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Abstract 
Background 
Reactive oxygen species (ROS) contribute to myocardial protection during ischemic preconditioning, but the role 
of the ROS in protection against ischemic injury produced by volatile anesthetics has only recently been 
explored. We tested the hypothesis that ROS mediate isoflurane-induced preconditioning in vivo. 

Methods 
Pentobarbital-anesthetized rabbits were instrumented for measurement of hemodynamics and were subjected 
to a 30 min coronary artery occlusion followed by 3 h reperfusion. Rabbits were randomly assigned to receive 
vehicle (0.9% saline), or the ROS scavengers N-acetylcysteine (NAC; 150 mg/kg) or N-2-mercaptopropionyl 
glycine (2-MPG; 1 mg. kg(-1).min(-1)), in the presence or absence of 1.0 minimum alveolar concentration (MAC) 
isoflurane. Isoflurane was administered for 30 min and then discontinued 15 min before coronary artery 
occlusion. A fluorescent probe for superoxide anion production (dihydroethidium, 2 mg) was administered in the 
absence of the volatile anesthetic or 5 min before exposure to isoflurane in 2 additional groups (n = 8). 
Myocardial infarct size and superoxide anion production were assessed using triphenyltetrazolium staining and 
confocal fluorescence microscopy, respectively. 

Results 
Isoflurane (P < 0.05) decreased infarct size to 24 +/- 4% (mean +/- SEM; n = 10) of the left ventricular area at risk 
compared with control experiments (43 +/- 3%; n = 8). NAC (43 +/- 3%; n = 7) and 2-MPG (42 +/- 5%; n = 8) 
abolished this beneficial effect, but had no effect on myocardial infarct size (47 +/- 3%; n = 8 and 46 +/- 3; n = 7, 
respectively) when administered alone. Isoflurane increased superoxide anion production as compared with 
control experiments (28 +/- 12 -6 +/- 9 fluorescence units; P < 0.05). 



Conclusions 
The results indicate that ROS produced following administration of isoflurane contribute to protection against 
myocardial infarction in vivo. 

Topics: 
isoflurane, oryctolagus cuniculus, reactive oxygen species, myocardial infarction 

 

Large quantities of reactive oxygen species (ROS) released during reperfusion after coronary artery occlusion 
damage proteins responsible for intracellular homeostasis, produce tissue injury, 1–3depress contractile 
function, and increase myocardial infarct size. In contrast, small quantities of ROS may exert beneficial effects 
during ischemia and reperfusion when released before a prolonged ischemic event. 4ROS derived from 
mitochondria during a brief ischemic episode produce preconditioning. 5,6Free radical scavengers administered 
during ischemic preconditioning (IPC) markedly attenuate the protective effect of the preconditioning stimulus 
on infarct size. 5,7These data suggest that IPC is mediated in part by small quantities of ROS released during 
preconditioning. Volatile anesthetics protect myocardium against infarction through a signal transduction 
pathway that includes adenosine type 1 receptors, 8–10protein kinase C, 9,11inhibitory guanine regulatory 
proteins, 12and mitochondrial and sarcolemmal adenosine triphosphate-regulated potassium (KATP) 
channels. 13–16A recent investigation by Müllenheim et al . provides compelling evidence that ROS also 
mediate myocardial protection produced by volatile anesthetics. 17We sought to confirm and extend these 
important results by examining the hypothesis that ROS scavengers inhibit isoflurane-induced protection against 
irreversible ischemic injury. We further tested the hypothesis that isoflurane directly generates ROS in rabbit 
ventricular myocardium in vivo  using a confocal microscopic technique combined with the superoxide anion-
specific fluorescent probe dihydroethidium. 

Methods 
All experimental procedures and protocols used in this investigation were reviewed and approved by the Animal 
Care and Use Committee of the Medical College of Wisconsin. Furthermore, all conformed to the Guiding 
Principles in the Care and Use of Animals  of the American Physiologic Society and were in accordance with 
the Guide for the Care and Use of Laboratory Animals  (National Academy Press, Washington, D.C., 1996). 

General Preparation 
Male New Zealand White rabbits weighing between 2.5 and 3.0 kg were anesthetized with intravenous sodium 
pentobarbital (30 mg/kg). Additional doses of pentobarbital were titrated as required to assure that pedal and 
palpebral reflexes were absent throughout the experiment. A tracheostomy was performed through a ventral 
midline incision, and the trachea was cannulated. The rabbits were ventilated (model 683, Harvard, Holliston, 
MA) with positive pressure using a room air-oxygen mixture (Fio2= 0.33). Arterial blood gas tensions and acid-
base status were maintained within a normal physiologic range (pH 7.35–7.45, Paco225–40 mmHg, and Pao290–
150 mmHg) by adjusting the respiratory rate or tidal volume throughout the experiment. Body temperature was 
maintained with a heating blanket. Heparin-filled catheters were inserted into the right carotid artery and the 
left jugular vein for measurement of arterial blood pressure and fluid or drug administration, respectively. 
Maintenance fluids consisted of 0.9% saline (15 ml · kg−1· h−1) that were continued for the duration of the 
experiment. A left thoracotomy was performed at the fourth intercostal space, and the heart was suspended in 
a pericardial cradle. A heparin-filled catheter was inserted into the left atria for the subsequent administration 
of dihydroethidium used to detect ROS production. A prominent branch of the left anterior descending coronary 
artery (LAD) was selected, and a silk ligature was placed around this artery approximately halfway between the 



base and apex for the production of coronary artery occlusion and reperfusion. Each rabbit was anticoagulated 
with 500 U of heparin immediately before LAD occlusion. Coronary artery occlusion was verified by the presence 
of epicardial cyanosis and regional dyskinesia in the ischemic zone, and reperfusion was confirmed by observing 
an epicardial hyperemic response. Hemodynamics were continuously recorded on a polygraph (Grass model 7) 
throughout experimentation. 

Experimental Protocol 
The experimental design used in the present investigation is illustrated in figure 1. Thirty minutes after 
instrumentation was completed and calibrated, baseline systemic hemodynamics were recorded. Rabbits were 
randomly assigned to one of six experimental groups using a Latin square design. All rabbits underwent a 30 min 
LAD occlusion followed by 3 h reperfusion. Rabbits received intravenous vehicle (0.9% saline), N-acetylcysteine 
(NAC; 150 mg/kg over 30 min), 18or N-2-mercaptopropionyl glycine (2-MPG; 1 mg · kg−1· min−1over 75 min) 5in 
the presence or absence of 1.0 minimum alveolar concentration (MAC) isoflurane. The end-tidal MAC value used 
for rabbits in the present investigation was 2.1%. 19End-tidal concentrations of isoflurane were measured at the 
tip of the tracheostomy tube with an infrared anesthetic analyzer that was calibrated with known standards 
before and during experimentation. 

 
Fig. 1. Schematic illustration of the experimental protocol. ISO = isoflurane; 2-MPG =N -2-mercaptopropionyl 
glycine; NAC = N-acetylcysteine. 
 

Determination of Myocardial Infarct Size 
Myocardial infarct size was measured as previously described. 20Briefly, the left ventricular (LV) area at risk for 
infarction (AAR) was separated from surrounding normal areas, and the two regions were incubated at 37°C for 
20 to 30 min in 1% 2,3,5-triphenyltetrazolium chloride in 0.1 m phosphate buffer adjusted to pH 7.4. After 
overnight storage in 10% formaldehyde, infarcted and noninfarcted myocardium within the AAR were carefully 
separated and weighed. Infarct size was expressed as a percentage of the AAR. Rabbits that developed 
intractable ventricular fibrillation and those with an AAR less than 15% of LV mass were excluded from 
subsequent analysis. 

ROS Detection 
Dihydroethidium is oxidized by intracellular ROS to produce fluorescent ethidium that subsequently binds to 
DNA (Eth-DNA) further amplifying its fluorescence. 21The fluorescence observed after activation of the Eth-DNA 
complex is generally stable, but may be reduced by the presence of hydroxyl radicals. 22,23Thus, an increase in 
dihydroethidium oxidation to Eth-DNA and the subsequent increase in fluorescence are highly suggestive of 
superoxide anion generation. In two additional groups of rabbits (n = 8), dihydroethidium (2 mg) was rapidly 
injected into the left atrium 5 min before the administration of isoflurane (1 MAC) or at the corresponding time 
point in rabbits that were not subsequently exposed to the volatile anesthetic. Isoflurane was discontinued after 
30 min, and the rabbits were euthanized after 1 h with a lethal dose of pentobarbital. The heart was rapidly 



excised. The LV was isolated, divided into four sections of equal size, and frozen in liquid nitrogen. Kryostat 
sections (20 μm) of the LV were mounted on standard microscope slides. Using a laser fluorescence imaging 
system (MRC 600 Laser Scanning Confocal Microscopic Imaging System; Bio-Rad Laboratories; Philadelphia, PA) 
mounted on a Microscope (Optiphot; Nikon Corporation; Tokyo, Japan) images were recorded and stored for 
subsequent offline analysis on a computer workstation equipped with image analysis software (MetaMorph; 
Universal Imaging Corporation; Downingtown, PA). Use of the 40× objective yielded a 400× end magnification on 
a 292 × 195 μm 2digital image (768 × 512 pixels). The signal-to-noise ratio was enhanced using the Kalman 
method. Excitation was produced using a Krypton-Argon laser at a wavelength of 488 nm, and emitted 
fluorescence measured at 550 nm after long pass filtering. The pixel intensity of each myocyte nucleus was 
determined. Background was identified as an area without cells or with minimal cytosol fluorescence. In each 
rabbit, 20 Kalman-averaged images were obtained and approximately 6 to 8 dihydroethidium-stained 
myocardial cells were analyzed by subtraction of background fluorescence from the pixel intensity of the 
myocardial nuclei. 

Statistical Analysis 
Statistical analysis of data within and between groups was performed with analysis of variance (ANOVA) for 
repeated measures followed by Student Newman–Keuls test. Changes within and between groups were 
considered statistically significant when the P  value was less than 0.05. Student t  test was used to compare 
differences of pixel intensities in ROS detection experiments. Statistical significance was defined as P < 0.05. All 
data are expressed as mean ± SEM. 

Results 
Sixty-one rabbits were instrumented to obtain 48 successful myocardial infarct size experiments. Eight rabbits 
were excluded because the AAR/LV did not exceed 15% (1 control; 2 isoflurane alone; 1 isoflurane + 2-MPG; 3 
isoflurane + NAC; and 1 NAC alone). Five rabbits were excluded because of intractable ventricular fibrillation (1 
control; 2 isoflurane alone; 1 isoflurane + 2-MPG; and 1 2-MPG alone). 

Systemic Hemodynamics 
No differences in hemodynamics were observed between experimental groups under control conditions (table 
1). Isoflurane significantly (P < 0.05) decreased mean arterial pressure and rate-pressure product in the presence 
or absence of ROS scavengers. Hemodynamics returned to baseline values 15 min after isoflurane had been 
discontinued. Coronary artery occlusion and reperfusion produced similar decreases in mean arterial pressure 
and rate-pressure product in each experimental group. 



Table 1 . Systemic Hemodynamics 
 

     Reperfusion (h)   
 Baseline Isoflurane Preocclusion 30 min CAO 1 2 3 
HR (min-1)        

CON 259 ± 11 - 266 ± 11 264 ± 11 260 ± 10 265 ± 10 268 ± 12 
ISO 260 ± 10 273 ± 8 260 ± 5 240 ± 9* 242 ± 9* 235 ± 10* 238 ± 9* 
ISO+2-MPG 255 ± 9 282 ± 6* 269 ± 7 275 ± 13* 249 ± 8 241 ± 6 242 ± 2 
ISO+ NAC 251 ± 7 276 ± 7* 275 ± 6* 270 ± 8 265 ± 8 264 ± 4 270 ± 7 
2-MPG 243 ± 9 - 259 ± 8 263 ± 13 234 ± 5 230 ± 9 236 ± 12 
NAC 255 ± 9 - 261 ± 7 255 ± 11 248 ± 11 251 ± 13 247 ± 13 

MAP (mmHg)        
CON 88 ± 4 - 85 ± 3 75 ± 2* 83 ± 4 81 ± 6 78 ± 5* 
ISO 89 ± 3 67 ± 5* 82 ± 3 73 ± 4* 74 ± 5* 77 ± 4* 79 ± 4* 
ISO + 2-MPG 89 ± 2 51 ± 5* 79 ± 4 68 ± 6* 75 ± 6 76 ± 5 74 ± 4 
ISO + NAC 90 ± 4 62 ± 2* 82 ± 4 77 ± 4* 82 ± 5 83 ± 5 83 ± 3 
2-MPG 90 ± 3 - 85 ± 2 69 ± 6* 72 ± 6* 74 ± 7* 74 ± 7* 
NAC 87 ± 3 - 86 ± 2 75 ± 4* 75 ± 2* 75 ± 3* 76 ± 3* 
RPP (bpm · mmHg · 10-3 )        
CON 26.3 ± 1.9 - 26.6 ± 1.6 23.0 ± 1.5* 25.0 ± 2.1 24.7 ± 2.3 23.6 ± 2.3* 
ISO 26.3 ± 1.5 22.8 ± 1.4* 25.3 ± 1.0 20.5 ± 1.3* 20.9 ± 1.8* 20.8 ± 1.4* 21.5 ± 1.6* 
ISO + 2-MPG 25.7 ± 1.0 20.4 ± 1.7* 25.6 ± 1.0 22.0 ± 1.6* 21.8 ± 1.9* 20.7 ± 1.6* 20.2 ± 0.9* 
ISO + NAC 26.0 ± 1.4 23.2 ± 1.1 27.0 ± 1.3 24.3 ± 1.6 24.8 ± 1.4 24.9 ± 1.4 25.5 ± 0.7 
2-MPG 24.4 ± 0.9 - 25.3 ± 1.1 20.5 ± 1.6* 18.9 ± 1.2* 19.2 ± 1.8* 19.8 ± 1.7* 
NAC 25.0 ± 1.6 - 25.3 ± 1.1 21.8 ± 1.4* 21.2 ± 1.4* 21.8 ± 1.9* 21.7 ± 1.9* 

Data are mean ± SEM. 
* Significantly (P < 0.05) different from baseline. 
CAO = coronary artery occlusion; HR = heart rate; MAP = mean arterial blood pressure; RPP = rate-pressure product; CON = control; ISO = isoflurane; 2-
MPG = N-2-mercaptopropionyl glycine; NAC = N-acetylcysteine. 
 



Myocardial Infarct Size 
The body weight, LV weight, AAR weight, and AAR/LV were similar between groups (table 2). Isoflurane reduced 
myocardial infarct size (24 ± 4% of the AAR; n = 10;fig. 2) as compared to control experiments (43 ± 3%; n = 8). 
NAC and 2-MPG alone did not affect infarct size (47 ± 3%; n = 8 and 46 ± 3%; n = 7, respectively), but these ROS 
scavengers blocked the protective effects of isoflurane (43 ± 3%; n = 7 and 42 ± 5%; n = 8, respectively). 

Table 2 . Area at Risk 
 

 Body Weight (g)  
LV WT (g) 

 
AAR WT (g) 

AAR/LV (%) 

CON 2960 ± 50 3.16 ± 0.11 0.94 ± 0.13 30 ± 4 
ISO 3050 ± 80 3.16 ± 0.10 1.04 ± 0.09 33 ± 3 
ISO + 2-MPG 3000 ± 70 3.10 ± 0.13 1.04 ± 0.13 33 ± 4 
ISO + NAC 2780 ± 50 2.99 ± 0.11 0.88 ± 0.10 29 ± 3 
2-MPG 2900 ± 40 3.10 ± 0.08 1.08 ± 0.12 34 ± 3 
NAC 2790 ± 80 2.88 ± 0.08 0.83 ± 0.07 29 ± 3 

Data are mean ± SEM. 
LV = left ventricle; WT = weight; AAR = area at risk; CON = control; ISO = isoflurane; 2-MPG = N-2-
mercaptopropionyl glycine; NAC = N-acetylcysteine. 
 

 
Fig. 2. Myocardial infarct size expressed as a percentage of the left ventricular area at risk (AAR) in rabbits 
receiving saline (CON), N-2-mercaptopropionyl glycine (2-MPG), or N-acetylcysteine (NAC) in the presence and 
absence of 1.0 MAC isoflurane (ISO). *Significantly (P < 0.05) different from ISO. 
 

Reactive Oxygen Species Production 
Ethidium-DNA fluorescence was detected in all images examined (fig. 3). Rabbits pretreated with 1.0 MAC 
isoflurane demonstrated enhanced fluorescence in myocardial nuclei compared with the cytosol, in contrast to 
the findings in rabbits that did not receive the volatile agent (fig. 4). Fluorescence intensity in myocardial nuclei 
was significantly greater (28 ± 12 vs. −6 ± 9 fluorescence units) in isoflurane-pretreated compared with 
untreated rabbits. 



 
Fig. 3. Representative photomicrographs demonstrating enhanced production of superoxide anion by the 
expression of fluorescent ethidium bound to nuclear DNA. The fluorescence in myocardial nuclei in rabbits 
treated with 1.0 MAC isoflurane for 30 min (B ) was more intense than that observed in rabbits that were not 
exposed to isoflurane (A ). 
 

 
Fig. 4. Histogram depicting the effects of isoflurane on superoxide anion production measured using 
dihydroethidium staining. Fluorescence of ethidium bound to nuclear DNA was significantly (*P < 0.05) 
increased by administration of isoflurane. 
 

Discussion 
Mitochondria have been shown to produce small quantities of ROS during brief periods of ischemia that cause 
preconditioning. 5,6The protective effects of the selective mitochondrial KATPchannel opener, diazoxide, were 
blocked by pretreatment with ROS scavengers in isolated rabbit hearts. 24Diazoxide also increased oxidation of 
the ROS probe mitotracker orange in vitro , an action that was attenuated by pretreatment with the selective 
mitochondrial KATPchannel antagonist 5-hydroxydecanoate (5-HD) or the ROS scavengers NAC and 2-
MPG. 25Diazoxide directly increased ROS production as measured by the hydrogen peroxide probe 2’,7’-
dichlorofluorescein diacetate 26in rat ventricular myocytes and isolated hearts. Whether volatile anesthetics 
increase ROS production or modulate the actions of oxygen-derived free radicals as potential mechanisms by 
which these agents produce myocardial protection remains unclear. Sevoflurane has been shown to impair 
endothelium-dependent relaxation of canine mesenteric arteries by an oxygen-derived free radical 
mechanism. 27Isoflurane reduced hydroxyl radical production in the ischemic rat heart. 28In contrast, 
Müllenheim et al.  17very recently demonstrated that 2-MPG and another ROS scavenger Mn(III)tetrakis(4-
benzoic acid)porphyrine chloride abolished the protective effect of isoflurane in rabbit hearts. These data were 
the first to implicate a role for ROS in anesthetic-induced preconditioning, and suggested that volatile agents 
may be capable of producing small quantities of ROS that serve as mediators of cardioprotection. 



The results of the present investigation confirm and extend the findings of Müllenheim et al.  17and indicate 
that the ROS scavengers NAC and 2-MPG blocked the reduction in myocardial infarct size produced by isoflurane 
when these drugs were administered during exposure to isoflurane. The results further demonstrate that 
intensity of Eth-DNA fluorescence measured with confocal microscopy is significantly increased during a 30 min 
pretreatment with 1.0 MAC isoflurane. These data indicate that isoflurane directly increases superoxide anion 
generation independent of coronary artery occlusion and reperfusion and strongly imply that this ROS 
production mediates protection against irreversible ischemic injury. Mitochondria are a likely source for the 
production of the superoxide anion. 29Superoxide anion generated experimentally from the enzyme complex 
hypoxanthine–xanthine oxidase mimics the protective effects of preconditioning. 30Thus, it appears likely that 
superoxide anion produced by mitochondria may activate intracellular signaling responsible for the protective 
effect of isoflurane. However, we did not specifically determine the source of ROS production by isoflurane or 
whether the generation of this oxygen-derived free radical species is linked to mitochondrial KATPchannel 
opening in the present investigation. These objectives are important goals of future research. 

The specific oxygen-derived free radicals responsible for activation of the signal transduction of preconditioning 
are unknown. The Cu,Zn-superoxide dismutase (SOD) inhibitor diethyldithiocarbamic acid is a selective inhibitor 
of the cytosolic conversion of superoxide anion to hydrogen peroxide and abolished protection produced by 
hypoxic preconditioning in embryonic cardiac myocytes. 6These results suggested that conversion of superoxide 
anion to hydrogen peroxide may be an important step for oxidant induction of hypoxic preconditioning. N-
acetylcysteine is a sulfhydryl-containing glutathione precursor that exerts antioxidant effects by contributing to 
glutathione synthesis, serving as a glutathione peroxidase substrate, and directly scavenging several oxygen-
derived free radical species primarily by the actions of reduced glutathione. 31Mitochondria contain large 
quantities of SOD, and the vast majority of superoxide anion generated as a consequence of mitochondrial 
electron transport is enzymatically dismutated to hydrogen peroxide and oxygen by mitochondrial Mn-SOD and 
cytosolic Cu,Zn-SOD. Glutathione peroxidase contained in the cytosol subsequently catalyzes the reduction of 
hydrogen peroxide to water. Reduced glutathione acts as the electron donor of glutathione peroxidase in this 
reaction. Thus, NAC maintains the cytosolic concentration of reduced glutathione and facilitates metabolism of 
hydrogen peroxide produced by the univalent reduction of superoxide anion. 2-MPG also acts as a sulfhydryl 
donor to glutathione peroxidase, and several studies indicate that 2-MPG may be more specific for 
mitochondrial activity than NAC. 32–34We did not specifically identify the particular ROS scavenged by NAC or 
2-MPG that was responsible for isoflurane-induced preconditioning. However, the present results indicate that 
exposure to isoflurane is accompanied by the generation of superoxide anion in ventricular myocytes, most 
likely in the mitochondria, in the absence of ischemia and reperfusion. Thus, it appears likely that the superoxide 
anion or another ROS generated by the superoxide anion dismutation pathway is involved in the signal 
transduction of isoflurane-induced preconditioning. 

The present results should be interpreted within the constraints of several potential limitations. The area of the 
left ventricle at risk for infarction and coronary collateral blood flow are important determinants of the extent of 
myocardial infarction. The AAR was similar between experimental groups. Minimal coronary collateral blood 
flow has been previously reported in rabbits. 35Thus, it is unlikely that the present results were affected by the 
size of the AAR or magnitude of coronary collateral blood flow. 

Isoflurane caused similar hemodynamic effects in the presence or absence of ROS scavengers, and there were 
no differences in hemodynamics between groups after discontinuation of isoflurane. Thus, the present results 
occurred independent of the hemodynamic effects of isoflurane and/or the ROS scavengers. Nevertheless, 
coronary venous oxygen tension and myocardial oxygen consumption were not directly quantified in the present 
investigation, and differences in myocardial oxygen metabolism during the administration of isoflurane with or 
without ROS scavengers cannot be completely excluded from the analysis. However, no differences in primary 



hemodynamic determinants of myocardial oxygen consumption were observed, and an indirect indicator (i.e. , 
rate-pressure product) of myocardial oxygen consumption was also similar between experimental groups. 

Experiments using dihydroethidium as an indicator of superoxide anion production provide primarily qualitative 
results. Dihydroethidium can catalyze the dismutation of superoxide anion, thus, rates of superoxide anion 
production may be underestimated using this technique. 36In addition, cytochrome c  can oxidize 
dihydroethidium. 36It is unlikely that cytochrome c  release occurred in experiments during which 
dihydroethidium was used because animals were not subjected to ischemia and reperfusion. Isoflurane is 
unlikely to cause cytochrome c  release because this anesthetic has previously been demonstrated to decrease 
apoptosis and inhibit caspase activation in ventricular myocytes. 37  

In summary, the present results provide direct evidence that isoflurane generates ROS in rabbit ventricular 
myocardium in vivo  using a laser fluorescence confocal microscopic imaging technique. The present findings 
further indicate that scavenging of these ROS by NAC and 2-MPG abolishes myocardial protection produced by 
isoflurane. These findings suggest that generation of ROS by volatile anesthetics is an essential part of the 
signaling pathway of anesthetic-induced preconditioning. 

The authors thank David Schwabe, B.S.E.E. for technical assistance, and Mary Lorence-Hanke, A.A. (both from 
the Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin) for assistance in 
preparation of the manuscript. 
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