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Abstract 

Background 
Many children with spastic diplegic cerebral palsy (CP) use anterior or posterior walkers to aid ambulation. 

Prolonged use may lead to upper extremity (UE) pathology later in life, including arthritis and joint contractures. 

Purpose 
This study analyzes the dynamics (kinematics and kinetics) of the shoulder (glenohumeral), elbow, and wrist 

joints during anterior and posterior walker use. It also examines the dynamic effects of adjusting handle height 

and grip rotation. 

Methods 
Ten children with CP underwent motion analysis with upper and lower extremity marker sets and six-degree-of-

freedom instrumented walker handles, while using both anterior and posterior walkers. One child underwent 

the same analysis, with added trials for wrist derotation (adjusted axial grip rotation) and wrist plus elbow 

derotation (adjusted handle height). A validated kinematic and kinetic model was applied to calculate UE joint 

angles, joint reaction forces (JRFs), and joint reaction moments (JRMs). 

Results 
Surprisingly, no statistically significant differences in UE angles, JRFs, or JRMs were observed between anterior 

and posterior walkers. Wrist derotation, however, decreased the flexion JRM seen at the wrist, and elbow 

derotation decreased the flexion JRM seen at the elbow. 

Conclusion 
Anterior and posterior walkers produce similar UE motion and peak loading values. Wrist and elbow joint 

derotation alters the dynamic effects experienced by the UEs. UE motion analysis during aided gait can be useful 

for optimizing UE loading conditions to limit pathology later in life. 
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1. Introduction 
Cerebral palsy (CP) is a neurological condition that affects muscle tone and coordination. It is the result of 

pathologic brain development, insult, or injury and generally appears in infancy or early childhood. The causes of 

CP remain unclear, but risk factors include low birth weight, intrauterine infection, and multiple gestations.1 The 

overall prevalence of CP in the United States is between three and four per 1000 live births,2, 3 or approximately 

10,000 to 17,000 babies each year.4 CP is the largest diagnostic group treated in pediatric rehabilitation.5 

Spastic diplegia, the most common distribution of involvement, accounts for an estimated 75–87% of patients 

with CP.6 Spasticity is defined as a velocity-dependent increase in muscle tone. This decreases the patient’s 

motor control and balance, thereby impairing their ability to walk and perform other functional activities. 

Individuals with spastic diplegia have greater involvement in the lower extremities (LEs) than in the upper 

extremities (UEs). Assistive devices, including walkers, allow the UEs to aid in the weight-bearing, transfer, and 

stability aspects of ambulation not fully provided by the LEs.7, 8 Clinicians usually prescribe one of two primary 

types of walkers to children with spastic diplegic CP: anterior or posterior (Figure 1). 



 
Figure 1. L: Anterior and R: posterior walker. 
 

Many children with spastic diplegic CP also have some degree of involvement in their UEs, including 

spasticity, muscle contractures or imbalances, and weakness. While the clinical manifestations of CP are highly 

variable, due to the locus of specific brain lesions, a common pathologic UE pattern consists of 

shoulder adduction and internal rotation, elbow flexion, forearm pronation, and wrist flexion.9 

Few clinical tools objectively evaluate the UE impairments of patients with CP during assisted gait. Motion 

analysis has been used extensively to evaluate the LEs in many pathologic conditions, including CP.10, 11, 12 Some 

studies, including those from our group,13, 14, 15, 16 have begun to use this technology to investigate the UEs during 

assisted gait.17, 18 Although UE motion is difficult to compare across populations and studies, it is an important 

tool for quantifying changes over time, changes secondary to clinical/surgical intervention, and changes 

resulting from alterations in the walker configuration. 

In addition to kinematics, it is important to study the internal joint reaction forces (JRFs) and joint reaction 

moments (JRMs) that result from walker use. The resulting gait pattern is quadrupedal, which places varied 

demands upon the UEs for balance, support, and gait progression.16, 17, 18, 19, 20 Joint load-related pathology, 

including carpal tunnel syndrome21 and shoulder injury and arthritis later in life, have been linked to the 

prolonged use of walking aids and wheelchairs.22, 23 It is important to allow the LEs to bear as much weight as 

possible during walker use to re-establish a bipedal pattern while avoiding UE overuse injury. 

2. Purpose 
The objective of the current study was to characterize wrist, elbow, and shoulder (glenohumeral) joint dynamics 

(position, JRFs, and JRMs) during anterior and posterior walker use. We also examined the potential for UE load 

reduction through walker modification, a novel concept not explored in current literature. A quantitative 

approach was taken to assess the effects of handle height and grip rotation modifications during both anterior 

and posterior walker usage. 

3. Methods 

3.1. Subjects 
Ten participants with spastic diplegic CP were tested (mean age 12.1 years, height 1.3 m, weight 35.6 kg). The 

inclusion criteria required routine walker use for at least 1 month, an Ashworth score of 2 or less (slight increase 

in tone) at the elbow joint, no botulinum toxin type A treatment within the past 6 months, and no orthopedic 

surgery within the past year. An additional participant, with the same inclusion criteria, was tested with an 

adjustable walker (adaptive therapeutic walker, ATW). 



3.2. Protocol 
All participants underwent motion analysis, with reflective surface markers placed on anatomical locations of 

the UEs and LEs. Kinetic data were collected using custom designed walker handles instrumented with 6-axis 

strain gage-based load cells (AMTI, Watertown, MA, USA). Motion data were collected at 60 Hz with a 12-

camera system (Vicon, Oxford, UK), and kinetic data were simultaneously collected at 1500 Hz. The marker set, 

motion capture system, walker handles, and dynamic model have been described and validated previously by 

our group.24, 25 Figure 2 describes the data collection and calculation process. 

 
Figure 2. Data collection and analysis process. x,x˙,x.. are center of mass position, velocity, and acceleration, 
respectively; θ, ω, α are joint angle, angular velocity, and angular acceleration, respectively. In the 
equations, F = force, m = mass, a = acceleration, H˙ = mass moment of inertia, R = moment arm; i refers to the 
current segment, i − 1 to the distal segment, and i + 1 to the proximal segment. 
 

The walkers (Sunrise Medical, Longmont, CO, USA; Kaye Products, Inc., Hillsborough, NC, USA) were height-

adjusted so that the handles were even with the ulnar styloid process with arms at the sides. Data were first 

collected with the subjects’ usual walker type (posterior, in all cases). At least three acceptable gait cycles at a 

self-selected pace and walking style were obtained. For the 10 participants, a 30-day acclimation period was 

given before testing was repeated using the alternate walker type (anterior). 

The participant undergoing the ATW protocol, performed testing with both walker types during the same visit. 

An adjustable walker modified with Velcro handle grips was used, while the participant wore snug-fitting Velcro 

gloves. The walker height was initially set as described above. A physical therapist then rotated the handle grips 

so that the wrists were de-rotated to a more neutral position (0 degrees flexion). The final adjustment involved 

altering the handle heights to move the elbows into 30 degrees flexion, while the wrist derotation remained 

intact. Data were collected as described above for each of the three configurations. The entire process was 

repeated for the alternate walker type, for a total of six data sets (original anterior and posterior walker, 

adjusted wrist anterior and posterior walker, adjusted wrist and elbow anterior and posterior walker). 

3.3. Data analysis 
The raw data was filtered and processed with a custom UE kinematic and kinetic model to obtain joint angles, 

angular velocities, angular accelerations, and three-dimensional force and moment data at the wrist, elbow, and 

shoulder joints.13, 16 The model complied with International Society of Biomechanics (ISB) standards26 and 

computed three-dimensional Euler joint rotations comparing distal segments to proximal segments in a sagittal-

coronal-transverse rotation sequence. The kinetic portion of the model used an inverse dynamics approach, 

similar to Vaughan et al in 199227 to determine the JRFs and JRMs at each UE joint. All data were time-

normalized to 100% gait cycle. The magnitudes of the forces and moments were normalized to body weight (% 

BW) and body weight × height (% BW × H), respectively, and are reported as percentages. 



3.4. Statistical analysis 
The kinematic data for the initial 10 participants were compared between walker types and sides using a paired 

t-test with a Bonferroni adjustment.16 Kinetic data were compared between walker types and sides using 

a Wilcoxon signed rank test with Benjamini-Hochberg threshold values.13 

4. Results 

4.1. Standard anterior and posterior walker 
Complete results from the 10 participants have been reported previously13, 16 and are shown 

in Figure 3, Figure 4, Figure 5. There were no statistically significant differences between walker types (anterior 

and posterior) or sides (right and left, or dominant and non-dominant). The overall trends include the following. 

 
Figure 3. Average shoulder dynamics. (– Anterior Walker; - - - Posterior Walker). 

 
Figure 4. Average elbow dynamics. (– Anterior Walker; - - - Posterior Walker). 

 
Figure 5. Average wrist dynamics. (– Anterior Walker; - - - Posterior Walker). 
 

The shoulder (glenohumeral joint) was abducted, extended, and internally rotated with each walker type. The 

posterior walker produced greater shoulder extension than the anterior walker [average difference of 13.65 

degrees (deg)]. The flexion JRM was greater during anterior walker use (1.67% BW × H for anterior walker, 

0.97% BW × H for posterior walker). 



The elbow was flexed and the forearm pronated with both walker types, but more so with the posterior walker 

(average difference of 4.0 deg flexion, 6.1 deg pronation). The medial JRF at the elbow was greater with 

posterior walker use (2.5% BW for posterior walker, 0.1% BW for anterior walker), as was the extension JRM 

(1.08% BW × H for posterior walker, 0.78% BW for anterior walker). 

The wrist was ulnar deviated with both walker types, more so with anterior walker (average difference of 6.6 

deg). Wrist extension was seen with both types. The posterior walker produced a greater anterior JRF (1.9% BW 

for posterior walker, -1.2% BW for anterior walker), and flexion JRM (0.27% BW × H for posterior walker, 0.09% 

BW × H for anterior walker). 

4.2. Adaptive therapeutic walker 
Results from the ATW protocol showed a decrease in wrist flexion position and a decrease in wrist extension 

moment when the handles were rotated. After elbow and wrist adjustments, the elbow flexion position 

decreased, as did the flexion moment. This is most clearly seen on the right side during posterior walker use, 

shown in Figure 6. 

 
Figure 6. Right side sagittal plane wrist and elbow dynamics for posterior ATW. (– Original; - - - Adjusted wrist; ··· 
Adjusted wrist and elbow). 
 

5. Discussion 
Kinematic and kinetic analysis of 10 children with spastic diplegic CP showed no statistically significant 

differences in UE dynamics between standard anterior and posterior walkers. The ranges of motion and joint 

kinetics were established and found to compare favorably to values reported by our group and others in earlier 

studies.17, 28, 29 

The ATW model was used to evaluate joint load effects resulting from walker handle rotation and position 

adjustments. Overall, results showed that moving the wrist and elbow joints to a more neutral position 

decreased the joint reaction moments seen at these joints. Derotating the wrist did not have a noticeable 

impact on the elbow or shoulder joint loads, which was a beneficial result. Wrist derotation also reduced the 

wrist flexion moment, another beneficial result. The limited combinations of wrist and elbow adjustment 

currently examined, decreased the elbow flexion JRM (a beneficial effect), but increased the wrist flexion JRM 

(not desired). Neither adjustment (wrist or wrist/elbow) had a noticeable impact on the shoulder flexion JRM (a 

beneficial effect). Continued examination of handle position and orientation adjustments as well as asymmetric 

adjustments remains a goal for further investigation. 

Small changes to UE joint angles may affect the loading experienced by the joints. There is a complex 

relationship among the joints, as changing the dynamics of one joint affects the others. This is a relationship 

worth investigating, since optimizing joint loading conditions can have an impact both in the short term 

(comfort) and longer term (contractures, arthritis). While minimizing UE joint loads is an important goal, the 

loads that are experienced can also be used to the patient’s benefit. By positioning the walker handles in such a 



way that the user has a more neutral wrist and elbow position (without increased shoulder loading), the UE 

weight-bearing activity of assisted gait could reduce/avoid later joint contractures and stiffness. Minimizing the 

overall UE loads while maintaining balance and stability, contributes to ambulatory function while also ensuring 

that the LEs bear as much weight as possible. This transition to greater LE weight bearing support also helps to 

increase LE strength and dynamic range while reducing UE demands and potential for later injury. 

Limitations of this study relate to the sample of patients studied and the relatively limited number of cases. 

Because of variability within the CP population, a larger sample size would be suggested for further study and 

characterization of kinematic and kinetic metrics. The ATW analysis is also limited, examining a single subject. 

Larger populations for both protocols would enhance the results, and potentially lead to a defined methodology 

and clinical protocol for optimizing/reducing UE load bearing while maintaining function during walker assisted 

gait. 
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