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Abstract 

 
Synthesis of a pair of rotamers (9u/9s) of a hexaarylbenzene derivative containing six (cofacially arranged) 
electroactive 2,5-dimethoxytolyl groups is described. The toroidal electronic stabilization due to the circular 
arrangement of aryl groups in 9u/9s leads to the observation of multiple (reversible) oxidation waves and 
lowering of their Eox1 by ∼250 mV relative to model compounds. The binding of K+ to symmetrical 
rotamer 9s was monitored by an electrochemical method and further confirmed by X-ray crystallography. 

 

The hexaphenylbenzene (HPB) core has gained considerable attention due to its usage for the 

preparation of modern graphitic materials1 that hold potential applications in the emerging areas of 

molecular electronics and nanotechnology.2 We3 and others4 have recently proposed that the unique 

propeller-shaped (cofacial) arrangement of the six peripheral aryl groups (such as substituted aniline, 

naphthalene, and tetraphenylethylene) around the central benzene ring in various hexaarylbenzene 

(HAB) derivatives allows a toroidal charge delocalization. To provide unequivocal evidence for the 

toroidal electronic coupling among the six circularly arrayed aryl groups, we needed to synthesize a 

HAB derivative that contains the electroactive aryl groups (such as 2,5-dimethoxytolyls)5 which will 

undergo reversible electrochemical oxidations at ambient temperature. Unfortunately, attempts to 

prepare such a HAB derivative (eq 1) by a Co2(CO)8-catalyzed trimerization of bis(2,5-

dimethoxytolyl)acetylene (1) produced an inseparable mixture of rotamers (2) due to the presence of 

ortho substituents, i.e., eq 1.6 
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We have also recently shown that the problem of formation of the multiple rotamers in eq 1 can be 

overcome if the trimerization reaction is carried out using a bridged diarylacetylene (such as 3) which 

produces only two easily separable rotamers 4u and 4s, i.e., eq 2.7 

 
 

It should also be noted that the symmetrical rotamer 4s (eq 2), which contains six ethereal oxygens on 

one face of the central benzene ring, binds a single potassium cation with remarkable efficiency.7 

It was conjectured that a derivative of 4 which contains electroactive 2,5-dimethoxytolyl groups can be 

accessed using a procedure similar to eq 2. The availability of these HAB derivatives should allow not 
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only the evaluation of the toroidal electronic coupling but also the monitoring of K+ binding via an 

electrochemical method. 

Accordingly, we now report the preparation of these HAB derivatives (Scheme 1) which undergo up to 

six reversible 1-e- oxidations that are spanned in the range of ∼600 mV. Moreover, the binding of K+ to 

the ethereal cavity of the symmetrical rotamer (Scheme 1) is delineated by NMR spectroscopy and X-

ray crystallography and can be reversibly controlled by an electrochemical method as follows. 

 
Scheme 1.  Synthesis of HAB-Based Receptor 9s/9u 

Thus, a reaction of 2 equiv of salicylaldehyde 5 with 1,4-dibromobutane in the presence of NaOH in 

refluxing ethanol afforded dialdehyde 6 in 95% yield. The McMurry coupling under mild dilution 



produced a mixture of cis/trans-stilbenes 7 in ∼85% yield, which were readily converted to the 

corresponding acetylene 8 by a simple bromination and dehydrobromination reaction sequence8in 

∼80% yield, and its structure was confirmed by X-ray crystallography (see Supporting Information). A 

Co2(CO)8-catalyzed trimerization of 8 in refluxing dioxane for 12 h produced a mixture which upon a 

chromatographic separation on silica gel (using hexanes and an ethyl acetate mixture as eluent) 

afforded pure symmetrical isomer 9s and the unsymmetrical isomer 9uin ∼1:3 ratio in 90% yield, based 

on the recovered 8 (conversion ∼40%). The structures of 9s/9uwere readily established by 1H/13C NMR 

spectroscopy and were further confirmed by mass spectrometry (see Supporting Information for the 

experimental details). 

Each of the symmetrical and unsymmetrical HAB donors 9s/9u and a model donor [pentaphenyl(4-

methyl-2,5-dimethoxyphenyl)benzene (10)] was subjected to electrochemical oxidation at a platinum 

electrode as a ∼2.5 × 10-4 M solution in a (97:3) dichloromethane−acetonitrile mixture containing 0.2 

M n-Bu4NPF6 as the supporting electrolyte. The cyclic and square-wave 

voltammograms9a of 9u/9s and 10,9b recorded at a scan rate of 100 mV s-1, were calibrated with 

ferrocene as an internal standard and are displayed in Figure 1. 
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 Figure 1 Cyclic voltammograms of 2.5 × 10-4 M 9u, 9s, and 10 (as indicated) in 97:3 
dichloromethane−acetonitrile at a scan rate of ν = 100 mV s-1 (22 °C). In each figure, the corresponding square 
wave voltammograms are also shown in red. 

 

The cyclic voltammogram of 9u in Figure 1 clearly showed the presence of six well-defined (reversible) 

oxidation waves at a potential of 0.91, 1.05, 1.17, 1.28, 1.39, and 1.47 V vs SCE, whereas the 

symmetrical rotamer 9s showed only four reversible waves at a potential of 0.95, 1.15, 1.34, and 1.45 V 

(and two irreversible waves at 1.72 and 2.01 V vs SCE).10 Such an observation of multiple oxidation 

waves suggests that the removal of the first electron from 9u (or 9s) affects the removal of further 

electrons and thus lends support to the fact that various 2,5-dimethoxytolyl moieties in 9u (or 9s) are 

electronically coupled due to their propeller-shaped (cofacial) arrangement.3,4 As such, the extent of 

electronic coupling among the circularly arrayed aryl moieties in 9u (or 9s) can also be gauged by its 
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significantly lowered oxidation potential, i.e., by 250 mV (or 200 mV) as compared to the model 

donor 10 (Eox = 1.16 V vs SCE).11,12 

Encouraged by the reversibility of the initial electrochemical oxidations of the symmetrical isomer 9s, 

we next examined its binding with the potassium cation as follows. Thus, an exposure of a solution 

of 9s in acetone-d6 (0.02 M) to substoichiometric increments of potassium perfluorotetraphenylborate 

(0.08 M) showed the appearance of a new set of signals in addition to the initial signals due to the 

uncomplexed 9s in the 1H NMR spectra. As shown in Figure S3 in the Supporting Information, the 1H 

NMR signals due to 9s were completely replaced by new signals upon addition of 1 equiv of K+. It is 

noteworthy that the 1H NMR spectrum remained unchanged upon further addition of K+ solution (i.e., 

beyond 1 equiv). Moreover, it is noted that the potassium cation is held tightly in the [9s, K+] complex 

as it does not undergo a facile exchange with the uncomplexed 9s on the NMR time scale (at 22 °C). 

Unfortunately, an accurate binding constant for the formation of [9s, K+] could not be determined by 

the NMR method as it simply showed complete capture of K+ and suggested that the binding constant 

is too large to be measured by NMR spectroscopy.13 

Single crystals of the [9s, K+] -B(C6H5)4 complex were obtained by a slow evaporation of a CH2Cl2−CH3OH 

solution at 22 °C. A molecular structure of the complex with an additional methanol molecule bound to 

K+ was established by X-ray crystallography as shown in Figure 2. The X-ray structure of [9s, K+] shows 

that a single potassium cation nestles deep inside the cavity that is comprised of an (hydrophobic) 

aromatic bottom (i.e., the central benzene ring) with a (hydrophilic) polar ethereal fence formed by six 

oxygens from the peripheral aryl groups. Such a bipolar nature of the cavity in 9s allows a tight van-

der-Waals fit of a single K+ cation with a symmetrical η6-coordination of the K+ to the central benzene 

ring. The distance between the mean plane of the central benzene ring and the K+ is 2.808 Å, a distance 

that is much shorter than the sum of van-der-Waals/ionic radii of carbon and K+ (i.e., 3.22 Å). The close 

K+···Ar coordination is a result of the synergy between the cation−π interaction and the interaction of 

the potassium cation with all six ethereal oxygens (av dK+···O ∼ 2.84 Å) that are prearranged in a manner 

analogous to [18]crown-6. 
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Figure 2 ORTEP diagram showing the structure of [9s, K+] -BPh4 with a single CH3OH molecule complexed to K+. 
The hydrogens are omitted for clarity. 

 

The intimate electronic interactions of the potassium cation with the ethereal oxygens from the 

electronically coupled pheripheral aryl groups in [9s, K+] provided a unique opportunity to monitor the 

binding of K+ using the electrochemical method. Thus, Figure 3 shows the square-wavevoltammograms 

obtained by an incremental addition of an acetonitrile solution of K+ -B(C6H5)4 (25 mM) to a solution 

of 9s in a 97:3 CH2Cl2−CH3CN mixture (0.25 mM), containing 0.1 M tetra-n-butylammonium 

hexafluorophosphate as the supporting electrolyte. 



 
Figure 3 Square-wave voltammograms of 2.5 × 10-4 M 9s in 97:3 dichloromethane−acetonitrile recorded after 
each addition (as indicated) of substoichiometric increments of 2.5 × 10-2 M KB(C6F5)4 solution in MeCN at 22 °C. 

 

Electrochemical titrations of 9s with K+ clearly show that the first oxidation wave (which corresponds 

to the removal of the first electron) shifts to a higher potential by ∼100 mV, whereas the other 

oxidation waves (corresponding to the removal of the second, third, and fourth electron, etc.) remain 

essentially unchanged. Such an observation can be easily reconciled by the fact that one-electron 

oxidation of [9s, K+] to [9s, K+]+ is accompanied by a concurrent ejection of the K+ to avoid Coulombic 

repulsion among the potassium cation and the ethereal oxygens with partial positive charge (see 

Scheme 2).14 
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Scheme 2 

 

Moreover, the observation of the oxidation waves due to both uncomplexed 9s and [9s,K+] in the 

presence of a substoichiometric potassium cation (see blue arrows in Figure 3) suggests that this redox 

system or derivative thereof may serve as an electrochemical sensor for the potassium cation. 

In summary, we have accomplished a simple synthesis of hitherto unknown hexaarylbenzene 

derivatives that contain six (cofacially arranged) electroactive aryl groups. The unsymmetrical 

isomer 9u undergoes six (reversible) 1-e- oxidations which are spanned in the range of ∼600 mV, thus 

attesting to the fact that the circularly arrayed aryl groups are electronically coupled.12 The 

rotamer 9s utilizes the symmetrical juxtaposition of the ethereal oxygens to bind a single K+ as 

established by 1H NMR spectroscopy and X-ray crystallography. Moreover, the binding of K+ to 9scan 

be reversibly controlled by electrochemical oxidation, and thus this system meets the necessary 

criteria for the construction of an electrochemical sensor for the potassium cation.15 We are currently 

exploring the potential applications of these materials as well as the isolation of their cation radical 

salts for the confirmation of toroidal charge delocalization by X-ray crystallography. 
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