

Marquette University e-Publications@Marquette

Chemistry Faculty Research and Publications

Chemistry, Department of

1-1-2009

Terphenyl Crowns: a New Family of Receptors Containing Ethereal Canopies that Direct Potassium Cation onto Benzenoid Platforms for Cation $-\pi$ Interactions

Ruchi Shukla Marquette University

Sergey V. Lindeman Marquette University, sergey.lindeman@marquette.edu

Rajendra Rathore *Marquette University*

Accepted version. *Chemical Communications,* No. 37 (2009): 5600-5602. DOI. © 2009 Royal Society of Chemistry. Used with permission.

Marquette University

e-Publications@Marquette

Chemistry Faculty Research and Publications/College of Arts and Sciences

This paper is NOT THE PUBLISHED VERSION; but the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in th citation below.

Chemical Communications, No. 37 (2009): 5600-5602. <u>DOI</u>. This article is © Royal Society of Chemistry and permission has been granted for this version to appear in <u>e-Publications@Marquette</u>. Royal Society of Chemistry does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Royal Society of Chemistry.

Terphenyl Crowns: a New Family of Receptors Containing Ethereal Canopies that Direct Potassium Cation onto Benzenoid Platforms for Cation–π Interactions

Ruchi Shukla Department of Chemistry, Marquette University, Milwaukee, WI Sergey V. Lindeman Department of Chemistry, Marquette University, Milwaukee, WI Rajendra Rathore Department of Chemistry, Marquette University, Milwaukee, WI

Abstract

We have synthesized three simple and versatile terphenyl crowns (TC) receptors containing ethereal canopies that direct a potassium <u>cation</u> for efficient cation– π interactions as established by <u>¹H NMR</u> <u>spectroscopy</u> and by isolation and <u>X-ray crystallography</u> of their K⁺ salts.

The noncovalent cation– π interaction has been implicated to play an important role as a stabilizing force in both biological as well as chemical assemblies.¹ These interactions have long been recognized in the gas phase and estimated for the <u>benzene–K</u>⁺complex to amount to ~16 kcal mol⁻¹.² However, the importance of cation– π interactions in biological systems is questioned due to the overwhelming need for solvation of the <u>cations</u> *in vivo*.³ We have recently shown that a deliberately built solvation shell (*i.e.* a hydrophilic ethereal fence) around a central <u>benzene ring</u> in a hexaarylbenzene derivative allows an efficient binding of a potassium <u>cation</u> to the (hydrophobic) π -cloud of the benzenoid ring.⁴ Moreover, it was demonstrated that such a polyaromatic system can function as an electrochemical sensor for potassium <u>cation</u>.^{4b}

In order to probe the nature and applicability of such cation– π forces in both chemistry and biology, simple and easily modifiable scaffolds are needed which can be readily tailored for binding of different metal <u>cations</u> as well as hold potential to be eventually incorporated into polymeric backbones for development of new functional extractants⁵ or possibly for the preparation of conducting electrolytes for battery applications.⁶

Herein, we describe the hitherto unknown class of terphenyl crowns (**TC**) (see <u>Scheme 1</u>) which meet the criteria of ready availability, versatility, and possible incorporation into polymeric structures. Our interest in these receptors also stems from the fact that they possess an easily modifiable benzenoid platform as well as hydrophilic ethereal canopies which allow the positioning of the metal <u>cations</u> onto the aromatic platforms.

Scheme 1 A generalized synthetic scheme for *o*,*m*,*p*-terphenyl crowns and their molecular structures obtained by <u>X-ray crystallography</u>.

Accordingly, herein we report the ready preparation of terphenyl crowns (**oo-TC**, **mm-TC** and **pp-TC**) and delineate the effective binding of potassium <u>cation</u> to this new class of receptors with the aid of <u>NMR</u> <u>spectroscopy</u> in solution and by <u>X-ray crystallography</u> in the solid state.

Syntheses of the various receptors shown above were accomplished in excellent yields by a simple threestep route (see <u>Scheme 1</u>). For example, a Suzuki coupling of <u>2-methoxyphenylboronic acid</u> with <u>1,2-</u> <u>diiodobenzene</u> followed by <u>demethylation</u> using BBr₃ afforded the bis-phenol **oo-2** in nearly quantitative yield. A solution of the bis-phenol **oo-2** in <u>tetrahydrofuran</u> was treated with <u>potassium hydride</u> followed by <u>tetraethyleneglycol ditosylate</u>, and the resulting mixture was refluxed for 16 h. A standard aqueous workup and chromatographic <u>purification</u> on <u>alumina</u> (using hexanes and <u>ethyl acetate</u> mixture as <u>eluent</u>) afforded pure *ortho*-terphenyl crown (**oo-TC**) in >75% yield.

Using a similar approach, **mm-TC** and **pp-TC** were obtained in 70 and 74% yields, respectively. The molecular structures of various terphenyl crowns in <u>Scheme 1</u> were established by ¹H/¹³C <u>NMR</u> <u>spectroscopy</u> and were further confirmed by X-ray crystallography[±] (see <u>Scheme 1</u> and ESI[±] for experimental details).

The binding of potassium <u>cation</u> to the *para*-terphenyl crown (*p***p-TC**) was initially monitored by the changes in <u>¹H NMR spectrum</u> of *p***p-TC** in <u>acetone-</u> d_{s} (0.02 M) by an incremental addition of a solution of <u>potassium perfluorotetraphenylborate</u>(0.08 M) in <u>acetone-</u> d_{s} (*i.e.*Fig. <u>1</u>).

Fig. 1 Partial ¹<u>H NMR spectra</u> obtained upon the incremental addition of $KB(C_6F_5)_4$ to *pp***-TC** in <u>acetone-</u> d_6 at 22 °C. The assignments of the aromatic signals in *pp***-TC** are shown by letters a–e; signal "a" was chosen arbitrarily for tracking of the K⁺binding.

The incremental addition of K⁺ solution led to considerable shifts of both aliphatic and aromatic signals up to the addition of 1 equiv. of K⁺ as shown in <u>Fig. 1</u>. It is noteworthy that the ¹H NMR spectrum remained unchanged upon further addition of K⁺solution (*i.e.* beyond 1 equivalent; see <u>Fig. 1</u>, inset).

Unfortunately, an accurate binding constant for the formation of [**pp-TC**, K⁺] could not be determined by <u>NMR</u> as it simply showed complete capture of the potassium <u>cation</u> and suggested that the binding constant is too large to be measured by <u>NMR spectroscopy</u>. Moreover, both *ortho-* and *meta-*derivatives (*mm-TC* and *pp-TC*) showed a similarly efficient capture of 1 equiv. of potassium <u>cation</u> by <u>¹H NMR</u> spectral titrations with K⁺B(C₆F₅)₄- in <u>acetone-d₅</u> (see Fig. S1 and S2 in ESI<u>+</u>). A comparison of the relative binding of K⁺ amongst the three terphenyl crown derivatives in <u>Scheme 1</u> by competition experiments (using <u>¹H NMR</u> <u>spectroscopy</u>) revealed that the binding efficiency of K⁺ decreases in the order of *oo-TC* > *pp-TC* > *mm-TC*.

In order to ascertain that the efficiency of the binding of K⁺ to various terphenyl-based receptors, in part, arises owing to the placement of K⁺ onto the benzenoid platform by ethereal canopies, we obtained single crystals of [**oo-TC**, K⁺]⁻BPh₄ and [**pp-TC**, K⁺]⁻BPh₄ from mixtures of <u>acetonitrile</u>–CH₂Cl₂ and <u>acetonitrile</u>–THF, respectively, at 22 °C. Single crystals of [**mm-TC**, K⁺], suitable for <u>X-ray crystallography</u>, were obtained only when hexafluoroarsenate (AsF₆⁻) was used as the counter anion. The molecular structures of these complexes obtained by <u>X-ray crystallography</u> are displayed in Fig. 2–4.§

Fig. 2 The ORTEP and space-filling representations of [*oo-TC*, K⁺]⁻BPh₄ showing that the ethereal canopy holds the K⁺ onto the central aromatic ring while a single opening is protected by a <u>phenyl group</u> of the ⁻BPh₄ counter anion *via* cation– π interaction.^{®DC} The hydrogens are omitted for the sake of clarity.

[p-TC, K+] Ph4B-

Fig. 3 The ORTEP and space-filling representations of [**pp-TC**, K⁺] showing that the ethereal canopy holds the K⁺ onto the central aromatic ring while the two apical openings in the complex are plugged-in by <u>solvent</u> molecules. The hydrogens are omitted for the sake of clarity.

Fig. 4 The ORTEP and space-filling representations of [*mm*-**TC**, K^+]⁻AsF₆ showing that the ethereal canopies hold the K⁺ onto the central aromatic ring while the two apical openings in *mm*-**TC** complex are filled in by a molecule of <u>water</u> and counter anion. The hydrogens are omitted for the sake of clarity.

The X-ray structure of [**oo-TC**, K⁺]-BPh₄ revealed that a single potassium <u>cation</u> is situated asymmetrically onto the central <u>benzene ring</u> with a distance from the mean plane of the <u>benzene ring</u> of 2.958 Å while coordinating to all five ethereal oxygens of the **oo-TC** <u>crown</u> with the K⁺···O distances varying in the range of 2.69–3.04 Å.² The asymmetric (η^3) coordination of K⁺ to the central <u>benzene ring</u> is not surprising, considering the asymmetric shape of the receptor in which two *ortho*-phenyl groups are twisted in the same direction (~75°) relative to the central <u>benzene ring</u> and thereby shifting the main axis of the <u>crown</u>-ether moiety together with the complexed K⁺ away from the center of the <u>benzene ring</u>. The asymmetric placement of K⁺ onto the central <u>benzene ring</u> is also gauged by the K⁺···C_{Ar} distances which vary from 3.157(1) to 3.422(2) Å.⁵⁶ Furthermore, one of the phenyls of the BPh₄ counter anion makes a short contact [3.317(1) Å] with the K⁺ through the limited opening between the <u>crown ether</u> canopy and central <u>benzene ring</u>, see <u>Fig. 2</u> (and Fig. S3 in ESI<u>+</u>).⁵⁶

In contrast, the potassium <u>cation</u> in [*pp*-**TC**, K⁺]⁻BPh₄ is almost ideally placed onto the central <u>benzene</u> ring for an effective η^6 coordination at a distance of 3.163 Å from the mean plane of the <u>benzene ring</u> with the K⁺···C_{Ar} distances varying from 3.38 to 3.56 Å. The crown ether moiety in the [*pp*-**TC**, K⁺] complex makes a rigid arc over the central <u>benzene ring</u>, as opposed to the flexible cleft in *oo*-**TC**, with the K⁺···O distances varying from 2.78 to 3.31 Å. The K⁺ is situated approximately in the mean plane of five ethereal oxygens which makes a ~90° dihedral angle with the plane of the <u>benzene ring</u> and the bridging *p*-phenyls are twisted by 56 and 60° in the same direction relative to the plane of the central <u>benzene ring</u>. It is also noted that the [*pp*-**TC**, K⁺]-BPh₄ complex is a <u>solvent</u>-separated ion pair in the solid where the two apical openings in [*pp*-**TC**, K⁺] are coordinated (surprisingly) to two different <u>solvent</u> molecules, *i.e.*tetrahydrofuran and acetonitrile§ (see Fig. 2).

The X-ray structure of [*mm*-TC, K⁺]⁻AsF₆ complex showed that K⁺ is coordinated by all five oxygens of the <u>crown-ether</u>canopy with the K⁺···O distances varying in the range of 2.74–3.14 Å. The potassium <u>cation</u> sits asymmetrically onto the central <u>benzene ring</u> with ideal η² coordination with the shortest K⁺···C distances of 3.239 and 3.238 Å to the central <u>benzene ring</u> (see <u>Fig. 4</u>). The K⁺···C distances to other four carbons of the central <u>benzene ring</u> vary from 3.298 to 3.346 Å. Furthermore, the nucleophilic ⁻AsF₆ and a <u>water</u> molecule also make short F····K⁺ (2.704 Å) and O····K⁺ (2.637 Å) contacts *via* the two apical openings in the [*mm*-TC, K⁺]⁻AsF₆ complex.⁹

The X-ray crystallographic analyses of the K⁺ complexes in <u>Fig. 2–4</u> shows that going from **oo-TC** to **mm-TC** to **pp-TC** complex leads to a progressive stretching of the ethereal canopies. As such the stretching of the ethereal canopies affects the K⁺···Ar coordination which varies from asymmetric to symmetric coordination going from **oo-TC** to **mm-TC** to **pp-TC**. Furthermore the structural analysis provides important clues as to the potential of the terphenyl crowns for the development of a whole new family of <u>crown</u> receptors for practical applications. For example, incorporation of electro/photo-active groups either at the site of single opening in the [**oo-TC**, K⁺] complex or at the site of a pair of apical openings in [**mm-TC**, K⁺] and [**pp-TC**, K⁺] complexes should lead to the next-generation of sensing scaffolds for various metal ions using electrochemical/optical techniques.

In summary, we have designed and synthesized simple terphenyl-based receptors containing (polar) ethereal canopies that direct a potassium <u>cation</u> to the central <u>benzene ring</u> for cation— π interaction—a phenomenon that is well established in the gas phase² and is known to play an important role in the stabilization of tertiary structures of various <u>proteins</u>.²⁰

We are actively exploring the potential of this new family of <u>crowns</u> for the preparation of functional devices for potential applications in emerging areas ranging from molecular electronics and nanotechnology¹¹ to solar energy storage.¹²

We thank the National Science Foundation for financial support.

Notes and references

- (a) G. W. Gokel, W. M. Leevy and M. E. Weber, *Chem. Rev.*, 2004, **104**, 2723 ; (b) *Comprehensive Supramolecular Chemistry*, ed. J.-M. Lehn, J. L. Atwood, J. E. D. Davies, D. D. MacNicol and F. Vögtle, Pergamon, Oxford, 1996 ; (c) *Supramolecular Chemistry*, ed. J. W. Steed and J. L. Atwood, Wiley, New York, 2000, vol. 9 ; (d) A. Joy, L. S. Kaanumalle and V. Ramamurthy, *Org. Biomol. Chem.*, 2005, **3**, 3045 , and references cited therein.
- 2. B. C. Guo, J. W. Purnell and A. W. Castlman, Jr, *Chem. Phys. Lett.*, 1990, **168**, 155, and references cited therein.
- 3. (*a*) J. C. Ma and D. A. Dougherty, *Chem. Rev.*, 1997, **97**, 1303 ; (*b*) G. W. Gokel, S. L. De Wall and E. S. Meadows, *Eur. J. Org. Chem.*, 2000, 2967 , and references cited therein.
- 4. (*a*) R. Shukla, S. V. Lindeman and R. Rathore, *J. Am. Chem. Soc.*, 2006, **128**, 5328 ; (*b*) R. Shukla, S. V. Lindeman and R. Rathore, *Org. Lett.*, 2007, **9**, 1291 .
- 5. A. Aydogan, D. J. Coady, S. K. Kim, A. Akar, C. W. Bielawski, M. Marquez and J. L. Sessler, *Angew. Chem., Int. Ed.*, 2008, **47**, 9648, and references cited therein.
- 6. P. G. Bruce, Dalton Trans., 2006, 1365, and references cited therein.
- 7. According to the Cambridge Structural Database, the K⁺···O distances in various potassium/crown complexes have a median value of ~2.85 Å.
- Note that the closest K⁺···C_{Ar} distance of 3.156 Å in [*oo*-TC, K⁺] complex is much shorter than the K⁺···C_{Ar} distance of 3.38 Å in a K⁺/<u>toluene</u> complex, see: (*a*) B. T. King, B. C. Noll and J. Michl, *Collect. Czech. Chem. Commun.*, 1999, **64**, 1001 ; (*b*) G. W. Gokel, L. J. Barbour, R. Ferdani and J. Hu, *Acc. Chem. Res.*, 2002, **35**, 878 ; (*c*) Q. Q. Munro and N. Pearson, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 2003, **59**, m407 .
- 9. The X-ray structure analysis of the [*mm*-TC, K⁺]AsF₆⁻ complex showed that there were two symmetrically independent molecules with one of them containing a coordinated water molecule with only 32% population. The inclusion of a coordinated water molecule in the cleft between the ethereal arc and aromatic ring does not change the K⁺ coordination to aromatic ring but does alter the cleft angle slightly, *i.e.* a 58° opening in the non-aqueous complex *vs.* 67° in the aqueous one, suggesting a significant stability of the η²-coordination of the K⁺ similar to that found for various Ag⁺ analogs.

- 10. (*a*) S. K. Burley and G. A. Petsko, *FEBS Lett.*, 1986, **203**, 139 ; (*b*) Y. Sakurai, T. Mizuno, H. Hiroaki, K. Gohda, J. Oku and T. Tanaka, *Angew. Chem., Int. Ed.*, 2005, **44**, 6180 , and references cited therein.
- 11. Introduction to Molecular Electronics, ed. M. C. Petty, M. R. Bryce and D. Bloor, Oxford Univ. Press, New York, 1995.
- 12. F. D'Souza, R. Chitta, S. Gadde, M. E. Zandler, A. L. McCarty, A. S. D. Sandanayaka, Y. Araki and O. Ito, *Chem.– Eur. J.*, 2005, **11**, 4416, and <u>ref. 6</u>.

Footnotes

⁺ Electronic supplementary information (ESI) available: Synthetic details of various compounds and <u>NMR spectra</u>. CCDC 738411–738416. For ESI and <u>crystallographic data</u> in CIF or other electronic format see DOI: <u>10.1039/b912796h</u>

 \pm Crystal structure data for pp-TC [C₂₆H₂₈O₅] (raj1v): M = 420.48, monoclinic, P_{2_1}/n , a = 13.048(5), b = 9.487(3), c = 17.671(6) Å, $\theta = 17.671(6)$ Å, $\theta = 17.67$ 97.031(5)°, Z = 4, V = 2170.9(13) Å³, D_c = 1.287 Mg m⁻³, T = 100 K, 24585 reflections measured, 6832 unique reflections, R_{int} = 0.0463, 281 parameters refined, R(all) = 0.1310, wR(all) = 0.2779, S = 1.067. Crystal structure data formm-TC [$C_{26}H_{28}O_5$] (raj4b): M = 420.48, triclinic, P_1 , a = 8.8435(5), b = 19.9062(10), c = 26.7874(14) Å, a = 111.253(2), b = 98.337(2), $\gamma = 93.101(2)^\circ$, Z = 8, V = 4319.3(4) Å³, $D_c = 1.293$ Mg m⁻³, T = 100 K, 35 410 reflections measured, 12 685 unique reflections, $R_{int} = 0.0247$, 1119 parameters refined, R(all) = 0.0417, wR(all) = 0.0417, wR(all0.1105, S = 1.044. Crystal structure dataforoo-TC [C₂₆H₂₈O₅] (raj4d): M = 420.48, triclinic, P1, a = 9.2824(2), b = 10.4418(2), c = 11.6456(2) Å,α = 90.9020(10), β = 98.7730(10), γ = 102.9340(10)°, Z = 2, V = 1085.78(4) ų, Dc = 1.286 Mg m-³, T = 100 K, 8959 reflections measured, 3184 unique reflections, Rm = 0.0164, 393 parameters refined, R(all) = 0.0281, wR(all) = 0.0684, S = 0.992. Crystal structure data for [pp-TC, K^+]-BPh₄ [C₂₆H₂₈O₅·KBPh₄·THF·CH₃CN] (raj3ya): M = 891.95, triclinic, P¹/₂, a = 10.7324(2), b = 113.8365(3), c = 17.2011(4) Å, α = 10.7324(2), b = 113.8365(3), c = 17.2011(4) Å 77.8290(10), $\beta = 89.3530(10)$, $\nu = 77.0660(10)^\circ$, Z = 2, V = 2431.85(9) Å³, $D_c = 1.218$ Ma m⁻³, T = 100 K. 20552 reflections measured, 7178 unique reflections, R_{int} = 0.0141, 843 parameters refined, R(all) = 0.0319, wR(all) = 0.0869, S = 1.016. Crystal structure datafor [mm-TC, K*]-AsF₆ [$C_{26}H_{28}O_5$ ·KAsF₆·xH₂O] (raj9qa): M = 651.10, triclinic, P¹, a = 10.0564(3), b = 15.2834(4), c = 18.9578(5) Å, α = 103.571(1), b = 15.2834(4), c = 18.9578(5) Å, α = 103.571(1), b = 15.2834(4), c = 18.9578(5) Å, α = 103.571(1), b = 15.2834(4), c = 18.9578(5) Å, α = 103.571(1), b = 15.2834(4), c = 18.9578(5) Å, α = 103.571(1), b = 15.2834(4), c = 18.9578(5) Å, α = 103.571(1), b = 15.2834(4), c = 18.9578(5) Å, α = 103.571(1), b = 15.2834(4), c = 18.9578(5) Å, α = 103.571(1), b = 15.2834(4), c = 18.9578(5) Å 103.485(2), γ = 91.093(1)°, Z = 4, V = 2745.89(13) Å³, D_c = 1.575 Mg m⁻³, T = 100 K, 8874 reflections measured, 6702 unique reflections, R_{int} = 0.0164, 393 parameters refined, R(all) = 0.0589, wR(all) = 0.1603, S = 1.039. Crystal structure data for [oo-TC, K+]-BPh4 [C26H28O5-KBPh4] $(raj3sa): M = 778.79, monoclinic, P2_1/c, a = 13.1774(5), b = 15.6866(6), c = 19.6322(7) Å, b = 94.300(2)^{\circ}, Z = 4, V = 4046.7(3) Å^{3}, D_{c} = 1.278$ Mg m⁻³, T = 100 K, 25942 reflections measured, 6139 unique reflections, R_{int} = 0.0180, 716 parameters refined, R(all) = 0.0284, wR(all) = 0.0774, S = 1.009.

§ For a discussion of the bent K+---NC-Me interaction in the [pp-TC, K+] complex, see Fig. S4 and S5 in the ESI.