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Abstract 
The isolation and X-ray crystal structure determination of octamethoxydibenzochrysene (3) cation 
radical together with DFT calculations allow us to delineate evidence that the complex structural 
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changes (i.e. elongation and shortening of various bonds) in a polyaromatic hydrocarbon can be 
predicted based on the positioning of the largest bonding and antibonding character of the HOMO. 
 
The study of polyaromatic hydrocarbons has attracted considerable attention since these molecules 
hold potential to serve as building blocks for the preparation of functional electronic and 
optoelectronic devices.1 Of these, dibenzochrysene, a twisted polyaromatic hydrocarbon, and its 
derivatives have been explored by Swager and coworkers2 and others3 for the preparation of sensors, 
non-linear optical and liquid-crystalline materials, etc. The aromaticity and structure of parent 
dibenzochrysene and its dication (formed by 2-electron oxidation) has been probed both 
theoretically4 and experimentally,5 however, structural information is completely lacking. 

Our continuing interest in the design and syntheses of stable organic cation radicals, or hole 
carriers, which are of fundamental importance to organic materials science,6 prompted the synthesis 
of octamethoxydibenzochrysene (3), and isolation and X-ray crystallographic characterization of its 
cation-radical salt. The availability of the X-ray structural data on the first cationic dibenzochrysene 
allows us to provide definitive evidence as to how a hole (formed by 1e− oxidation) induces complex 
bond length changes in a polyaromatic hydrocarbon as well as a verification of the experimentally 
observed structural changes by DFT calculations. The details of these preliminary findings are 
described herein. 

The octamethoxydibenzochrysene (3) was obtained by an oxidative cyclodehydrogenation of 
tetrakis(3,4-dimethoxyphenyl)ethylene (2) using FeCl3 as an oxidant in a mixture 
of dichloromethane and nitromethane in 60% isolated yield. The tetraveratrylethylene (2), in turn, 
was prepared from McMurry coupling of the corresponding tetramethoxybenzophenone7 (1) in 92% 
yield (see Scheme 1). The structure of 3 was established by 1H/13C NMR spectroscopy and further 
confirmed by X-ray crystallography (see Scheme 1 and ESI for the experimental details† ). 
 

 

 
Scheme 1 Synthesis of octamethoxydibenzochrysene (3) and its ORTEP diagrams with twisted 
structure (thermal ellipsoids: 50% probability). 
 

 

The electron donor strength of octamethoxydibenzochrysene (3) was evaluated by 
electrochemical oxidation at a platinum electrode as a 2 × 10−3 M solution 
in dichloromethane containing 0.2 M n-Bu4NPF6 as the supporting electrolyte. The cyclic 
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voltammograms of 3, if terminated before the start of the third oxidation event, showed two 
reversible oxidation waves (Fig. 1A), which consistently met the reversibility criteria at various scan 
rates of 25–500 mV s−1, as they all showed cathodic/anodic peak current ratios of ia/ic = 1.0 
(theoretical) as well as the differences between anodic and cathodic peak potentials of Epa − Epc ≈ 70 
mV at 22 °C (Fig. 1B). The reversible oxidation potentials of 3 were calibrated with ferrocene as 
internal standard (Eox = 0.45 V vs. SCE) and were found to be 0.91 and 1.27 V vs. SCE corresponding 
to the formation of monocation and dication, respectively. It is noted that the third oxidation wave 
in the cyclic voltammogram of 3 displays a quasi-reversible oxidation wave (Eox3 = 1.69 V) which, in 
turn, distorts the other waves corresponding to the first and second oxidation events (see Fig. 1A). 
 

 

 
Fig. 1 (A) Cyclic voltammograms of 2 × 10−3 M 3 in CH2Cl2 containing 0.2 M n-Bu4NPF6 at a  
scan rate of 200 mV s−1 and (B) cyclic voltammograms of 3 at scan rates of 25–500 mV s−1 at 
22 °C. 

 

 
The electrochemical reversibility of 3 and its relatively low oxidation potential permits its ready 

oxidation to the corresponding cation radical using either a hydroquinoneethercation 
radical (CRET+˙ SbCl6−; Ered = 1.11 V vs. SCE)8 or magic blue (MB+˙ SbCl6−; Ered = 1.15 V vs. SCE)9 as 
oxidants. 

Thus, Fig. 2A shows the spectral changes attendant upon the reduction of blue MB+˙ (λmax = 728 
nm, log ε728 = 4.45) by incremental additions of sub-stoichiometric amounts 
of 3 in dichloromethane at 22 °C. The presence of multiple isosbestic points at λ = 355, 387, 564, and 
783 nm (see Fig. 2A) indicates a simple electron transfer from 3 to MB+˙ without decomposition 
of 3+˙. Furthermore, a plot of formation of 3+˙ (i.e. an increase in the absorbance at 890 nm against 
the increments of added 3, Fig. 2B) established that MB+˙ was completely consumed after the 
addition of 1 equiv. of 3; and the resulting highly structured absorption spectrum of the 3+˙ [with 
intense absorption bands at λmax = 890 (log ε890 = 4.37), 513, 458, and 394 nm and relatively weak 
bands at λmax = 636 (log ε634 = 3.67) and 784 nm] remained unchanged upon further addition of 
neutral 3, i.e., eqn (1). 
  
3 + MB+˙ → 3+˙ + MB  
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It is noted that although an identical spectrum of 3+˙ was obtained when CRET+˙ was treated with an 
equimolar amount of 3, a clean spectral titration plot with isosbestic point could not be obtained 
owing to an overwhelming overlap of the absorption band of CRET+˙ at 518 nm with that of 3+˙ (see 
ESI† ). It is further noted that the intensely colored solution of 3+˙, obtained according to eqn (1) or 
using CRET+˙, was stable at ambient temperature and did not show any decomposition during a 48 h 
period at 22 °C, as confirmed by UV-Vis spectroscopy. Moreover, a reduction of 3+˙ with zinc dust 
regenerated the neutral 3 quantitatively as confirmed by 1H NMR spectroscopy. 
 

 

 
Fig. 2 (A) The spectral changes observed upon the reduction of 3.6 × 10−5 M MB+˙ by an 
incremental addition of substoichiometric amounts of 3 in CH2Cl2 at 22 °C. (B) A plot of 
depletion of absorbance of MB+˙ (blue triangles, at 728 nm) and an increase of the 
absorbance of 3˙+ (red circles, at 890 nm) against the equivalents of added neutral 3. 

 

 
The high stability of 3+˙ SbCl6− in solution prompted us to attempt the isolation of its crystalline salt 

as follows. For example, an excellent crop of dark-colored crystals, suitable for X-ray crystallographic 
studies, were obtained by a slow diffusion of toluene in a dichloromethane solution of 3+˙ SbCl6−, 
obtained using a 1 : 1 mixture of 3 and CRET+˙ SbCl6−, during a period of 24 h at ∼0 °C. 

The crystal structure of 3˙+ SbCl6− revealed that cationic dibenzochrysene moieties form infinite 
stacks along the z axis with non-equivalent interplanar separations of 3.31 and 3.44 Å. The robust π–
π stacking arrangements amongst the molecules of the cationic 3 leads to a clathrate structure with 
large channels that are filled with SbCl6− counter anions and multiple dichloromethane molecules 
(see Fig. 3A/B). In contrast, the packing in the crystal structure of neutral 3 is dominated not by π–π 
but by CH⋯π interactions amongst the methoxy groups and the electron-rich aromatic rings of the 
neighboring molecules. The resulting honeycomb-like layers, formed perpendicular to the 
crystallographic x-axis, are interspaced by disordered dichloromethane molecules (see Fig. 3D); and 
the layers are separated by copious amounts of acetonitrile molecules (see Fig. 3C).‡ 
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Fig. 3 (A) The packing diagram of 3˙+ SbCl6− showing that the channels formed by 
stacked 3˙+ are filled with SbCl6− and CH2Cl2molecules. (B) Space filling representation of the 
packing diagram of 3˙+ SbCl6− where one of the channels is shown without SbCl6− and 
CH2Cl2 molecules. (C) The packing diagram of neutral 3 showing the layered structure where 
the layers are separated by acetonitrile molecules. (D) The arrangement of 3 with embedded 
CH2Cl2 molecules within a single layer of neutral 3. 

 

 
An inspection of the bond length changes in the cation radical3+˙, together with a comparison of 

its neutral form, points to the following salient features. (i) Neutral 3 has a crystallographic 2-fold 
symmetry and its planarity is substantially distorted by twisting around the central C C bond 
(denoted as A, see Table 1) by 25.8° and around the central bonds of “biphenyl” fragments (denoted 
by I) by 11.4°. One electron oxidation of 3 results only in a minor amplification of the distortions as 
judged by the slightly increased twist angles of 29.1 and 11.9° for bonds A and I, respectively. (ii) As 
in various other aryl-methyl ether cation radicals,10 O–C(ar) bonds (denoted as J and L) in 3+˙ exhibit 
shortening by ∼1.3 pm due to an increased p–π dative interaction. (iii) Although the rearrangement 
of the lengths of various bonds (i.e. elongation and shortening) in the polyaromatic moiety in 3+˙ has 
a complex character (see Table 1), the changes clearly correspond to the predominant contributions 
from the resonance structures I/II, as judged by the significant lengthening of bonds A, C, F, I, 
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and M and shortening of bonds B, G, J, and L and only a minor contribution from the resonance 
structures III/IV (see below). 

    
Table 1 Experimental and theoretical bond lengths of the neutral and cation radical of 3 presented in 
picometres (pm). Numbering scheme for the skeleton of 3 and its HOMO, obtained by DFT 
calculations at B3LYP/6-31G* level  

    
  B3LYP/6-31G* X-Ray data 

Bonda 3 3+˙ Δ 3 3+˙ Δ 
a Average of equivalent bonds. 

A 140.3 144.0 +3.7 141.4 143.0 +1.6                                                        

B 145.8 144.1 −1.7 145.5 143.9 −1.4                                                        

C 142.2 142.4 +0.2 141.5 142.3 +0.8                                                        

D 138.1 138.0 −0.1 136.9 136.9 0.0                                                        

E 142.4 143.0 +0.6 141.9 142.5 +0.6                                                        

F 138.1 139.3 +1.2 137.8 138.2 +0.4                                                        

G 141.7 140.4 −1.3 142.0 140.1 −1.9                                                        

H 141.7 142.2 +0.5 141.6 141.6 0.0                                                        

I 145.2 146.3 +1.1 145.3 146.5 +1.2                                                        

J 136.3 135.1 −1.2 137.0 135.8 −1.2                                                        

K 141.6 142.3 +0.7 143.3 143.2 −0.1                                                        

L 136.2 134.1 −2.1 136.3 134.9 −1.4                                                        

M 141.6 142.7 +1.1 142.9 144.2 +1.3                                                        

σ — — — 0.5 0.4 —                                                        

 
 
 

The experimental observations of the bond length changes in 3+˙ were found to be in reasonable 
agreement with the calculated values using DFT calculations at the B3LYP/6-31G* level (see Table 1). 
Furthermore, the experimentally observed elongation and shortening of the bonds in 3+˙ tracked 
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remarkably well with the positioning of the largest bonding and antibonding character of HOMO 
in 3 (see Table 1). 

In summary, octamethoxydibenzochrysene (3) is easily accessed from readily available starting 
materials and it undergoes reversible electrochemical oxidation and forms a highly robust cation-
radical salt. The X-ray crystal structure determination of 3+˙SbCl6− as well as neutral 3 together with 
DFT calculations provides unequivocal evidence that an introduction of a cationic charge (or polaron) 
in polyaromatic hydrocarbon3 leads to a complex elongation and shortening of the various bonds. 
The observed bond length changes in 3+˙ can be readily reconciled by the positioning of the largest 
bonding and antibonding character of the HOMO in neutral 3. The close packing of the molecules of 
the cationic 3 in the crystals produces large channels akin to those found in zeolites and may allow 
the preparation of potentially useful conducting materials by utilizing electro-active counter anions.11 

We thank the National Science Foundation (CAREER Award) for financial support. 
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Footnotes 
† Electronic supplementary information (ESI) available: Synthetic details of 3 and procedure for the 
isolation of its cation radical. CCDC 720096–720097. For ESI and crystallographic data in CIF or other 
electronic format see DOI: 10.1039/b903133b 
‡ Crystal structure data for3 [C34H32O8·CH2Cl2·(CH3CN)4] (raj2z): FW = 817.74, monoclinic, C2/c, a = 
31.6750(8) Å, b = 7.3983(2) Å, c = 18.0078(4) Å, β = 106.7180(10)°, Z = 4, V = 4041.60(17) Å3, D = 1.344 
Mg m−3, T = 100 K, 6231 reflections measured, 3114 unique reflections, Rint = 0.0174, 342 parameters 
refined,R(all) = 0.0944, wR(all) = 0.2397, S = 1.066 (CCDC 720097). Crystal structure data 
for3˙+ SbCl6−[C34H32O8SbCl6·(CH2Cl2)2] (raj3d): FW = 1072.90, triclinic, P , a = 13.6451(5) Å, b = 14.0770(5) 
Å, c = 14.3621(5) Å, α = 61.672(2)°, β = 62.275(2)°, γ = 70.899(2)°, Z = 2, V = 2129.39(13) Å3, d = 1.673 
Mg m`3, T = 100 K, 16984 reflections measured, 6159 unique reflections, Rint = 0.0343, 644 parameters 
refined, R(all) = 0.0307, wR(all) = 0.0.0728, S = 1.039 (CCDC 720096). 
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	Abstract
	The isolation and X-ray crystal structure determination of octamethoxydibenzochrysene (3) cation radical together with DFT calculations allow us to delineate evidence that the complex structural changes (i.e. elongation and shortening of various bonds) in a polyaromatic hydrocarbon can be predicted based on the positioning of the largest bonding and antibonding character of the HOMO.
	(1)
	The study of polyaromatic hydrocarbons has attracted considerable attention since these molecules hold potential to serve as building blocks for the preparation of functional electronic and optoelectronic devices.1 Of these, dibenzochrysene, a twisted polyaromatic hydrocarbon, and its derivatives have been explored by Swager and coworkers2 and others3 for the preparation of sensors, non-linear optical and liquid-crystalline materials, etc. The aromaticity and structure of parent dibenzochrysene and its dication (formed by 2-electron oxidation) has been probed both theoretically4 and experimentally,5 however, structural information is completely lacking.
	Our continuing interest in the design and syntheses of stable organic cation radicals, or hole carriers, which are of fundamental importance to organic materials science,6 prompted the synthesis of octamethoxydibenzochrysene (3), and isolation and X-ray crystallographic characterization of its cation-radical salt. The availability of the X-ray structural data on the first cationic dibenzochrysene allows us to provide definitive evidence as to how a hole (formed by 1e− oxidation) induces complex bond length changes in a polyaromatic hydrocarbon as well as a verification of the experimentally observed structural changes by DFT calculations. The details of these preliminary findings are described herein.
	The octamethoxydibenzochrysene (3) was obtained by an oxidative cyclodehydrogenation of tetrakis(3,4-dimethoxyphenyl)ethylene (2) using FeCl3 as an oxidant in a mixture of dichloromethane and nitromethane in 60% isolated yield. The tetraveratrylethylene (2), in turn, was prepared from McMurry coupling of the corresponding tetramethoxybenzophenone7 (1) in 92% yield (see Scheme 1). The structure of 3 was established by 1H/13C NMR spectroscopy and further confirmed by X-ray crystallography (see Scheme 1 and ESI for the experimental details† ).
	Scheme 1 Synthesis of octamethoxydibenzochrysene (3) and its ORTEP diagrams with twisted structure (thermal ellipsoids: 50% probability).
	The electron donor strength of octamethoxydibenzochrysene (3) was evaluated by electrochemical oxidation at a platinum electrode as a 2 × 10−3 M solution in dichloromethane containing 0.2 M n-Bu4NPF6 as the supporting electrolyte. The cyclic voltammograms of 3, if terminated before the start of the third oxidation event, showed two reversible oxidation waves (Fig. 1A), which consistently met the reversibility criteria at various scan rates of 25–500 mV s−1, as they all showed cathodic/anodic peak current ratios of ia/ic = 1.0 (theoretical) as well as the differences between anodic and cathodic peak potentials of Epa − Epc ≈ 70 mV at 22 °C (Fig. 1B). The reversible oxidation potentials of 3 were calibrated with ferrocene as internal standard (Eox = 0.45 V vs. SCE) and were found to be 0.91 and 1.27 V vs. SCE corresponding to the formation of monocation and dication, respectively. It is noted that the third oxidation wave in the cyclic voltammogram of 3 displays a quasi-reversible oxidation wave (Eox3 = 1.69 V) which, in turn, distorts the other waves corresponding to the first and second oxidation events (see Fig. 1A).
	Fig. 1 (A) Cyclic voltammograms of 2 × 10−3 M 3 in CH2Cl2 containing 0.2 M n-Bu4NPF6 at a 
	scan rate of 200 mV s−1 and (B) cyclic voltammograms of 3 at scan rates of 25–500 mV s−1 at 22 °C.
	The electrochemical reversibility of 3 and its relatively low oxidation potential permits its ready oxidation to the corresponding cation radical using either a hydroquinoneethercation radical (CRET+˙ SbCl6−; Ered = 1.11 V vs. SCE)8 or magic blue (MB+˙ SbCl6−; Ered = 1.15 V vs. SCE)9 as oxidants.
	Thus, Fig. 2A shows the spectral changes attendant upon the reduction of blue MB+˙ (λmax = 728 nm, log ε728 = 4.45) by incremental additions of sub-stoichiometric amounts of 3 in dichloromethane at 22 °C. The presence of multiple isosbestic points at λ = 355, 387, 564, and 783 nm (see Fig. 2A) indicates a simple electron transfer from 3 to MB+˙ without decomposition of 3+˙. Furthermore, a plot of formation of 3+˙ (i.e. an increase in the absorbance at 890 nm against the increments of added 3, Fig. 2B) established that MB+˙ was completely consumed after the addition of 1 equiv. of 3; and the resulting highly structured absorption spectrum of the 3+˙ [with intense absorption bands at λmax = 890 (log ε890 = 4.37), 513, 458, and 394 nm and relatively weak bands at λmax = 636 (log ε634 = 3.67) and 784 nm] remained unchanged upon further addition of neutral 3, i.e., eqn (1).
	 
	3 + MB+˙ → 3+˙ + MB
	It is noted that although an identical spectrum of 3+˙ was obtained when CRET+˙ was treated with an equimolar amount of 3, a clean spectral titration plot with isosbestic point could not be obtained owing to an overwhelming overlap of the absorption band of CRET+˙ at 518 nm with that of 3+˙ (see ESI† ). It is further noted that the intensely colored solution of 3+˙, obtained according to eqn (1) or using CRET+˙, was stable at ambient temperature and did not show any decomposition during a 48 h period at 22 °C, as confirmed by UV-Vis spectroscopy. Moreover, a reduction of 3+˙ with zinc dust regenerated the neutral 3 quantitatively as confirmed by 1H NMR spectroscopy.
	Fig. 2 (A) The spectral changes observed upon the reduction of 3.6 × 10−5 M MB+˙ by an incremental addition of substoichiometric amounts of 3 in CH2Cl2 at 22 °C. (B) A plot of depletion of absorbance of MB+˙ (blue triangles, at 728 nm) and an increase of the absorbance of 3˙+ (red circles, at 890 nm) against the equivalents of added neutral 3.
	The high stability of 3+˙ SbCl6− in solution prompted us to attempt the isolation of its crystalline salt as follows. For example, an excellent crop of dark-colored crystals, suitable for X-ray crystallographic studies, were obtained by a slow diffusion of toluene in a dichloromethane solution of 3+˙ SbCl6−, obtained using a 1 : 1 mixture of 3 and CRET+˙ SbCl6−, during a period of 24 h at ∼0 °C.
	The crystal structure of 3˙+ SbCl6− revealed that cationic dibenzochrysene moieties form infinite stacks along the z axis with non-equivalent interplanar separations of 3.31 and 3.44 Å. The robust π–π stacking arrangements amongst the molecules of the cationic 3 leads to a clathrate structure with large channels that are filled with SbCl6− counter anions and multiple dichloromethane molecules (see Fig. 3A/B). In contrast, the packing in the crystal structure of neutral 3 is dominated not by π–π but by CH⋯π interactions amongst the methoxy groups and the electron-rich aromatic rings of the neighboring molecules. The resulting honeycomb-like layers, formed perpendicular to the crystallographic x-axis, are interspaced by disordered dichloromethane molecules (see Fig. 3D); and the layers are separated by copious amounts of acetonitrile molecules (see Fig. 3C).‡
	Fig. 3 (A) The packing diagram of 3˙+ SbCl6− showing that the channels formed by stacked 3˙+ are filled with SbCl6− and CH2Cl2molecules. (B) Space filling representation of the packing diagram of 3˙+ SbCl6− where one of the channels is shown without SbCl6− and CH2Cl2 molecules. (C) The packing diagram of neutral 3 showing the layered structure where the layers are separated by acetonitrile molecules. (D) The arrangement of 3 with embedded CH2Cl2 molecules within a single layer of neutral 3.
	An inspection of the bond length changes in the cation radical3+˙, together with a comparison of its neutral form, points to the following salient features. (i) Neutral 3 has a crystallographic 2-fold symmetry and its planarity is substantially distorted by twisting around the central C/C bond (denoted as A, see Table 1) by 25.8° and around the central bonds of “biphenyl” fragments (denoted by I) by 11.4°. One electron oxidation of 3 results only in a minor amplification of the distortions as judged by the slightly increased twist angles of 29.1 and 11.9° for bonds A and I, respectively. (ii) As in various other aryl-methyl ether cation radicals,10 O–C(ar) bonds (denoted as J and L) in 3+˙ exhibit shortening by ∼1.3 pm due to an increased p–π dative interaction. (iii) Although the rearrangement of the lengths of various bonds (i.e. elongation and shortening) in the polyaromatic moiety in 3+˙ has a complex character (see Table 1), the changes clearly correspond to the predominant contributions from the resonance structures I/II, as judged by the significant lengthening of bonds A, C, F, I, and M and shortening of bonds B, G, J, and L and only a minor contribution from the resonance structures III/IV (see below).
	Table 1 Experimental and theoretical bond lengths of the neutral and cation radical of 3 presented in picometres (pm). Numbering scheme for the skeleton of 3 and its HOMO, obtained by DFT calculations at B3LYP/6-31G* level 
	X-Ray data
	B3LYP/6-31G*
	 
	Δ
	3+˙
	3
	Δ
	3+˙
	3
	Bonda
	a Average of equivalent bonds.
	+1.6
	143.0
	141.4
	+3.7
	144.0
	140.3
	A
	−1.4
	143.9
	145.5
	−1.7
	144.1
	145.8
	B
	+0.8
	142.3
	141.5
	+0.2
	142.4
	142.2
	C
	0.0
	136.9
	136.9
	−0.1
	138.0
	138.1
	D
	+0.6
	142.5
	141.9
	+0.6
	143.0
	142.4
	E
	+0.4
	138.2
	137.8
	+1.2
	139.3
	138.1
	F
	−1.9
	140.1
	142.0
	−1.3
	140.4
	141.7
	G
	0.0
	141.6
	141.6
	+0.5
	142.2
	141.7
	H
	+1.2
	146.5
	145.3
	+1.1
	146.3
	145.2
	I
	−1.2
	135.8
	137.0
	−1.2
	135.1
	136.3
	J
	−0.1
	143.2
	143.3
	+0.7
	142.3
	141.6
	K
	−1.4
	134.9
	136.3
	−2.1
	134.1
	136.2
	L
	+1.3
	144.2
	142.9
	+1.1
	142.7
	141.6
	M
	—
	0.4
	0.5
	—
	—
	—
	σ
	The experimental observations of the bond length changes in 3+˙ were found to be in reasonable agreement with the calculated values using DFT calculations at the B3LYP/6-31G* level (see Table 1). Furthermore, the experimentally observed elongation and shortening of the bonds in 3+˙ tracked remarkably well with the positioning of the largest bonding and antibonding character of HOMO in 3 (see Table 1).
	In summary, octamethoxydibenzochrysene (3) is easily accessed from readily available starting materials and it undergoes reversible electrochemical oxidation and forms a highly robust cation-radical salt. The X-ray crystal structure determination of 3+˙SbCl6− as well as neutral 3 together with DFT calculations provides unequivocal evidence that an introduction of a cationic charge (or polaron) in polyaromatic hydrocarbon3 leads to a complex elongation and shortening of the various bonds. The observed bond length changes in 3+˙ can be readily reconciled by the positioning of the largest bonding and antibonding character of the HOMO in neutral 3. The close packing of the molecules of the cationic 3 in the crystals produces large channels akin to those found in zeolites and may allow the preparation of potentially useful conducting materials by utilizing electro-active counter anions.11
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	Footnotes
	† Electronic supplementary information (ESI) available: Synthetic details of 3 and procedure for the isolation of its cation radical. CCDC 720096–720097. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b903133b
	‡ Crystal structure data for3 [C34H32O8·CH2Cl2·(CH3CN)4] (raj2z): FW = 817.74, monoclinic, C2/c, a = 31.6750(8) Å, b = 7.3983(2) Å, c = 18.0078(4) Å, β = 106.7180(10)°, Z = 4, V = 4041.60(17) Å3, D = 1.344 Mg m−3, T = 100 K, 6231 reflections measured, 3114 unique reflections, Rint = 0.0174, 342 parameters refined,R(all) = 0.0944, wR(all) = 0.2397, S = 1.066 (CCDC 720097). Crystal structure data for3˙+ SbCl6−[C34H32O8SbCl6·(CH2Cl2)2] (raj3d): FW = 1072.90, triclinic, P/, a = 13.6451(5) Å, b = 14.0770(5) Å, c = 14.3621(5) Å, α = 61.672(2)°, β = 62.275(2)°, γ = 70.899(2)°, Z = 2, V = 2129.39(13) Å3, d = 1.673 Mg m`3, T = 100 K, 16984 reflections measured, 6159 unique reflections, Rint = 0.0343, 644 parameters refined, R(all) = 0.0307, wR(all) = 0.0.0728, S = 1.039 (CCDC 720096).

