Marquette University e-Publications@Marquette

Natural Products Synthesis via Organoiron Methodology

Research Projects and Grants

2-1-2013

Spectral Data for "Generation of Molecular Complexity from Cyclooctatetraene: Preparation of Optically Active Protected Aminocycloheptitols and Bicyclo[4.4.1]undecatriene"

Mohamed F. El-Mansy *Marquette University*

Anobick Sar Marquette University

Sergey V. Lindeman Marquette University, sergey.lindeman@marquette.edu

William A. Donaldson Marquette University, william.donaldson@marquette.edu

Generation of molecular complexity from cyclooctatetraene. Preparation of optically active protected aminocycloheptitols and bicyclo[4.4.1]undecatriene

Mohamed F. El-Mansy, Anobick Sar, Sergey Lindeman and William A. Donaldson*

Preparation of tricarbonyl(6-styrylcyclohepta-2,4-diene-1-ol)iron (±)-8f	S2
Reaction of (\pm) -7 with triphenylphosphine	S 3
Dimethyl 2-allyl-2-(6-styryl-2,4-cycloheptadien-1-yl)propanedioate (±)-9b	S 3
10,10-Bis(methoxycarbonyl)bicyclo[4.4.1]undeca-2,4,6-triene (±)-10	S4
Dimethyl 2-(2'-propynyl)-2-(6-styryl-2,4-cycloheptadien-1-yl)propanedioate (±)-9c	S4
N-(6-Styryl-2,4-cycloheptadien-1-yl)- N -toluenesulfonyl-allylamine (±)-9e	S5
N-Toluenesulfonyl-2-azabicyclo[4.4.1]undeca-5,7,9-triene (±)-12	S6
6-Styryl-2,4-cycloheptadiene-1-ol (±)-9f	S6
2-Phthalimido-4-(2'-styryl)-6,7-dioxabicyclo[3.2.2]non-8-ene (±)-13	S 7
4-Phthalimido-6-(2'-styryl)-3,7-dihydroxycycloheptene (±)-14	S7
N-(2,5-Diacetoxy-6-styryl-3-cyclohepten-1-yl)phthalimide (±)-15	S8
Bis(dinitrobenzoate) PTAD adduct (+)-24	S8
(S)-Mosher's ester of (+)-17	S9
(S)-Mosher's ester of (-)-17	S9
¹ H NMR spectrum of (\pm) -8a (CDCl ₃)	S 11
13 C NMR spectrum of (±)-8a (CDCl ₃)	S12
¹ H NMR spectrum of (\pm) -8d (CDCl ₃)	S13
13 C NMR spectrum of (±)-8d (CDCl ₃)	S14
¹ H NMR spectrum of (\pm) -8f (CDCl ₃)	S15
13 C NMR spectrum of (±)-8f (CDCl ₃)	S16
¹ H NMR spectrum of (\pm) -8g (CDCl ₃)	S17
¹³ C NMR spectrum of (\pm) -8g (d ₆ -acetone)	S18
¹ H NMR spectrum of (\pm) -9b (CDCl ₃)	S19
13 C NMR spectrum of (±)-9b (CDCl ₃)	S20
¹ H NMR spectrum of (\pm) -9c (CDCl ₃)	S21
13 C NMR spectrum of (±)-9c (CDCl ₃)	S22
¹ H NMR spectrum of (±)-9d (CDCl ₃)	S23
13 C NMR spectrum of (±)-9d (CDCl ₃)	S24
¹ H NMR spectrum of (\pm) -9e (CDCl ₃)	S25
13 C NMR spectrum of (±)-9e (CDCl ₃)	S26
¹ H NMR spectrum of (\pm) - 9f (CDCl ₃)	S27
¹³ C NMR spectrum of (\pm) -9f (CDCl ₃)	S28
¹ H NMR spectrum of (\pm) -10 (CDCl ₃)	S29
13 C NMR spectrum of (±)-10 (CDCl ₃)	S30
¹ H NMR spectrum of (\pm) -12 (CDCl ₃)	S 31
13 C NMR spectrum of (±)-12 (CDCl ₃)	S32
¹ H NMR spectrum of (±)-13 (CDCl ₃)	S33
13 C NMR spectrum of (±)-13 (CDCl ₃)	S34
¹ H NMR spectrum of (\pm) -14 (d ₆ -acetone)	S35

¹³ C NMR spectrum of (±)-14 (CD ₃ OD)	S36
¹ H NMR spectrum of (\pm) -15 (CDCl ₃)	\$37
13 C NMR spectrum of (±)-15 (CDCl ₃)	S38
¹ H NMR spectrum of (\pm) -16 (CDCl ₃)	S39
13 C NMR spectrum of (±)-16 (CDCl ₃)	S40
¹ H NMR spectrum of (\pm) -17 (CDCl ₃)	S41
13 C NMR spectrum of (±)-17 (CDCl ₃)	S42
¹ H NMR spectrum of (\pm) -18 (CDCl ₃)	S43
13 C NMR spectrum of (±)-18 (CDCl ₃)	S44
¹ H NMR spectrum of (\pm) -19 (CDCl ₃)	S45
¹³ C NMR spectrum of (±)-19 (CDCl ₃)	S46
¹ H NMR spectrum of (\pm) -20 (CD ₃ OD)	S47
13 C NMR spectrum of (±)-20 (CD ₃ OD)	S48
¹ H NMR spectrum of $(-)$ -22 (CDCl ₃)	S49
¹³ C NMR spectrum of (-)-22 (CDCl ₃)	S50
¹ H NMR spectrum of $(+)$ -23 (CDCl ₃)	S51
13 C NMR spectrum of (+)-23 (CDCl ₃)	S52
¹ H NMR spectrum of $(+)$ -24 (CDCl ₃)	S53
13 C NMR spectrum of (+)-24 (CDCl ₃)	S54
¹ H NMR spectrum of $(+)$ -25 (CDCl ₃)	S55
¹³ C NMR spectrum of (+)-25 (CDCl ₃)	S56
¹ H NMR spectrum of $(+)$ - 26 (CDCl ₃)	S5 7
13 C NMR spectrum of (+)-26 (CDCl ₃)	S58
¹ H NMR spectrum of 27 (d_6 -acetone)	S59
¹ H NMR spectrum of 28 (d_6 -acetone)	S60
ORTEP of (6-styryl-2,4-cycloheptadien-1-yl)phthalimide (±)-9d	S61

Tricarbonyl(6-styrylcyclohepta-2,4-diene-1-ol)iron (±)-**8f.** In a 500 mL round bottomed flask, solid (±)-7 (4.10 g, 9.71 mmol) was dissolved in water (250 mL) and the mixture was stirred for 20 min. To the clear light yellow solution was added solid sodium bicarbonate (8.07 g, 95.2 mmol). After a few minutes, a yellow colored solid began to precipitate. The reaction mixture was stirred for 45 min, at which time it was extracted several times with dichloromethane. The combined extracts were washed with brine, dried (MgSO₄) and concentrated. The yellow sticky, foamy residue was purified by column chromatography (Al₂O₃, hexanes-ethyl acetate = 4:1) to afford (±)-**8f** (2.37 g, 70%) as a yellow solid: m.p. 122-126 °C; ¹H NMR (300 MHz, CDCl₃) δ = 7.36-7.20 (m, 5H; Ar-H), 6.37 (d, *J* = 16.0 Hz, 1H; H-9), 5.98 (dd, *J* = 8.0, 16.0 Hz, 1H; H-8), 5.45-5.39 (m, 1H; H3 or H4), 5.37-5.31 (m, 1H; H3 or H4), 4.18-4.10 (m, 1H; H-1), 2.97-2.82 (m, 3H; H-2, H-5 & H-6), 1.78-1.68 (m, 2H; H-7' & OH), 1.04 ppm (q, *J* = 12.0 Hz, 1H; H-7); ¹³C NMR (75 MHz, CDCl₃) δ = 210.0 (M-C=O), 137.4, 135.7, 128.9, 128.8, 127.6, 126.4, 88.2,

88.17, 70.8, 62.2, 62.0, 43.1, 38.6 ppm. IR (KBr): v = 3200-3400, 2049, 1979, 746, 693 cm⁻¹; HRMS (ESI): m/z calcd for C₁₈H₁₆O₄Fe+Na⁺: 375.0296 [*M*+Na⁺]; found: 375.0291.

Reaction of (±)-7 with triphenylphosphine. To a stirring suspension of (±)-7 (300 mg, 0.710 mmol) in CH₂Cl₂ (15 mL) at room temperature under nitrogen was added triphenylphosphine (186 mg, 0.710 mmol). The mixture was stirred for 45 min, the clear light yellow solution was concentrated and dried. The glassy solid residue was washed with pentane and dried under high vacuum to afford (±)-8g (410 mg, 83%) as a glassy light yellow solid: m.p. 155-158 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.85-7.70 (m, 15H; PPh₃), 7.37-7.15 (m, 5H; C₆H₅), 6.44 (d, *J* = 15.2 Hz, 1H; H-9), 5.88 (dd, *J* = 8.6, 15.2 Hz, 1H; H-8), 5.35-5.30 (narrow m, 1H; C=CH), 5.05-4.95 (narrow m, 1H; C=CH), 4.23 (t, *J* = 12.0 Hz, 1H; H-1), 3.13 (br t, *J* = 9.6 Hz, 1H; H-2), 3.02 (d, *J* = 7.2 Hz, 1H; H-5), 1.93-1.82 (m, 1H; H-7), 1.15-1.00 ppm (m, 1H; H-7); ¹³C NMR (75 MHz, d₆-acetone) δ = 206.4, 136.0 (d, *J*_{PC} = 44.0 Hz), 129.5 (d, *J*_{PC} = 6.6 Hz), 129.4, 128.3, 127.1, 118.5 (d, *J*_{PC} = 81.3 Hz), 90.9, 88.4 (d, *J*_{PC} = 1.7 Hz), 62.5, 49.4 (d, *J*_{PC} = 6.4 Hz), 42.8 (d, *J*_{PC} = 14.0 Hz), 34.5 (d, *J*_{PC} = 35.8 Hz), 30.1 ppm. A satisfactory elemental analysis was not obtained for this product.

Dimethyl 2-allyl-2-(6-styryl-2,4-cycloheptadien-1-yl)propanedioate (\pm)-9b. A flame dried 200 mL Schlenk flask was charged with freshly distilled ether (120 mL) at 0 °C under nitrogen. To an ethereal solution of lithium dimethyl allylmalonate (6.16 mmol, freshly prepared from dimethyl allylmalonate and *n*-BuLi, 1.6<u>M</u> in hexane) was added solid (\pm)-7 (2.0 g, 4.7 mmol) and the mixture was stirred for 3 h at room temperature. The reaction mixture was quenched with water and extracted several times with ether. The combined ether extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography (SiO₂, hexanes-ethyl acetate = 4:1) to afford a mixture of product and dimethyl allylmalonate (2.608 g). The mixture (2.608 g) was dissolved in methanol (100 mL) and ceric ammonium nitrate (7.50 gm, 13.7 mmol) was added, and the mixture stirred for 1 h at room temperature. The romixture was concentrated, diluted with water and extracted several times with ether. The combined ether extracts. The residue was purified by column chromatography (SiO₂, hexanes-ethyl acetate = 20:1) to afford (\pm)-9b (1.17 gm, 67%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.34-7.15 (m, 5H; C₆H₅), 6.41 (d, *J* = 15.9 Hz, 1H; H-9), 6.11 (ddd, *J* = 1.1, 8.1, 15.7 Hz, 1H; H-8), 5.87-5.69 (br m, 5H; H-2),

H-3, H-4, H-5 & C*H*=CH₂), 5.09-5.0 (m, 2H; C=CH₂), 3.72 (s, 6H; 2 x OCH₃), 3.48-3.38 (br m, 1H; H-6), 3.11 (br d, J = 8.7 Hz, 1H; H-1), 2.78-2.60 (m, 2H; C*H*₂-CH=CH₂), 2.09 (dd, J = 5.4, 13.3 Hz, 1H; H-7'), 1.68-1.55 ppm (m, 1H; H-7); ¹³C NMR (100 MHz, CDCl₃) $\delta = 171.4$ (CO-₂Me), 137.6, 137.0, 134.3, 133.2, 132.8, 129.6, 128.7, 127.3, 126.3, 124.7, 124.4, 119.1, 61.7, 52.5, 47.4, 43.0, 38.8, 37.9 ppm; HRMS (ESI): m/z calcd for C₂₃H₂₆O₄+Na⁺: 389.1729 [*M*+Na⁺]; found: 389.1728.

10,10-Bis(methoxycarbonyl)bicyclo[4.4.1]undeca-2,4,6-triene (±)-10. To a stirring solution of (±)-**9b** (30.0 mg, 0.0820 mmol) in CH₂Cl₂ (2 mL) at room temperature was added Grubbs 1st generation catalyst (3 mg, 5 mol%). The reaction mixture was stirred for 45 min, concentrated and the residue was purified by column chromatography (SiO₂, hexanes-ethyl acetate = 20:1) to afford (±)-**10** (19 mg, 88%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ = 6.44-6.39 (m, 1H), 6.31-6.26 (m, 1H), 6.18-6.12 (m, 1H), 5.57-5.66 (m, 2H), 3.84-3.76 (m, 1H), 3.75 (s, 3H; OMe), 3.66 (s, 3H; OMe), 3.29 (dq, *J* = 17.3, 2.0 Hz, 1H), 2.96-2.89 (m, 2H), 2.85-2.75 (m, 1H), 2.55 (dd, *J* = 1.5, 14.2 Hz, 1H), 2.27 ppm (dd, *J* = 1.2, 14.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 173.0, 171.1, 146.8, 132.9, 132.5, 131.4, 128.4, 127.4, 63.0, 52.9, 52.5, 50.6, 43.6, 40.3, 32.8 ppm; HRMS (ESI): *m/z* calcd for C₁₅H₁₈O₄: 262.1205 [M⁺]; found: 262.1198.

Dimethyl 2-(2'-propynyl)-2-(6-styryl-2,4-cycloheptadien-1-yl)propanedioate (±)-**9c.** To a solution of lithium dimethyl propargylmalonate (0.462 mmol) in THF (4 mL) [freshly prepared from dimethyl propargylmalonate and *n*-BuLi] at 0 °C under nitrogen was added (±)-**7** (150 mg, 0.355 mmol) and the mixture was stirred for 3 h. The reaction mixture was quenched with water, extracted several times with ether, and the combined ethereal extracts were washed with brine, dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography (SiO₂, hexanes-ethyl acetate = 4:1) to afford a mixture of (±)-**8c** and unreacted dimethyl propargylmalonate (136 mg). ¹H NMR (300 MHz, CDCl₃) δ = 7.35-7.19 (m, 5H; Ar-H), 6.34 (d, *J* = 15.6 Hz, 1H; H-9), 5.93 (dd, *J* = 8.4, 15.9 Hz, 1H; H-8), 5.36-5.25 (m, *J* = 6.9 Hz, 2H; H-3 & H-4), 3.80 (s, 3H; OCH₃), 3.77 (s, 3H; OCH₃), 3.08-2.99 (m, 2H), 2.91-2.71 (m, 4H), 2.07 (t, *J* = 2.1 Hz, 1H; C=CH), 1.38 (d, *J* = 12.4 Hz, 1H; H-7¹), 0.90 ppm (q, *J* = 12.3 Hz, 1H; H-7); ¹³C NMR (75 MHz, CDCl₃) δ = 170.0, 169.8, 137.3, 136.4, 128.7, 127.5, 126.3, 89.2, 88.0, 79.3, 71.9, 62.9, 61.2, 58.2, 53.0, 52.9, 43.4, 42.3, 31.2, 22.7 ppm, the signal for the M–CO was not observed. The mixture (136 mg) was dissolved in methanol (4 mL) and ceric ammonium nitrate (0.44 g, 0.81 mmol) was added. The mixture stirred for 2 h at room temperature and then

concentrated. Water was added to the residue and this mixture was extracted several times with CH_2Cl_2 . The combined CH_2Cl_2 extracts were washed with brine, dried (Na_2SO_4) and concentrated. The residue was purified by column chromatography $(SiO_2, hexanes-ethyl acetate = 4:1)$ to afford a (±)-9c (42 mg, 33%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ = 7.36-7.17 (m, 5H; C₆H₃), 6.46 (d, *J* = 15.9 Hz, 1H; H-9), 6.14 (dd, *J* = 7.8, 15.9 Hz, 1H; H-8), 5.85-5.76 (m, 4H; H-2, H-3, H-4 & H-5), 3.76 (s, 6H; 2 x OMe), 3.59-3.47 (br m, 1H; H-6), 3.41 (br d, *J* = 9.3 Hz, 1H; H-1), 2.94 (d, *J* = 2.4 Hz, 2H; CH₂C=CH), 2.19 (dd, *J* = 5.7, 13.2 Hz, 1H; H-7'), 2.06 (t, *J* = 2.7 Hz, 1H; C=CH), 1.69 ppm (td, *J* = 9.0, 12.6 Hz, 1H; H-7); ¹³C NMR (75 MHz, CDCl₃) δ = 170.3 (CO₂Me), 137.5, 137.1, 133.4, 132.6, 129.6, 128.6, 127.3, 126.2, 124.8, 124.5, 79.1, 71.9, 60.2, 52.8 (OMe), 47.2, 42.5 (C-6), 37.4 (C-7), 27.0, 23.8 ppm; HRMS (ESI): *m/z* calcd for C₂₃H₂₄O₄+Na⁺: 387.1567 [*M*+Na⁺]; found: 387.1569.

N-(6-Styryl-2,4-cycloheptadien-1-yl)-N-toluenesulfonyl-allylamine (±)-9e. To a solution of (±)-7 (0.10 g, 0.24 mmol) in acetonitrile (10 mL), under N_2 , was added the potassium salt of tosyl allylamine (0.140 g, 0.562 mmol). The mixture was stirred for 2 h, at which time TLC indicated the disappearance of 7. The reaction mixture was dried under reduced pressure and the solid residue was purified by column chromatography (SiO₂, hexanes-ethyl acetate = 4:1) to give the product (0.113 g, 86%) as a yellow foam: m.p. 47-48 °C; ¹H NMR (400 MHz, CDCl₃) $\delta =$ 7.77 (d, J = 8.0 Hz, 2H; Ar-H), 7.38-7.20 (m, 7H; Phth and ArH), 6.33 (d, J = 15.2 Hz, 1H; H-9), $5.94-5.80 \text{ (m, 2H)}, 5.33-5.22 \text{ (m, 3H)}, 5.14 \text{ (d, } J = 10.4 \text{ Hz}, 1\text{H}; C=CH_2), 4.38 \text{ (dd, } J = 3.6, 12.0$ Hz, 1H: H-1), 3.93 (dd, J = 5.2, 16.8 Hz, 1H; NCH₂CH=CH₂), 3.68 (dd, J = 6.0, 16.8 Hz, 1H; $NCH_2CH=CH_2$, 2.92-2.82 (m, 2H), 2.40 (s, 3H; PhCH₃), 1.91 (d, J = 7.2 Hz, 1H), 1.55 (br d, J = 7.2 Hz, 1H), 1.55 (br 13.2 Hz, 1H), 1.14 ppm (q, J = 12.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 143.8$, 137.9, 137.1, 136.5, 135.2, 130.1, 129.1, 128.8, 127.6, 127.3, 126.3, 117.0, 88.6, 88.3, 61.5, 58.6, 57.1, 46.2, 44.0, 36.4, 21.6 ppm; IR (CH₂Cl₂): v = 2047, 1965, 1338, 1157 cm⁻¹. This compound was utilized in the next step without further characterization. To the prior complex (0.277 g, 0.509 mmol) in acetonitrile (15 mL), under N₂, was added cerium ammonium nitrate (0.47 g, 0.858 mmol). The mixture was stirred at room temperature for 1 h, at which time TLC indicated complete disappearance of starting material. The reaction mixture was filtered through a short column of silica gel, which was washed with CH₂Cl₂ until all of the product was eluted. These fractions were combined, concentrated, and the residue was purified by column chromatography (SiO₂, hexanes-ethyl acetate = 17:3) to give (\pm)-9e (0.106 g, 51%) as a faint yellow oil. ¹H NMR

NMR (300 MHz, CDCl₃) $\delta = 7.77$ (d, J = 8.0 Hz, 2H; Ar-H), 7.38-7.20 (m, 7H; Phth and Ar-H), 6.39 (d, J = 15.9 Hz, 1H; H-9), 6.11 (dd, J = 8.4, 15.9 Hz, 1H; H-8), 5.91 (tdd, J = 6.0, 10.5, 17.1 Hz, 1H; CH=CH₂), 5.75-5.6 (m, 3H; CH=CH–CH=H), 5.39 (br d, J = 11.1 Hz, 1H; CH=CH₂), 5.23 (dd, J = 1.5, 16.8 Hz, 1H; CH=CH₂), 5.13 (dd, J = 0.9, 8.7 Hz, 1H), 4.94-4.85 (m, 1H; H-1), 3.85 (dd, J = 6.0, 16.5 Hz, 1H; NCH₂CH=CH₂), 3.73 (dd, J = 6.0, 16.5 Hz, 1H; NCH₂CH=CH₂), 3.42-3.30 (m, 1H; H-6), 2.42 (s, 3H; PhCH₃), 2.08 (td, J = 10.9, 12.6 Hz, 1H; H-7'), 1.96 ppm (br d, J = 12.6 Hz, 1H; H-7); ¹³C NMR (75 MHz, CDCl₃) $\delta = 143.5$, 137.9, 137.6, 137.3, 136.1, 134.4, 132.6, 129.9, 129.8, 128.8, 127.5, 127.4, 126.3, 125.1, 123.9, 117.6, 59.1, 47.9, 43.2, 39.0, 21.7 ppm. IR (CH₂Cl₂): v = 1336, 1162 cm⁻¹; HRMS (ESI): m/z calcd for C₂₅H₂₇NO₄S+Na⁺: 428.1660 [*M*+Na⁺]; found: 428.1657.

N-Toluenesulfonyl-2-azabicyclo[4.4.1]undeca-5,7,9-triene (±)-12. To a solution of (±)-9e (60 mg, 0.15 mmol) in freshly distilled dichloromethane (20 mL), was added Grubbs' 2nd generation catalyst (7 mg, 0.008 mmol, 5 mol %). The reaction mixture was stirred under N₂ and the reaction progress was monitored by ¹H NMR spectroscopy. After 4 h all signals for the starting material had disappeared. The reaction mixture was concentrated under a flow of N₂, and the residue purified by column chromatography (SiO₂, hexanes–ethyl acetate = 4:1) to afford (±)-12 (37 mg, 82%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.73 and 7.3 (ABq, J_{AB} = 8.2 Hz, 4H; ArH), 6.43 (qd, *J* = 2.0, 5.4 Hz, 1H), 6.30 (qd, *J* = 1.2, 5.4 Hz, 1H), 6.24-6.20 (m, 1H), 5.60-5.56 (narrow m, 2H), 4.59 (td, *J* = 4.0, 8.4 Hz, 1H), 4.09-4.06 (narrow m, 2H), 3.06 (ddd, *J* = 1.2, 3.6, 14.4 Hz, 1H), 2.99-2.97 (narrow m, 2H), 2.81 (ddd, *J* = 1.2, 8.8, 14.4 Hz, 1H), 2.43 ppm (s, 3H; ArCH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 144.5, 143.7, 134.8, 132.6, 131.9, 130.1, 130.0, 129.5, 127.6, 125.0, 67.6, 55.9, 44.6, 38.0, 21.7 ppm. This compound decomposed upon standing and thus a satisfactory HRMS was not obtained.

6-Styryl-2,4-cycloheptadiene-1-ol (\pm)-**9f.** To a solution of (\pm)-**8f** (0.30 g, 0.85 mmol) in methanol (12 mL), at 0 °C under N₂, was added a solution of H₂O₂ (5.70 mL, 51.0 mmol, 30 wt %). A solution of NaOH (240.0 mg, 5.950 mmol) in methanol (8 mL) was added to the reaction mixture dropwise. The reaction mixture immediately turned deep brown in color. The mixture was stirred for 30 min at 0 °C followed by another 30 min at room temperature. The mixture was quenched with water (30 mL) and extracted several times with ether. The combined extracts were washed with brine, dried (MgSO₄) and concentrated. The residue was purified by column chromatography (SiO₂, hexanes-ethyl acetate = 4:1) to afford (\pm)-**9f** (90.0 mg, 50%) as a

colorless foamy solid; m.p. = 59-63 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.42-7.20 (m, 5H; C₆H₅), 6.48 (d, *J* = 16.0 Hz, 1H; H-9), 6.24 (dd, *J* = 8.2, 16.0 Hz, 1H; H-8), 5.90-5.69 (m, 4H; olefinic H), 4.67 (d, *J* = 8.0 Hz, 1H; H-1), 3.50-3.42 (m, 1H; H-6), 2.30-2.15 ppm (m, 2H; H7 & H-7'); ¹³C NMR (100 MHz, CDCl₃) δ = 137.9, 137.4, 136.8, 132.5, 129.5, 128.7, 127.4, 126.3, 124.2, 122.6, 71.0, 41.9, 41.8 ppm; IR (KBr): v = 3400-3200, 746, 692 cm⁻¹.

2-Phthalimido-4-(2'-styryl)-6,7-dioxabicyclo[3.2.2]non-8-ene (\pm)-13. To a 50 ml two-necked round-bottom flask equipped with condenser, was charged (\pm)-9d (1.00 g, 2.93 mmol) in dry CHCl₃ (40 mL) and tetraphenylporphorine (36 mg, 3 mol %). The resulting deep purple solution was cooled with an ice bath and irradiated for 8 h with a 100-W halogen lamp, while ultra pure O₂ was bubbled through the solution. The organic solvent was removed and the residue was purified by column chromatography (SiO₂, hexanes-ethyl acetate = 1:1) to give (\pm)-13 (923 mg, 91%) as a colorless solid: m.p. 175-177 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.90-7.70 (m, 4H; Phth), 7.35-7.20 (m, 5H; C₆H₅), 6.89 (dd, *J* = 8.0, 8.4 Hz, 1H; CH=CH), 6.49 (d, *J* = 16.2 Hz, 1H; CH=CHPh), 6.47-6.43 (m, 1H; CH=CH), 5.98 (dd, *J* = 8.3, 16.2 Hz, 1H; CH=CHPh), 4.85 (dd, *J* = 4.0, 12.8 Hz, 1H; H-2), 4.82-4.78 (m, 2H; H-1 & H-5), 3.10-2.98 (m, 1H; H-4), 2.11 (q, *J* = 12.7 Hz, 1H; H-3'), 1.77 ppm (td, *J* = 4.4, 12.8 Hz, 1H; H-3); ¹³C NMR (100 MHz, CDCl₃) δ = 167.8, 136.9, 134.5, 131.9, 131.8, 130.9, 128.8, 128.7, 127.9, 126.4, 123.9, 123.6, 81.1, 80.4, 52.0, 45.8, 29.9 ppm; elemental analysis calcd (%) for C₂₃H₁₉NO₄: C 73.98, H 5.13; found: C 73.87, H 5.27.

4-Phthalimido-6-(2'-styryl)-3,7-dihydroxycycloheptene (±)-14. To a solution of (±)-13 (50 mg, 0.145 mmol) in CH₂Cl₂ (1 mL) was added activated zinc dust (50 mg). To the resulting suspension was added a solution of glacial acetic acid (0.02 mL, 0.34 mmol) in CH₂Cl₂ (2 mL) in 3 portions over 30 min. The reaction mixture was stirred at room temperature for 15 min, after which the entire mixture was loaded onto a column chromatography (SiO₂, hexanes-ethyl acetate = 2:3) to give (±)-14 (47 mg, 92%) as a colorless solid; m.p. = 225-227 °C; ¹H NMR (400 MHz, CD₃OD) δ = 7.88-7.75 (m, 4H; Phth), 7.37 (d, *J* = 7.6 Hz, 2H; Ar-H), 7.25 (t, *J* = 7.6 Hz, 2H; Ar-H), 7.16 (t, *J* = 7.4, 1H; Ar-H), 6.46 (d, *J* = 16.4 Hz, 1H; H-9), 6.19 (dd, *J* = 9.0, 16.4 Hz, 1H; H-8), 5.80 (td, *J* = 2.8, 12.6 Hz, 1H; CH=CH), 5.70 (td, *J* = 2.8, 12.6 Hz, 1H; CH=CH), 4.99-4.93 (m, 1H; H-4), 4.25-4.10 (m, 2H; H-3 and H-7), 2.70 (td, *J* = 11.8, 14.0 Hz, 1H; H-5'), 2.47 (dq, *J* = 2.8, 10.1 Hz, 1H; H-6), 1.95 ppm (td, *J* = 2.8, 14.0 Hz, 1H; H-5); ¹H NMR (400 MHz, d₆-acetone) δ = 7.82 (s, 4H; Phth), 7.39 (d, *J* = 8.0 Hz, 2H; Ar-H), 7.28 (t, *J* = 7.2 Hz, 2H; Ar-H),

7.18 (tt, J = 1.6, 7.4 Hz, 1H; Ar-H), 6.50 (d, J = 16.0 Hz, 1H; H-9), 6.28 (dd, J = 8.8, 16.0 Hz, 1H; H-8), 5.82 (td, J = 2.7, 12.8 Hz, 1H, CH=CH), 5.73 (td, J = 2.8, 12.4 Hz, 1H; CH=CH), 4.99-4.93 (m, 1H; H-3), 4.53 (d, J = 5.6 Hz, 1H; OH), 4.31-4.25 (m, 1H; H-7), 4.16 (ddd, J = 3.2, 10.4, 12.4 Hz, 1H; H-4), 3.99 (d, J = 4.8 Hz, 1H; OH), 2.73 (td, J = 11.8, 14.4 Hz, 1H; H-5), 2.53-2.42 (m, 1H; H-6), 2.01 ppm (td, J = 2.8, 14.0 Hz, 1H; H-5'); ¹³C NMR (75 MHz, d₆-acetone) $\delta = 168.9$, 138.6, 137.4, 134.9, 134.5, 133.4, 133.2, 131.9, 129.3, 127.9, 127.1, 123.7, 73.5, 70.2, 55.5, 50.5, 37.6 ppm; HRMS (ESI): m/z calcd for C₂₃H₂₁NO₄+Na⁺: 398.1363 [*M*+Na⁺]; found: 398.1358.

(1S*,2S*,5S*,6S*) *N*-(2,5-Diacetoxy-6-styryl-3-cyclohepten-1(S*)-yl)phthalimide (±)-15. To a mixture of (±)-14 (400 mg, 1.108 mmol) and p-toluenesulfonyl chloride (21 mg, 0.111 mmol) was added acetic anhydride (5 mL). The resulting suspension was heated at reflux under N₂ for 1 h. The reaction mixture was concentrated and the residue was purified by column chromatography (SiO₂, hexanes-ethyl acetate = 3:2) to afford (±)-15 (406 mg, 82%) as a colorless solid: m.p. = 65-66 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.80-7.63 (m, 4H; Phth), 7.25-7.10 (m, 5H; C₆H₅), 6.34 (d, *J* = 15.6 Hz, 1H; H-9), 6.02 (br d, *J* = 10.4 Hz, 1H; H-2), 5.86 (dd, *J* = 9.4, 15.6 Hz, 1H; H-8), 5.70 (br d, *J* = 13.2 Hz, 1H; CH=CH), 5.57-5.49 (br m, 2H; H-5 & C=CH), 4.42 (t, *J* = 10.8 Hz, 1H; H-1), 2.85 (q, *J* = 12.8 Hz, 1H; H-7'), 2.63 (br q, *J* = 9.6 Hz, 1H; H-6), 2.01 (br d, *J* = 14.4 Hz, 1H; H-7), 1.87 (s, 3H; OAc), 1.75 ppm (s, 3H; OAc); ¹³C NMR (100 MHz, CDCl₃) δ = 170.3, 169.6, 167.9, 137.0, 134.4, 132.7, 131.9, 131.6, 130.3, 130.2, 128.8, 127.7, 126.4, 123.6, 74.1, 72.1, 51.4, 47.6, 36.2, 21.2, 20.9 ppm; elemental analysis calcd (%) for C₂₇H₂₅NO₆: C 70.58, H 5.48; found: C 70.28, H 5.45.

Bis(dinitrobenzoate) PTAD adduct (+)-24. To a solution of less polar diol (–)-22 (69.0 mg, 0.184 mmoL) in CH_2Cl_2 (1.5 mL) at room temperature was added dropwise a solution of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) in CH_2Cl_2 and the mixture was occasionally stirred. The process was continued until the light red color of PTAD persisted. The mixture was concentrated and the residue purified by column chromatography (SiO₂, hexanes-ethyl acetate = 1:4) to afford the cycloadduct (94 mg, 93%) as a colorless solid. This compound was used in the next step without further characterization. To a stirring solution of the PTAD adduct (94 mg, 0.171 mmol) in dry CH_2Cl_2 (2 mL) at room temperature under nitrogen was added 4- (dimethylamino)pyridine (45 mg, 0.376 mmol). After stirring for 15 min, 3,5-dinitrobenzoyl chloride (85 mg, 0.376 mmol) was added and the mixture was stirred for 3 h. The reaction

mixture was diluted with CH₂Cl₂ (4 mL) and washed with 0.1 <u>M</u> HCl solution. The combined CH₂Cl₂ fractions were washed with brine, dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography (SiO₂, hexanes-ethyl acetate = 1:1) to afforded (+)-**24** (131 mg, 81%) as a light yellow solid. Recrystallization from hexanes-ethyl acetate gave crystals suitable for X-ray diffraction analysis; m.p. = 240-242 °C; $[\alpha]_{D}^{20}$ = +50.1 (c 0.357, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ = 9.33-8.94 (m, 7H; Ar-H), 7.84-7.72 (m, 5H; Ar-H), 7.49-7.33 (m, 8H; Ar-H), 6.68 (dd, *J* = 6.9, 8.8 Hz, 1H; CH=CH), 6.59 (d, *J* = 8.4 Hz, 1H; H-10), 6.47 (dd, *J* = 7.0, 8.6 Hz, 1H; CH=CH), 5.86 (dd, *J* = 2.4, 9.0 Hz, 1H; H-9), 5.55 (d, *J* = 6.9 Hz, 1H; H-1), 5.06 (d, *J* = 6.9 Hz, 1H; H-3), 1.80-1.70 ppm (m, 1H; H-3'); ¹³C NMR (75 MHz, CDCl₃) δ = 167.4, 162.5, 161.6, 152.4, 151.6, 148.9, 148.8, 134.7, 134.2, 132.8, 132.2, 131.4, 131.3, 130.5, 129.6, 129.5, 129.4, 128.6, 127.4, 125.6, 124.6, 123.7, 123.4, 123.0, 78.7, 78.3, 54.9, 51.3, 50.7, 41.4, 28.7 ppm; elemental analysis calcd (%) for C₄₅H₃₀N₈O₁₆·C₄H₈O₂: C 57.31, H 3.73; found: C 57.04, H 3.58.

(*S*)-Mosher's ester of (+)-17. To a solution of (+)-17 (20 mg, 0.066 mmol) in dry THF (3 mL) was added (S)-(-)- α -methoxy- α -(trifluoromethyl)phenylacetic acid (50 mg, 0.213 mmol) followed by *N*,*N*'-dicyclohexylcarbodiimide (44 mg, 0.213 mmol) and 4-dimethylaminopyridine (5 mg, 0.004 mmol). The reaction mixture was stirred for 2 h, and then concentrated and water (5 mL) was added. The mixture was extracted several times with ether, and the combined extracts were washed with 10% HCl, and concentrated. The residue was purified by column chromatography (SiO₂, hexanes–ethyl acetate = 7:3) to give **27** (34 mg, 100%) as a colorless oil: ¹H NMR (400 MHz, d₆-acetone) δ = 7.85 (s, 4H; Phth), 7.51-7.56 (m, 2H; Ph), 7.37-7.47 (m, 3H; Ph), 6.65 (ddd, *J* = 0.9, 7.2, 9.2 Hz, 1H), 6.22 (ddd, *J* = 1.2, 7.2, 9.2 Hz, 1H; CH=CH), 4.92 (br d, *J* = 7.2 Hz, 1H; CH=CH), 4.72 (br d, *J* = 7.2 Hz, 1H), 4.63 (ddd, *J* = 0.9, 4.5, 12.7 Hz, 1H; H-1), 4.39 (dd, *J* = 5.4, 11.2 Hz, 1H; CH₂O), 4.27 (dd, *J* = 7.0, 11.2 Hz, 1H; CH₂O), 3.58 (q, *J_H* = 1.2 Hz, 3H; OCH₃), 2.54-2.44 (m, 1H; H-6), 2.03 (q, *J* = 12.7 Hz, 1H; H-7), 1.64 ppm (td, 4.4, 12.8 Hz, 1H; H-7'); ¹³C NMR (100 MHz, CDCl₃) δ = 167.5, 166.5, 134.4, 132.0, 131.6, 130.1, 129.8, 128.6, 127.1, 124.6, 123.7, 123.5, 121.8, 79.8, 77.8, 66.6, 55.7, 51.7, 41.1, 26.2 ppm.

(S)-Mosher's ester of (-)-17. The esterification of (-)-17 (20 mg, 0.066 mmol) with (S)-(-)- α methoxy- α -(trifluoromethyl)phenylacetic acid was carried out in a fashion to the esterification of (+)-17, to afford 28 (32 mg, 94%). mp 43-45 °C; ¹H NMR (400 MHz, d₆-acetone) δ = 7.85 (s, 4H; Phth), 7.53-7.58 (m, 2H; Ph), 7.45-7.51 (m, 3H; Ph), 6.66 (ddd, J = 0.9, 7.3, 9.1 Hz, 1H; CH=CH), 6.31 (ddd, J = 0.8, 7.1, 9.1 Hz, 1H; CH=CH), 4.93 (br d, J = 7.2 Hz, 1H), 4.74 (br d, J = 7.2 Hz, 1H), 4.64 (dd, J = 5.0, 13.2 Hz, 1H; H-1), 4.38-4.27 (m, 2H; CH₂O), 3.55 (s, 3H; OCH₃), 2.54-2.45 (m, 1H; H-6), 1.99 (q, J = 12.8 Hz, 1H; H-7), 1.67 ppm (td, J = 4.6, 12.8 Hz, 1H; H-7'); ¹³C NMR (100 MHz, CDCl₃) $\delta = 167.4, 166.5, 134.3, 131.8, 131.6, 130.2, 129.8, 128.6, 127.2, 124.6, 123.6, 123.4, 121.7, 79.8, 77.6, 66.5, 55.4, 51.5, 41.1, 26.2 ppm.$

SII

Siz

N IL

t is

S

Л

Na

ω

S 32

^{\$33}

S H

¹ V

オセ

.

Syg

S 56

ORTEP of (6-styryl-2,4-cycloheptadien-1-yl)phthalimide (±)-9d