final discrepancy factors 
were R1 = 0.039 and wR2 = 0.080 for 3051 reflections with I 2σ(I). 

Bromohexamethylbenzenium tribromide (σ-complex) as the tris(dibromine) solvate. 
Formula C12H18Br10 (M = 961.36); monoclinic (regular twin), space group P21/c; a = 8.7047(4), b = 17.9315(8), c =
15.4610(7) Å, β = 90.078(2)°, U = 2413.3(2) Å3, Z = 4;Dcalc = 2.646 g cm−3, μ(MoKα) = 166.0 cm−1; 19 084 
reflections were collected over the reciprocal sphere (θmax = 35°) of which 9809 reflections (Rint = 0.055) were 
non-equivalent. All non-hydrogen atoms were refined anisotropically; the hydrogens were positioned using a 
riding and rotating geometric model and refined isotropically. The final discrepancy factors were R1 = 0.071 
andwR2 = 0.1568 for 6223 reflections with I 2σ(I). 

Bromohexamethylbenzenium hexafluoroantimonate (σ-complex). 
Formula C12H18BrF6Sb (M = 477.92); monoclinic, space groupP21/n; a = 7.0691(3), b = 11.0782(5), c = 19.5085(9) 
Å, β = 97.180(1)°, U = 1515.8(1) Å3, Z = 4; Dcalc = 2.094 g cm−3, μ(MoKα) = 45.1 cm−1; 18705 reflections were 
collected over the reciprocal sphere (θmax = 35°) of which 6610 reflections (Rint = 0.025) were non-equivalent. All 
non-hydrogen atoms were refined anisotropically; the hydrogens were positioned using a riding and rotating 
geometric model and refined isotropically. The final discrepancy factors were R1 = 0.025 and wR2 = 0.055 for 
5641 reflections withI 2σ(I). 

Thermal transformation of the bromine complexes of benzene and toluene 
Equimolar mixtures of bromine (0.1 ml, 2 mmol) and arene [benzene (0.17 ml, 2 mmol) or toluene (0.2 ml, 2 
mmol)] were prepared in glass tubes and were kept in the dark at different temperatures during 3 or 6 h 
(see Tables 2 and 3) in a dry ice–methanol bath. The reaction mixtures were analyzed as described above. 
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Charge-transfer photoexcitation of bromine complexes of benzene and toluene 
Filter for the isolation of UV light for the specific irradiation of the charge-transfer band of arene/bromine 
complexes. 
A medium-pressure mercury lamp (500 W) was used for the photoirradiation. For the isolation of UV light from 
the medium-pressure mercury lamp in the region of the charge-transfer band of arene/bromine complexes, we 
used the combination of a colored glass filter UG-5 (Oriel Instruments) and filter solutions consisting of: 1 M 
solution of CoSO4 in 5% aqueous H2SO4; 2 M solution of NiSO4 and 0.05 M solution of CuSO4 in 5% aqueous 
H2SO4; and 0.05 M solution of Br2 in CCl4 in quartz cuvettes. This filter combination had a transmittance from 280 
nm to 350 nm with a maximum at 320 nm (for the transmittance characteristics, see the ESI). 

Charge-transfer photoirradiation of the benzene/bromine charge-transfer complex as a fluid mixture of 
neat compounds. 
An equimolar mixture of bromine (0.1 ml, 2 mmol) and benzene (0.17 ml, 2 mmol) was prepared in a 1 mm 
quartz cuvette fitted with a Schlenk adapter under an argon atmosphere at room temperature. The cuvette was 
placed in a Dewar equipped with quartz windows and it was irradiated with UV light from a medium-pressure 
mercury lamp at either 0 °C (ice–water bath) or at room temperature (see Results) under an argon atmosphere 
for 6 h. UV light was focused through an aqueous IR filter and the CT-band isolation filter (see above). As the 
thermal control, the same mixture was placed in glass tube wrapped with aluminum foil and the tube was kept 
in the same Dewar (to ensure the same time for the photoreaction). After reaction, the mixtures were analyzed 
as described above. 

Charge-transfer photoirradiation of toluene/bromine charge-transfer complex as a fluid mixture of neat 
compounds. 
Bromine (0.1 ml, 2 mmol) was added to toluene (0.2 ml, 2 mmol) cooled to −78 °C in a 1 mm quartz cuvette 
fitted with a Schlenk adapter under an argon atmosphere. The mixture was slightly warmed for homogenization 
and the cuvette was placed in the Dewar with quartz windows (dry ice–methanol bath with temperature −65
°C). The liquid mixture was irradiated with UV light from a medium pressure mercury lamp (see above) at −65 °C 
under an argon atmosphere for 6 h. The equivalent thermal control was placed in a glass tube wrapped with 
aluminum foil and the tube was kept in the same Dewar for the same period. After reaction, the mixtures were 
analyzed as described above. 

Procedure for the charge-transfer irradiation of bromine complexes with benzene and toluene in the 
solid state. 
The solid complex, as an equimolar mixture of bromine (0.1 ml, 2 mmol) and arene [benzene (0.17 ml, 2 mmol) 
or toluene (0.2 ml, 2 mmol)], was irradiated at the CT band for 6 h in a 1 mm quartz cuvette under an argon 
atmosphere with the apparatus described above, in a Dewar with quartz windows at −78 °C (dry ice–methanol 
bath). The dark thermal control was carried out in a glass tube wrapped with aluminum foil, which was placed in 
the same Dewar. After reaction, the mixtures were dissolved in chloroform and the products analyzed by 
standard GC-MS methods. The Quantum Yields of photoreaction products were measured with the aid of a 
medium-pressure (500 W) mercury lamp. The intensity of the lamp was determined at λ = 313 nm with a freshly 
prepared potassium ferrioxalate actinometer solution,53 under the same conditions as used for the 
photoreactions of bromine/arene complexes (filters, apparatus). 
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Footnote 
† Electronic supplementary information (ESI) available: X-ray crystallographic data for: benzene/bromine charge-transfer complex (Tables 
S1–S5), toluene/bromine charge-transfer complex (Tables S6–S10), bromohexamethylbenzenium tribromide (σ-complex) as the 
tris(dibromine) solvate (Tables S11–S15), bromohexamethylbenzenium hexafluoroantimonate (σ-complex) (Tables S16–S20); actual 
transmittance spectrum of the filter used for the isolation of UV light for the specific irradiation of the charge-transfer band of 
arene/bromine complexes (Fig. S1); and the detailed structure of the donor/acceptor chains in the crystal structure of the 
toluene/dibromine charge-transfer complex (Fig. S2). See http://www.rsc.org/suppdata/nj/b1/b110169m/ 
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	Abstract
	Successful crystallization and X-ray crystallographic analyses of the highly metastable (1∶1) complexes of bromine with benzene and toluene establish the unique (localized) structure B that differs in notable ways from the long-accepted (delocalized) structure A. Furthermore, we demonstrate the (highly structured) charge-transfer complexes [C6H6,Br2] and [CH3C6H5,Br2] to be the pre-reactive intermediates that are converted (via an overall Br+ transfer) to the Wheland intermediates in electrophilic aromatic bromination. The role of the dative ion pairs [C6H6˙+ Br2˙−] and [CH3C6H5˙+ Br2˙−] in the rate-limiting activation processes is underscored.
	More than 52 years ago, Benesi and Hildebrand published their seminal studies describing the unique spectral (UV-vis) changes that accompany the spontaneous complexation of various aromatic hydrocarbons (ArH) with iodine in nonpolar solvents (CCl4, C6H14, etc).1 Keefer and Andrews (and others) in extending such spectroscopic studies also found the magnitudes of the (thermodynamic) equilibrium constants KCT for the formation of these intermolecular (1∶1) complexes
	(1)
	to be uniformly limited, typically with KCT/</3 M−1 for the halogens X2/=/I2, Br2, and Cl2 or the interhalogens XY/=/IBr, ClF, etc.2
	Immediately following the Benesi–Hildebrand report, Mulliken published another landmark paper in 1950,3 in which he assigned these new spectral bands to the unusual electronic (charge-transfer) transition from the ground-state complex [D,A] to the dative excited state [D˙+,A˙−], where D is the generic representation of electron donors (such as aromatic hydrocarbons, etc.) and A identifies the electron acceptors (such as X2, XY, etc.) in eqn. (1).
	Despite the subsequent explosion in the number and types of papers dealing with the various facets of electron donor/acceptor, or EDA, complexes,4–6 reports of their reactivity as intermediates in (irreversible) chemical reactions are sparse. In the latter context, there are two reviews7,8—both now more than 25 years old—that unfortunately failed to kindle widespread interest in the kinetic (as opposed to static) aspects of these interesting EDA complexes. To make the point, we now focus simply on the benzene/bromine dyad as a prototypical donor/acceptor pair. In this system, the intermolecular (1∶1) complex is transient since its diagnostic (charge-transfer) absorption band with energy hνCT slowly disappears as bromobenzene and hydrogen bromide are coproduced. However, these simultaneous chemical events may not be directly coupled, since Colter and Dack8correctly pointed out that the reversible formation of the EDA complex (KEDA) may be an unrelated side process independent of electrophilic bromination (kBr):
	(2)
	Mechanistically, such a parallel process in which the EDA complex is an innocent bystander cannot be kinetically distinguished from the sequential process [eqn. (3)], in which it lies squarely on the pathway to electrophilic aromatic bromination:
	(3)
	Various spectroscopic (IR, NQR, NMR, etc.) techniques have been applied to deduce the structures of [C6H6,Br2] and related complexes,9–11 but to date the classic X-ray crystallographic determination by Hassel and Strømme in 195812 stands alone as the principal structural standard (for the weak binding of bromine to benzene) by which all others are invariably compared.13 Their structure A reveals the non-covalently bound dibromine acceptor to lie in an axial orientation relative to the benzene plane. The Br–Br bond (2.28 Å), which has essentially the same length as that found in elemental bromine, lies across an inversion center on (or near) the 6-fold symmetry axis of benzene at an intermolecular bromine–benzene separation of D/=/3.36 Å that is significantly closer than the van der Waals contact distance of 3.55 Å.14 As such, structure A represents the electronic interaction of a completely delocalized benzene donor with the bromine acceptor—much in the way predicted by Mulliken theory.3,15 However, our careful perusal of Hassel and Strømme's experimental details raised some serious questions as to the definitiveness of structure A.16 Accordingly, in this paper we re-examine the X-ray crystallography of the benzene/dibromine complex and extend our consideration to the corresponding toluene/dibromine complex for completeness. Furthermore, the availability of the bromine complexes in crystalline form allows us to directly effect the electrophilic bromination of benzene according to eqn. (3), since under these solid-state conditions only nearest neighbors react, and diffusional (second-order) processes are largely precluded.17
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	When pure benzene was added incrementally in small amounts to a dilute (5 mM) solution of bromine in carbon tetrachloride, the red-brown color changed almost imperceptibly. However, inspection of the UV-vis spectrum readily revealed the progressive growth of a new absorption band at λmax/=/285 nm [see Fig. 1(A)]. Benesi–Hildebrand treatment of the absorbance data yielded the formation constant KEDA/=/1.0 M−1, in agreement with the earlier determination.2 In the [C6H6,Br2] complex, the “local” band of the bromine moiety was unchanged relative to the absorption of free bromine, as shown by the series of invariant spectra at λ/>/350 nm in Fig. 1(A). The latter is underscored in Fig. 1(B), which was obtained by repeating the foregoing experiments and merely inserting a filter (consisting of the same 5 mM solution of Br2 in carbon tetrachloride) in the reference beam of the spectrometer. Such spectral features of the [C6H6,Br2] complex are wholly consistent with Mulliken's formulation of weak complexes in which the new UV-vis absorption relates to the electronic transition (hνCT) corresponding to:18
	(4)
	Fig. 1 (A) Spectral (UV-vis) changes attendant upon the incremental addition of benzene aliquots to a dilute solution of 5 mM bromine in carbon tetrachloride at bromine∶benzene ratios of 1∶2 to 1∶40 (bottom to top). For comparison, the spectra of the solutions in CCl4∶5 mM Br2 alone (//) and 0.1 M C6H6 alone (⋯⋯). (B) Similar to A [except for the insertion of a 5 mM Br2 in CCl4 filter (blank solution) in the reference beam of the spectrometer] to isolate the progressive growth of the charge-transfer band (λCT/=/285 nm).
	The spectral changes attendant upon the incremental additions of pure toluene to a 5 mM solution of bromine in carbon tetrachloride are shown in Fig. 2. The red-shift of the charge-transfer absorption band of the toluene/bromine complex toλmax/=/295 nm follows from the Mulliken correlation of its increased donor strength (E°ox/=/2.25 V) relative to that of benzene (E°ox/=/2.62 V).19
	Fig. 2 UV-vis spectral changes upon the addition of toluene in incremental amounts to a dilute solution of 5 mM bromine in carbon tetrachloride at bromine∶toluene ratios of 1∶5 to 1∶20 (bottom to top), showing the growth of the charge-transfer band (λCT/=/295 nm). For comparison, the spectra of the solutions in CCl4∶5 mM Br2 alone (//) and 0.1 M toluene alone (⋯⋯).
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	Owing to the low value of the formation constant KEDA, the benzene/bromine complex was necessarily prepared in situ by the low-temperature crystallization of the pure components in a sealed glass capillary.20 For example, the equimolar mixture of benzene and bromine remained liquid at −30/°C, but crystal nucleation was readily initiated by carefully brushing liquid nitrogen over the capillary with a cotton applicator. By a series of local (manual) warmings all but one small crystal was alternately dissolved/melted, and the remaining single crystal was allowed to grow along the capillary axis at −40/°C. The brown color of the crystal was almost indistinguishable from the color of the residual liquid (compare Fig. 1), but its slow growth could be continuously monitored under a microscope using crossed polarizers. Most interestingly, the crystal exhibited a phase change as the temperature was gradually decreased to −70/°C, but only a very slow cooling rate of ∼1/°C min−1 resulted in the apparent single-crystal-to-single-crystal phase transformation of the [C6H6,Br2] complex.
	An equimolar mixture of toluene and bromine was visually indistinguishable from the brown benzene complex. Most notably, a series of carefully controlled studies showed that the toluene complex (visually) bleached within 2–3 h in the temperature range of −40 to −50/°C. In order to successfully grow a single crystal of the toluene/bromine complex, various molar mixtures were examined at lower temperatures. When a 2∶1 molar ratio of toluene and bromine was employed, the resulting brown liquid began to crystallize at −70/°C to produce bright orange crystals. After some manual local warmings, all but one crystal was suppressed in the capillary. The single crystal of the 1∶1 complex consisted of a bright orange prism positioned along the capillary axis, and the surrounding liquid (presumably consisting of the excess of toluene) was pale yellow and glassy (clear and isotropic under polarized light) at −150/°C.
	X-Ray crystallographic analyses of the 1∶1 bromine complexes of benzene and toluene were uniformly carried out at −150/°C to obviate the dynamic disorder observed at higher temperatures. As a result, our structural conclusions about the bromine binding in these complexes differ in substantial ways from those obtained by Hassel and Strømme at higher temperatures (−40 to −50/°C).12a
	In striking contrast to the axial (delocalized) structure A, we found that bromine does not coordinate to benzene symmetrically. Instead, bromine is positioned over the rim (not the center) of the benzene ring as in structure B—being shifted by δ/=/1.44 Å from the main (C6) symmetry axis. In structure B, the dibromine molecule is essentially oriented perpendicular to the benzene plane, and tilted by only α/=/5.1 deg off the C6 axis. 
	The molecular structure of the [C6H6,Br2] complex in Fig. 3 shows an asymmetric coordination of bromine to benzene as given by the shortest pair of Br⋯C distances of d1/=/3.18 Å and d2/=/3.36 Å, both of which are substantially shorter than the sum of the van der Waals radii of 3.55 Å. Otherwise, the intermolecular complex shows little deviation of the Br–Br bond of l/=/2.30 Å, which is only slightly longer than that in free bromine (l/=/2.28 Å). The precision of the bond-length determination in our experiments (σCC/=/0.006 Å) is insufficient to allow the detection of small polarization effects in the benzene donor since such changes in (multiple) C–C bonds are typically less than 0.005 Å.21
	Fig. 3 Molecular diagram showing the localized (over-atom/bond) coordination of Br2 to benzene. Thermal ellipsoids of non-hydrogen atoms are shown at the 50% probability level.
	As in the localized structure B, bromine is also positioned over the rim (not above the center) of the toluene ring in the form of non-equivalent dyads, the structural parameters of which are listed in Table 1. The closest approach of bromine occurs at the normal distances D/=/3.01–3.17 Å, which are on the average somewhat shorter than that in the benzene complex. In all cases, there is an asymmetric coordination of bromine, as given by the pair of shortest Br⋯C distances d1 and d2 inTable 1. More precisely, the coordination of bromine to the aromatic ring can be evaluated as the hapticity (η) for coordination,22 so that η/=/1 when d1/=/D (“over-atom” coordination) and η/=/2 when d1/=/d2 (“over-bond” coordination). For intermediate cases, the hapticity can be estimated as a function of the relative (separation) values: (d12/−/D2)1/2 and (d22/−/D2)1/2 by using the geometric relationship:
	(5)
	In the toluene complex, the hapticities evaluated in this way vary from 1.70 to 1.86, and thus lie closer to the “over-bond” coordination model. Importantly, the “over-bond” coordinated bromine is shifted toward the ortho- and para- carbons of toluene [see Fig. 4 and S2 (ESI)].
	Fig. 4 Localized bonding of bromine to the ortho- (top) and para- (bottom) centers of toluene in the charge-transfer complex.
	Table 1 Principal geometric parameters of the dibromine complexes of benzene and toluene
	αb/deg
	Interacting molecules
	lavh/Å
	lg/Å
	ηf
	d2e/Å
	d1d/Å
	δc/Å
	Da/Å
	 
	a Distance of bromine to the mean aromatic plane.b Angle between the vector of the Br–Br bond and the normal to the aromatic plane.c Deviation of the coordinated Br from the main axis of benzene.d The shortest Br⋯C distance.e Second shortest Br⋯C distance.f Hapticity of the coordination.g The Br–Br bond length.h The average C–C bond length in the aromatic ring.
	Benzene complex
	 
	 
	 
	 
	 
	 
	 
	 
	1.39(2)
	2.301(2)
	1.52
	3.36(1)
	3.18(1)
	1.44(1)
	5.1(5)
	3.154(8)
	Br1A–Br1⋯(C1...C3A)
	Toluene complexes
	 
	 
	 
	 
	 
	 
	 
	 
	1.389(6)
	2.307(1)
	1.70
	3.150(4) meta
	3.053(4) ortho
	1.397(4)
	5.4(2)
	3.009(3)
	Br2–Br1⋯(C1A...C6A)
	1.385(6)
	2.307(1)
	1.82
	3.292(4) ipso
	3.229(4) ortho
	1.472(4)
	20.7(2)
	3.172(3)
	Br1–Br2⋯(C1B...C6B)
	1.389(6)
	2.291(1)
	1.70
	3.259(4) meta
	3.146(4) para
	0.936(4)
	4.6(2)
	3.099(3)
	Br3A–Br3⋯(C1A...C6A)
	1.385(6)
	2.304(1)
	1.86
	3.241(4) meta
	3.196(4) para
	1.414(4)
	7.9(2)
	3.133(3)
	Br4A–Br4⋯(C1B...C6B)
	The charge-transfer complex [C6H6,Br2] is presently the weakest EDA complex of dibromine studied in the solid state. Although the intermolecular C⋯Br separation of D/=/3.18 Å is 0.37 Å closer than the equilibrium van der Waals distance,14 the contraction is perceptibly less than those previously reported in a series of complexes with slightly polarizable and weakly nucleophilic donors.23 [For example, the X⋯Br distance contraction (relative to the corresponding equilibrium van der Waals separations) is 0.55 Å in the acetone/Br2 complex (O⋯Br 2.82 Å),24 0.56 Å in the acetonitrile/Br2 complex (N⋯Br 2.84 Å),25 0.57 Å in the [Te2Cl10]2−/Br2 complex (Cl⋯Br 3.03 Å),26 and 0.60 Å in the [Se2Br10]2−/Br2complex (Br⋯Br 3.10 Å)26,27]. Moreover, the average C⋯Br separation of 3.156 Å in the toluene/Br2 complex is somewhat shorter than that in the benzene complex, as expected from the better donor strength of toluene.28
	The weak C(arene)⋯Br charge-transfer interaction is reflected in an almost unperturbed geometry of the coordinated dibromine. [The Br–Br bond lengths are actually very sensitive to coordination/polarization effects and readily elongate from 2.284 Å in the non-coordinated molecule (bond order n/=/1) to 2.53 Å in the symmetric [Br3]− anion29 (bond order n/=/1/2).] As such, the Br–Br bond lengths of 2.301(2) Å in the benzene complex and an average of 2.302(1) Å in the toluene complex do not exhibit much elongation during complex formation. For comparison, the Br–Br bond lengths vary within a narrow range (2.28 to 2.33 Å) in the weakly coordinated acetone, acetonitrile, dioxane and methanol complexes.24,25,30,31
	In the absence of significant polarization, dibromine can be coordinated equally well from either end (owing to the acceptor σ*-orbital which is localized on both bromine centers) and this explains why dibromine has often been found in crystals to be symmetrically coordinated to a pair of donor molecules (in a bridging manner), especially in complexes with weak donors.12b,c[However, it is important to note that in solution, 2∶1 complexes of dibromine with benzene (and toluene) are only found at very high Br2 concentrations.] In the benzene and toluene complexes, dibromine is also positioned symmetrically between the coordinated benzene rings forming infinite (weak) ⋯Ar⋯Br–Br⋯Ar⋯Br–Br⋯Ar⋯ chains through the crystal, and there are no specific interactions other than van der Waals contacts between the chains. Although the chains are highly symmetrical in the benzene/dibromine crystals—with 2-fold axes (through the diagonals of the benzene rings and through the centers of the dibromine molecules) across the chains—the chains in the toluene/dibromine crystals are less so. Two of the three dibromines (Br3–Br3A and Br4–Br4A) occupy inversion centers and are thus symmetrically coordinated, but the third dibromine (Br1–Br2) does not show crystallographic symmetry. Indeed, the latter exhibits some signs of larger polarization as a result of a less symmetric coordination (Table 1), and it has the shortest contact, C⋯Br 3.053(4) Å, as well as the longest Br–Br bond length, 2.307(1) Å, in the series. Interestingly, a similar asymmetric coordination of dibromine is found in the complex with methanol,30 in which the O⋯Br distance is shorter (2.705 vs. 2.723 Å) and the Br–Br bond length is longer (2.324 vs. 2.303 Å) than those in the closely related (but symmetric) dioxane complex.31 This structural effect predicts that polarization in isolated donor/acceptor dyads (such as those extant in dilute solutions) will be somewhat stronger than that observed in (crystalline) polymeric chains.
	Crystals of the EDA complex are surprisingly reactive, especially if one considers that equimolar solutions of benzene and bromine dissolved in carbon tetrachloride remained unchanged at room temperature for prolonged periods if protected from adventitious light. The crystalline 1∶1 complex consisting of [C6H6,Br2] melted at −14/°C. Nonetheless, even at −78/°C, the brown crystals slowly evolved hydrogen bromide, and essentially quantitative yields of bromobenzene were found upon workup:
	(6)
	Although the solid-state conversion was deliberately kept low (<0.5%) to minimize disruption of the crystal structure, we consider the electrophilic substitution in eqn. (6) to represent a crystalline (first-order) process. The higher conversion achieved with increasing temperature (Table 2) probably also represented crystalline transformations of the [C6H6,Br2] complex, although there is some ambiguity owing to the phase change observed between −60 and −70/°C (vide supra) that may have allowed some (but limited) diffusional separation of benzene from bromine for second-order reactivity. Be that as it may, careful scrutiny revealed the solid-state transformation of [C6H6,Br2] to be singularly uncomplicated by side products.32
	Table 2 Solid-state (thermal) transformation of the benzene/bromine complex via electrophilic bromination at different temperaturesa
	Bromobenzene yield(%)
	 
	 
	 
	After 6 h
	After 3 h
	T/°C
	 
	a In the dark, without solvent, using 2 mmol each of benzene and bromine.
	0.08
	<0.03
	−78
	0.1
	0.05
	−60
	0.2
	0.1
	−40
	1.5
	1
	−20
	Crystals were derived from an equimolar mixture of pure donor and acceptor. The bright-orange crystals of [PhCH3,Br2] slowly evolved hydrogen bromide on standing at −78/°C in the dark. Workup of the reaction mixture after 6 h yielded a roughly 1∶2 mixture of ortho- and para-bromotoluene:
	(7)
	but no benzyl bromide could be detected.33 The conversion and yields of bromotoluenes obtained at low temperatures are listed in Table 3. It is noteworthy that the molar ratio of the ortho and para isomers of bromotoluene obtained from the solid-state transformation of the charge-transfer complex was the same as that obtained in carbon tetrachloride solution.
	Table 3 Thermal transformation of the neat toluene/bromine complex to bromotoluenes at low temperaturesa
	Bromotoluene yieldb(%)
	 
	T/°C
	 
	a In the dark, without solvent, using 2 mmol each of toluene and bromine.b After 6 h; benzyl bromide <0.05% in all cases.
	13
	5.0
	−78
	15
	6.2
	−70
	22
	7.4
	−65
	32
	12
	−60
	44
	16
	−50
	The complex prepared in a sealed tube from equimolar amounts of hexamethylbenzene and bromine in dichloromethane solution was allowed to stand undisturbed in a cold bath at −40/°C. After more than a week, the mixture deposited a dark red salt with the composition: C6(CH3)6Br+Br3−.34 X-Ray crystallographic analysis indicated the formation of a cationic bromoarenium σ-adduct:
	(8)
	The unit cell consisted of a honeycomb of anionic polybromine networks with cages populated by the cationic σ-complex. Since these cages have a local plane of symmetry the σ-complex structure was sufficiently disordered to afford poor precision. However, the molecular diagram of the well-ordered structure of the same cationic σ-complex obtained as the hexafluoroantimonate salt is illustrated in Fig. 5.35
	Fig. 5 Molecular structure of the cationic bromohexamethylbenzenium σ-adduct, showing the ion pairing to (A) tribromide anion and (B) to hexafluoroantimonate anion.
	The spectral characteristics of the UV-vis absorption of the arene/Br2 complexes [as described in eqn. (4)] suggested the possibility of their photoactivation by the deliberate irradiation of the charge-transfer band.36 For the benzene complex, the charge-transfer band (hνCT/=/285 nm) occurs in a well-defined (UV) window between λ/=/275 and 350 nm (see Fig. 1), which was well suited for the filter combination we prepared to only allow transmission of light with 280/</λ/</350 nm—hereinafter referred to as λexc/=/320 nm (see Experimental).
	The specific irradiation (λexc/=/320 nm) of the charge-transfer absorption band of a crystalline sample of [C6H6,Br2] complex at −78/°C for 6 h led to a 0.10% conversion to bromobenzene that was uncontaminated by other by-products. However, the dark control carried out in a side-by-side experiment led to 0.08% bromobenzene. Moreover, when an equimolar (liquid) mixture of neat benzene and bromine was similarly irradiated at 0/°C (6 h), it resulted in a 5% conversion to bromobenzene; at 25/°C (6 h) conversion was 12%. However, both of these were close to the bromobenzene conversion rates of 4.5% at 0/°C and 11% at 25/°C in the dark control for the same period of time (vide supra).
	An equimolar mixture of neat toluene and dibromine cooled at −78/°C as red-brown crystals was irradiated with λexc/=/320 nm for 6 h. Workup of the partially converted reaction mixture resulted in a mixture ortho- and para-bromotoluenes in 5% and 14%, respectively. However, the dark control resulted in ortho- and para-bromotoluenes in 5% and 13% yields, respectively (Table 3). When an equimolar mixture of toluene and bromine was cooled to only −65/°C, it remained as a clear brown liquid. Irradiation at λexc for 6 h led to a mixture of ortho- and para-bromotoluenes in 9% and 25% yields, respectively, together with traces (0.1%) of benzyl bromide.33 When compared to the thermal control (see Table 3), the slightly enhanced yields of ortho- and para-bromotoluenes were 1.6% and 3.0%. Although such conversions were low, they could be carried out reproducibly (within ±1%). Considering the experimental difficulty of carrying out such low-temperature photoirradiations, we consider these experiments to be indicative of the inefficient charge-transfer photoactivation of the [ArH,Br2] complexes for electrophilic bromination of both benzene and toluene:36
	(9)
	the quantum yields of which were estimated to be <10−2.
	Discussion
	The successful crystallization and X-ray crystallographic analyses of the metastable bromine complexes of benzene and toluene bear directly on the mechanism of electrophilic aromatic bromination in several important ways.
	First, the molecular structure in Fig. 3 shows the preorganized bromine complex of benzene to have the discrete localized structure B in which the binding of bromine occurs at a specific carbon center of benzene and not as in the delocalized structure A originally proposed by Hassel and Strømme.12a,37 Such a highly localized structure is strongly reminiscent of the transition state for electrophilic bromination. Yet it is formed in a rapid pre-equilibrium step (with essentially no energy barrier). The dibromine moiety remains largely intact (with only a slight elongation of the Br–Br bond) in the pre-reactive benzene complex (structure B). Moreover, the rather close bromine proximity to the benzene chromophore at an intermolecular distance of D/=/3.15 Å derives from charge-transfer forces that are sufficient to bind the donor/acceptor pair at a separation ∼0.4 Å closer than that allowed by van der Waals contacts.18 Such a significant charge-transfer interaction is even more clearly shown in the bromine complexation to toluene. Thus, the molecular structure in Fig. 4 readily shows bromine to gravitate specifically to the electron-rich ortho and para carbons. It is singularly notable that the dibromine is poised over only those carbon centers in the pre-reactive toluene complex that are expected to lead to the transition state for the preferential ortho- and para-brominations. In the benzene complex, a pair of dibromines coordinates each benzene ring from opposite sides in the meta positions. Otherwise there is no obvious steric reason to favor such a coordination, but the meta positions are known to be relatively more electron-rich in arenes with acceptor substituents. Despite the quasi-chain structures of the crystalline [C6H6, Br2] and [CH3C6H5, Br2] complexes, there is no doubt that their charge-transfer character derives from discrete intermolecular (1∶1) interactions of Br2 with benzene (and toluene).
	Second, the availability of the crystalline charge-transfer complex forms the topochemical basis17 for the direct (pairwise) interaction of the arene donor and the bromine acceptor in the absence of diffusion. As such, the bromination results in Tables 2 and 3 (showing exceptionally high solid-state reactivity relative to that in solution) prove that electrophilic aromatic bromination of benzene and toluene proceeds via the corresponding charge-transfer complex as described in eqn. (3).38 Thus, the complex is not merely an innocent bystander in the bromination process [as suggested in eqn. (2)].
	Third, the subsequent steps leading to the electrophilic bromination process are also fairly clear but more difficult to prove unambiguously. Thus, the observation of the bromoarenium σ-adduct ion pair from hexamethylbenzene and dibromine [eqn. (8)], together with the molecular structures in Fig. 3 and 4, suggests that the bromine attachment coincides with the collapse of the charge-transfer complex:
	(10)
	Such an attachment to the fully-substituted hexamethylbenzene donor is reversible [eqn. (8)].39 However, when the point of attachment occurs at an unsubstituted carbon center (as in benzene or toluene) the subsequent rapid loss of the α-proton renders the interchange effectively irreversible.40 Thus, the composite of the molecular structures in Fig. 3 and 5 represents a close-to-ideal transformation adhering to the principle of least motion.40d
	Since the transfer of Br+ in eqn. (10) is most likely to constitute the rate-limiting step, let us consider what the electronic character of the prereactive arene/bromine complex reveals about the activation process for electrophilic bromination. According to Mulliken,3,15 the characteristic new absorption bands in Fig. 1 and 2 derive from the ground-state polarization of the weak [ArH,Br2] complex that leads to charge-transfer upon the absorption of light:41
	(11)
	Such an electronic (nonadiabatic) transition to the dative state [ArH˙+,Br2˙−] in eqn. (11) corresponds to the (electron) depopulation of the arene HOMO at the expense of the bromine LUMO, and the resultant destabilization of both the donor and the acceptor moieties.42 It is thus particularly noteworthy that such an electronic transition (hνCT) has been found to correlate linearly with the activation energy (log kBr) for electrophilic bromination of a wide series of aromatic donors:18
	(12)
	Indeed, the direct relationship [expressed by eqn. (12) and illustrated in Fig. 6] indicates that those electronic factors leading to the charge-transfer excited state of the [ArH,Br2] complex and to the transition state [ArH⋯Br2]‡ for electrophilic aromatic substitution are very closely related.43 The direct relationship between them is difficult to establish experimentally since the photo-excitation represents a nonadiabatic (vertical) process whereas the thermal activation is adiabatic and accompanied by solvation changes.44Nonetheless, the direct photoexcitation of [ArH,Br2] complexes according to eqn. (9) points to the dative ion-radical pair as the reactive intermediate:
	(13)
	However, its rapid deactivation by back electron transfer (kBET) expectedly leads to an inefficient photoprocess, owing to the highly exergonic driving force for relaxation back to the charge-transfer complex relative to the mesolytic dissociation of Br2˙−, which is relatively slow.45,46 We believe that the predominant thermal process for electrophilic aromatic brominations also follows an analogous (adiabatic) pathway,47 but the final mechanistic proof must await more definitive (time-resolved spectroscopic) studies36,48 on the temporal behavior of the charge-transfer ion pair [C6H6˙+,Br2˙−].
	Fig. 6 Linear correlation of the rate (log/kBr) of electrophilic aromatic bromination with the charge-transfer transition energy (hνCT) of the bromine complexes with various arene donors (as identified).18
	Conclusions
	The metastable (1∶1) bromine complexes of benzene (structure B) and of toluene are established as the critical pre-reactive intermediates in electrophilic bromination according to mechanistic eqn. (3). Its subsequent (rate-controlling) transformation to the bromoarenium σ-adduct (i.e., Wheland intermediate) in eqn. (10) evokes the considerable, if not complete, charge-transfer character established by the correlation in Fig. 6. As such, the dative ion pair [ArH˙+,Br2˙−] is the best (valence-bond) representation of the rate-limiting transition state.43a
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	Benzene (EM Science, Merck) and toluene (EM Science, Merck) were purified by repeated shaking with successive portions of cold concentrated H2SO4 until the acidic layer was colorless. The aromatic layer was washed with water, aqueous NaHCO3, followed by several washings with water, and dried over CaCl2. The arene was then refluxed (∼9 h) and distilled from sodium under an argon atmosphere and stored in Schlenk flasks under argon. Hexamethylbenzene (Aldrich) was purified by recrystallization from absolute ethanol. Bromine (EM Science, Merck) was initially washed by shaking with several portions of H2SO4 and it was then refluxed (∼4 h) over solid KBr and distilled. Predistilled bromine was refluxed (∼9 h) over P2O5 and distilled under an argon atmosphere and stored in flasks equipped with Schlenk adapters under an argon atmosphere. All-glass syringes with Teflon needles or Teflon cannulas (without any steel elements) were used for all operations with bromine. Dichloromethane (EM Science, Merck) and carbon tetrachloride (Aldrich) were repeatedly stirred with H2SO4, until the acidic layer was colorless. After separation, the organic layer was washed with water, aqueous NaHCO3, water, and dried over CaCl2. The solvent was refluxed (∼9 h) and distilled from P2O5 under an argon atmosphere and it was again refluxed (∼9 h) and distilled from CaH2 under an argon atmosphere. Dichloromethane and carbon tetrachloride were stored in Schlenk flasks equipped with Teflon valves fitted with Viton O-rings under an argon atmosphere. Authentic samples of bromobenzene, ortho- and para-bromotoluene, and benzyl bromide for comparison with the products of photo- and thermo- reactions were from Aldrich.
	The X-ray crystallographic analyses were carried out with a Siemens–Bruker SMART diffractometer (λ MoKα/=/0.71073 Å) equipped with a 1K CCD detector and an LT-2 low-temperature device. Gas chromatography was performed on a Hewlett–Packard 5890A gas chromatograph equipped with a HP 3392 integrator. Gas chromatography-mass spectrometry analyses were carried out on a Hewlett–Packard 5890 gas chromatograph interfaced to a HP 5970 mass spectrometer (EI, 70 eV). 1H NMR spectra were recorded with a General Electric QE-300 NMR spectrometer. UV-vis absorption spectra were recorded on a Hewlett–Packard 8453 diode-array spectrometer.
	The mixtures obtained from the thermal and photo transformations were dissolved in chloroform and the products (bromobenzene, ortho- and para-bromotoluenes and benzyl bromide) were identified by GC-MS analysis by comparison of their retention parameters and mass-spectral checking patterns with authentic samples, and with the aid of NMR 1H spectroscopy. Yield of the products was quantified by gas chromatography using the internal standard method.49
	In a 1 cm quartz cuvette under an argon atmosphere, the pure arene (benzene or toluene) was incrementally added to a solution of 0.005 M bromine in carbon tetrachloride so that the bromine∶arene ratio was increasing from 1∶1 to 1∶40. The growth of the charge-transfer band was observed at λmax/=/285 nm for the benzene/bromine complex and at 295 nm for the toluene/bromine complex (see Fig. 1 and 2). In the case of toluene, each spectral measurement was carried out with fresh portions of the bromine solution, owing to the extreme sensitivity of the toluene/bromine mixture under the spectral conditions (to interference from free-radical chain reactions).
	Equimolar amounts of benzene and dibromine were mixed (with the aid of a glass microsyringe attached to a Teflon needle) at +5/°C under an argon atmosphere and kept at 0/°C. Small amounts of the mixture were transferred into glass capillaries (d/=/0.4 mm) and the contents of the capillaries frozen. The sealed capillary was attached (with wax) to a hollow copper pin, leaving a ∼7 mm tip exposed. The pin was mounted onto the diffractometer equipped with an LT-2 low temperature device. The capillary was placed at an angle of χ/=/54° under the vertically oriented cooling nozzle, so that the exposed part of the capillary and the pin tip were both positioned well within the laminar flow of nitrogen. The brown color of the crystal was almost indistinguishable from the color of the residual liquid, and its formation and growth were continuously monitored under a polarizing microscope. The initial crystal showed very poor diffraction (similar to the earlier description by Hassel and Strømme12). However, as the temperature was gradually decreased through −70/°C, the crystal exhibited a phase transition, but only a slow cooling rate (∼1/°C min−1) induced a single-crystal-to-single-crystal phase transformation. The resulting bright orange crystal (although cracked and surrounded by smaller satellites) was in a trigonal space group (as opposed to the monoclinic modification studied by Hassel and Strømme12 at −40 to −50/°C), but it showed a bright high-angle diffraction pattern of regular quality at −150/°C.
	The crystallization of the toluene complex was in many details similar to that for the benzene complex. Crystals grown from an equimolar mixture at higher than −70/°C were brown and exhibited extremely poor diffraction—much like the higher-temperature crystalline modification of the benzene/dibromine complex. Below −70/°C, the color of the crystals changed to bright orange and the diffraction intensity increased dramatically (in a manner similar to the transformation observed for the benzene analog). To grow a single crystal of the toluene/dibromine complex, we employed a 2∶1 molar ratio of toluene and dibromine. The resulting brown liquid began to crystallize below −70/°C (i.e., below the transformation point of the 1∶1 mixture) to produce bright orange crystals. After some manual local warming, all but one crystal was suppressed in the capillary. The single crystal consisted of a bright orange prism positioned along the capillary axis.
	The diffraction data were collected at −150/°C. The data were corrected for absorption and other effects using the SADABS program.50 The structures were solved using direct methods51 and refined on F2 by a least-squares procedure.52
	CCDC reference numbers 162148 and 162149. See http://www.rsc.org/suppdata/nj/b1/b110169m/ for crystallographic data in CIF or other electronic format.
	Formula C6H6Br2 (M/=/237.93); trigonal, space group P32212; a/=/b/=/8.721(2), c/=/8.701(2) Å, U/=/573.1(2) Å3, Z/=/3; Dcalc/=/2.068 g cm−3, μ(MoKα)/=/105.1 cm−1; 7294 reflections were collected over a reciprocal hemisphere (θmax/=/29°) of which 605 reflections (Rint/=/0.048) were symmetrically non-equivalent. Bromine atoms were refined anisotropically, whereas the carbon atoms and the hydrogens (calculated from a riding geometric model) were refined isotropically. The final discrepancy factors were R1/=/0.063 and wR2/=/0.178 for 549 reflections with I///2σ(I). The absolute structure was determined with a Flack parameter of χ/=/−0.1(3).
	Formula C7H8Br2 (M/=/251.95); triclinic, space group P-1; a/=/5.516(1), b/=/11.715(2), c/=/13.551(3) Å,α/=/79.76(1), β/=/80.89(1), γ/=/85.56(1)°, U/=/849.8(3) Å3, Z/=/4; Dcalc/=/1.969 g cm−3, μ(MoKα)/=/94.5 cm−1; 19/282 reflections were collected over the reciprocal sphere (θmax/=/29°) of which 4356 reflections (Rint/=/0.077) were symmetrically non-equivalent. All non-hydrogen atoms were refined anisotropically; the hydrogens were positioned using a riding and rotating geometric model and refined isotropically. The final discrepancy factors were R1/=/0.039 and wR2/=/0.080 for 3051 reflections with I///2σ(I).
	Formula C12H18Br10 (M/=/961.36); monoclinic (regular twin), space group P21/c; a/=/8.7047(4), b/=/17.9315(8), c/=/15.4610(7) Å, β/=/90.078(2)°, U/=/2413.3(2) Å3, Z/=/4;Dcalc/=/2.646 g cm−3, μ(MoKα)/=/166.0 cm−1; 19/084 reflections were collected over the reciprocal sphere (θmax/=/35°) of which 9809 reflections (Rint/=/0.055) were non-equivalent. All non-hydrogen atoms were refined anisotropically; the hydrogens were positioned using a riding and rotating geometric model and refined isotropically. The final discrepancy factors were R1/=/0.071 andwR2/=/0.1568 for 6223 reflections with I///2σ(I).
	Formula C12H18BrF6Sb (M/=/477.92); monoclinic, space groupP21/n; a/=/7.0691(3), b/=/11.0782(5), c/=/19.5085(9) Å, β/=/97.180(1)°, U/=/1515.8(1) Å3, Z/=/4; Dcalc/=/2.094 g cm−3, μ(MoKα)/=/45.1 cm−1; 18705 reflections were collected over the reciprocal sphere (θmax/=/35°) of which 6610 reflections (Rint/=/0.025) were non-equivalent. All non-hydrogen atoms were refined anisotropically; the hydrogens were positioned using a riding and rotating geometric model and refined isotropically. The final discrepancy factors were R1/=/0.025 and wR2/=/0.055 for 5641 reflections withI///2σ(I).
	Equimolar mixtures of bromine (0.1 ml, 2 mmol) and arene [benzene (0.17 ml, 2 mmol) or toluene (0.2 ml, 2 mmol)] were prepared in glass tubes and were kept in the dark at different temperatures during 3 or 6 h (see Tables 2 and 3) in a dry ice–methanol bath. The reaction mixtures were analyzed as described above.
	A medium-pressure mercury lamp (500 W) was used for the photoirradiation. For the isolation of UV light from the medium-pressure mercury lamp in the region of the charge-transfer band of arene/bromine complexes, we used the combination of a colored glass filter UG-5 (Oriel Instruments) and filter solutions consisting of: 1 M solution of CoSO4 in 5% aqueous H2SO4; 2 M solution of NiSO4 and 0.05 M solution of CuSO4 in 5% aqueous H2SO4; and 0.05 M solution of Br2 in CCl4 in quartz cuvettes. This filter combination had a transmittance from 280 nm to 350 nm with a maximum at 320 nm (for the transmittance characteristics, see the ESI).
	An equimolar mixture of bromine (0.1 ml, 2 mmol) and benzene (0.17 ml, 2 mmol) was prepared in a 1 mm quartz cuvette fitted with a Schlenk adapter under an argon atmosphere at room temperature. The cuvette was placed in a Dewar equipped with quartz windows and it was irradiated with UV light from a medium-pressure mercury lamp at either 0/°C (ice–water bath) or at room temperature (see Results) under an argon atmosphere for 6 h. UV light was focused through an aqueous IR filter and the CT-band isolation filter (see above). As the thermal control, the same mixture was placed in glass tube wrapped with aluminum foil and the tube was kept in the same Dewar (to ensure the same time for the photoreaction). After reaction, the mixtures were analyzed as described above.
	Bromine (0.1 ml, 2 mmol) was added to toluene (0.2 ml, 2 mmol) cooled to −78 °C in a 1 mm quartz cuvette fitted with a Schlenk adapter under an argon atmosphere. The mixture was slightly warmed for homogenization and the cuvette was placed in the Dewar with quartz windows (dry ice–methanol bath with temperature −65/°C). The liquid mixture was irradiated with UV light from a medium pressure mercury lamp (see above) at −65/°C under an argon atmosphere for 6 h. The equivalent thermal control was placed in a glass tube wrapped with aluminum foil and the tube was kept in the same Dewar for the same period. After reaction, the mixtures were analyzed as described above.
	The solid complex, as an equimolar mixture of bromine (0.1 ml, 2 mmol) and arene [benzene (0.17 ml, 2 mmol) or toluene (0.2 ml, 2 mmol)], was irradiated at the CT band for 6 h in a 1 mm quartz cuvette under an argon atmosphere with the apparatus described above, in a Dewar with quartz windows at −78/°C (dry ice–methanol bath). The dark thermal control was carried out in a glass tube wrapped with aluminum foil, which was placed in the same Dewar. After reaction, the mixtures were dissolved in chloroform and the products analyzed by standard GC-MS methods. The Quantum Yields of photoreaction products were measured with the aid of a medium-pressure (500 W) mercury lamp. The intensity of the lamp was determined at λ/=/313 nm with a freshly prepared potassium ferrioxalate actinometer solution,53 under the same conditions as used for the photoreactions of bromine/arene complexes (filters, apparatus).
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	Footnote
	† Electronic supplementary information (ESI) available: X-ray crystallographic data for: benzene/bromine charge-transfer complex (Tables S1–S5), toluene/bromine charge-transfer complex (Tables S6–S10), bromohexamethylbenzenium tribromide (σ-complex) as the tris(dibromine) solvate (Tables S11–S15), bromohexamethylbenzenium hexafluoroantimonate (σ-complex) (Tables S16–S20); actual transmittance spectrum of the filter used for the isolation of UV light for the specific irradiation of the charge-transfer band of arene/bromine complexes (Fig. S1); and the detailed structure of the donor/acceptor chains in the crystal structure of the toluene/dibromine charge-transfer complex (Fig. S2). See http://www.rsc.org/suppdata/nj/b1/b110169m/

