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Abstract 

Background 
Fine wire electromyography (EMG) is commonly used for surgical decision making in equinovarus foot 

deformity. However, this invasive technique may have the unwanted effect of altering the gait of children with 

cerebral palsy (CP). The purpose of this study was to determine if fine wire insertion into the posterior tibialis 

muscle affects temporal-spatial parameters and hindfoot kinematics during gait in children with equinovarus 

secondary to hemiplegic CP. 

Methods 
12 children with hemiplegic CP who presented with an equinovarus foot (mean age 12.5 yrs, four right-sided, 

eight left-sided) were recruited. Temporal-spatial parameters and 3-D segmental foot and ankle kinematic gait 

data were collected utilizing standard gait analysis and the Milwaukee Foot Model (MFM). Three representative 

trials with and without fine wire electrode insertion were compared to determine the effect of electrode 

placement in the posterior tibialis on temporal spatial-parameters and hindfoot sagittal, coronal and transverse 

plane kinematic peaks, timing of kinematic peaks, and excursions. 

Results 
No significant differences in any temporal-spatial or kinematic parameters were observed between “with wire” 

and “without wire” conditions. Strong correlations were observed among the gait parameters, with the 

exception of cadence, for the two conditions. 

Discussion 
Fine wire insertion into the posterior tibialis had no measurable effect on the gait of individuals with 

equinovarus secondary to hemiplegic CP. This suggests that the simultaneous collection of segmental foot and 

ankle kinematics and fine wire EMG data of the posterior tibialis is acceptable for surgical decision making in this 

patient population. 
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1. Introduction 
The use of electromyographic (EMG) patterns for surgical decision making in the lower extremities of children 

with cerebral palsy (CP) has become commonplace, and more recently it has been used to assist with 

understanding the pathomechanics associated with equinovarus foot [1]. A combination of surface electrodes 

for the more superficial musculature (anterior tibialis and gastrocnemius) and fine wire electrodes for deeper 

musculature (posterior tibialis) is used to determine the primary neuromuscular contributor(s) of the 

deformity [2]. Previously reported EMG studies have demonstrated that varus deformity in children with 

hemiplegic CP resulted from the anterior tibialis alone in 34% of cases, posterior tibialis alone in 33%, both 

muscles in 31%, and muscles other than the anterior or posterior tibialis in 2% [3]. In order to reliably use this 

assessment technique the question must be answered as to whether the introduction of a fine wire electrode 

alters the existing gait pattern, as young children can experience a combination of pain, anxiety, and discomfort 



associated with the technique. This becomes problematic when EMG and kinematic data are collected 

simultaneously for the purpose of surgical decision making. 

Fine wire electrodes have been found to result in alterations in temporal-spatial parameters in children with 

diplegic CP [4]. Specifically, significant reductions were identified in cadence, walking velocity, step length of the 

measured limb, and step length of the non-measured limb when children were instructed to walk at a self-

selected velocity. Although these findings implied that caution should be taken when utilizing these data 

collected simultaneously with 3-D kinematics for surgical decision making, it must be noted that all of the 

measures were temporal-spatial parameters. Fatigue might have been another factor for the reported gait 

alterations since the internal electrode trials were always conducted last. Also, this study only examined children 

with diplegic CP. Equinovarus deformity is most common in children with hemiplegic CP who have consistently 

been described as having improved gait and lower extremity function compared to children with diplegia [5]. 

In addition to temporal-spatial parameters, 3-dimensional hindfoot kinematics can provide quantitative data 

regarding possible alterations in walking due to fine wire insertion into the posterior tibialis. A method for 

calculating hindfoot kinematics has been described by Kidder et al. and has been validated for use in 

children [6], [7]. The Milwaukee Foot Model (MFM) is a four-segment foot and ankle kinematic model that uses 

passive surface markers to quantify motion of the tibia, hindfoot, forefoot and hallux. Unique to the MFM is the 

use of radiographic offset measurements in anterior/posterior, lateral, and a coronal-plane hindfoot view to 

relate the underlying orientation of the bony anatomy to the surface markers, i.e. neutral referencing [8]. The 

kinematics are expressed with the tibia referenced to the global coordinate axes, and the remaining segments 

are represented in a distal relative to the next proximal segment relationship using an Euler System. 

The purpose of the present study is to determine if fine wire insertion into the posterior tibialis affects the gait 

pattern of children with hemiplegic CP and equinovarus. We tested the hypothesis that reductions in cadence, 

walking velocity and step length will be similar in children with hemiplegia to those previously reported for 

children with diplegic CP. We also hypothesized that fine wire electrode insertion will alter hindfoot sagittal, 

coronal, and transverse plane kinematics during locomotion. Specifically, we expected that the presence of the 

inserted electrode would result in earlier onsets and reductions in peak motion, as well as, diminished overall 

hindfoot excursion (ROM) during the gait cycle. 

2. Methods 

2.1. Participants 
Twelve children with hemiplegic CP (seven males, five females, average age: 12.5 yrs, range: 5–17 yrs). All 

participants presented with a unilateral equinovarus foot deformity and were recruited for the present study as 

a part of a diagnostic gait analysis with a plan for possible surgical correction. Four of the participants presented 

with right-sided hemiplegia, and eight presented with left-sided hemiplegia. Based on the hemiplegic gait 

classification system established by Winters et al., two participants had a type I pattern, four had a type II 

pattern, two had a type III pattern, and four had a type IV pattern [9]. All participants had no prior history of 

orthopedic surgery for equinovarus and had not received botulinum toxin injections within one year prior to 

evaluation. Children were excluded if they presented with cognitive or behavioral impairments that interfered 

with their ability to understand and follow basic commands necessary to participate in quantitative gait analysis 

and a standing weight-bearing X-ray series. All participants gave informed consent according to a University 

approved protocol. 



2.2. Instrumentation 
Subjects underwent 3-D gait analysis using a 14-MX camera motion analysis system (VICON, Oxford, UK) 

collected at 120 Hz. Cadence, walking velocity, and step length were calculated using Vicon Workstation (version 

5.2.4) software and the PlugInGait model. 

Simultaneously, the Milwaukee Foot Model was employed to measure multisegmental foot and ankle 

motion [6]. 12 passive 9 mm reflective markers were placed on the tibia, calcaneus, forefoot and hallux. A triad 

was placed on the proximal phalange to obtain hallux data. Resolution, accuracy, and reliability of the foot and 

ankle system has been established [10]. The kinematic data were processed and calculated using a custom 

program in Matlab (Matlab, Mathworks®, Natick, MA, USA). 

Fine wire EMG electrode insertion into the posterior tibialis was performed with participants in a seated, 

reclined position and the measured lower extremity in external rotation. Needle insertion was performed as 

reported by Yang et al. with a posterior approach under the medial tibial shaft and directed deep along the bone 

where the muscle lies against the interosseous membrane [11]. A 27 Ga., 30 mm hypodermic needle with paired 

hook wire electrodes was used. Wire electrode placement into the posterior tibialis was confirmed using pulsed 

electrical stimulation and visual observation of real time raw EMG display during voluntary contraction. Surface 

electrode placement on the anterior tibialis was 1/3 of the distance from the lower margin of the patella to the 

lateral malleolus. Medial gastrocnemius surface electrode placement was 1/3 of the distance from the medial 

femoral condyle to the bisection of the posterior aspect of the calcaneus [12]. Surface and fine wire data were 

captured with Vicon Workstation software at a sampling rate of 2160 Hz. 

2.3. Experimental protocol 
Participants were instructed to walk “at a comfortable walking speed” over a 30 m walkway. A total of 20–30 

trials were collected until six representative trials (three “with wire” and three “without wire”) were obtained 

for analysis. The presence of fatigue effects was tested by having the first six participants (Wire 1st Group) 

undergo the “with wire” trials first followed by the “without wire” trials. The second six participants (Wire 2nd 

Group) underwent the “without wire” trials first followed by the “with wire” trials. All kinematic data was 

collected with surface EMG electrodes over the anterior tibialis, gastrocnemius, rectus femoris, and medial 

hamstrings. 

Following gait data collection, participants received a series of weight-bearing radiographs of the foot in the 

anterior–posterior and lateral views along with a modified hindfoot coronal alignment view [8]. All fine wire 

electrode placement and specific radiographic offset measurements were obtained by the same author (JK). 

2.4. Data analysis 
Group averages were calculated using six representative trials from each participant (three “with wire” and 

three “without wire”) and were compared across the gait cycle using two-way, repeated measure analyses of 

variance. This was performed to determine the effect the of presence of a fine wire electrode in the posterior 

tibialis and trial order on temporal-spatial parameters, as well as, hindfoot sagittal, coronal and transverse plane 

kinematic peaks, timing of kinematic peaks, and ROM. Individual change scores were also calculated for the 

amplitude and timing of kinematic peaks, as well as, hindfoot ROM by subtracting the value obtained from the 

“without wire” trials from the “with wire” trials. A negative score indicates an earlier onset of peak motion, 

decrease in peak motion, or decrease ROM with the presence of a wire electrode in the posterior tibialis. 

Conversely, a positive score indicates a delayed onset of peak motion, increase in peak motion, or increase in 

ROM with the presence of a wire electrode. Due to multiple comparisons a Bonferroni correction was 

implemented to minimize the risk of a type I error. This yielded an adjusted alpha value of 0.004. 



Once non-significant differences were identified among the variables, Pearson correlation coefficients (r) were 

then calculated to further analyze the association between the gait parameters of the “with wire” trials and the 

“without wire” trials, as well as, provide an effect size estimate [13]. In accordance with Cohen's Classification, a 

strong association was defined as an r value of greater than 0.70, a moderate to substantial association was 

defined as an r value between 0.30 and 0.70, and a weak association was defined as an r value of less than 

0.30 [14]. 

3. Results 

3.1. Temporal-spatial parameters 
Table 1 shows the temporal-spatial parameters of the measured and non-measured side averaged (with 

standard error) over all trials for the “with wire” and “without wire electrode” trials. The p-values indicate a non-

significant effect of the presence of a fine wire electrode on walking speed, cadence, and step length of the 

measured and non-measured side. Correlation analysis demonstrated strong associations between “with wire” 

and “without wire” conditions for walking speed (r = 0.81, p = 0.001), step length of the measured leg 

(r = 0.96, p ≤ 0.0001), and step length of the non-measured leg (r = 0.91, p ≤ 0.0001). Correlation of cadence 

between conditions was not significant. 

Table 1. Group averages and standard errors (SE) of temporal-spatial parameters with and without a fine wire 

electrode in the posterior tibialis. 

Temporal-spatial gait parameters: group 
averages 

   

Variable With wire trials average 
(SE) 

Without wire trials 
average (SE) 

p value 

Walking speed (m/s) 0.94 (0.05) 0.95 (0.07) n.s. 

Cadence (steps/min) 116.98 (4.32) 118.70 (4.26) n.s. 

Step length: measured leg (m) 0.47 (0.03) 0.46 (0.04) n.s. 

Step length: non-measured leg (m) 0.49 (0.02) 0.50 (0.02) n.s. 

 

3.2. Hindfoot kinematics 
Plots of individual sagittal kinematics with and without the presence of a fine wire electrode are presented 

in Fig. 1. The first plot shows the Wire 1st group and second plot shows the Wire 2nd group. The “with wire” and 

“without wire” trials are plotted on top of one another and demonstrate minimal deviation. Fig. 2, Fig. 3 display 

averages and standard errors of hindfoot kinematic peaks timing of peaks, and ROM in the sagittal, coronal, and 

transverse planes. Fig. 4, Fig. 5 display the change score of the Wire 1st and Wire 2nd groups for hindfoot peaks, 

timing of kinematic peaks, and, excursions in the sagittal, coronal and transverse planes. No significant main 

effect of fine wire insertion, nor interactions of fine wire insertion and trial order, were found for hindfoot 

peaks, timing of those peaks, and ROM. Correlation analysis of hindfoot kinematics demonstrated strong 

associations between the conditions for all gait parameters: peak maximum and timing of peak maximum 

(range: r = 0.78–1.00, p ≤ 0.0025), peak minimum and timing of peak minimum (range: r ≤ 0.89–

1.00, p ≤ 0.0001), and ROM (range: 0.89–0.99, p ≤ 0.0001). 



 
Fig. 1. Individual sagittal plane hindfoot kinematic plots of the twelve participants with (black) and without (gray) 

a wire electrode in the posterior tibialis. Participants were separated into a “Wire 1st” group or a “Wire 2nd” 

group depending on when during testing the participants had the wire electrode inserted. 

 
Fig. 2. Group averages and standard error bars of hindfoot kinematic peaks and range of motion during gait in 

the sagittal, coronal, and transverse planes with (black) and without (gray) a wire electrode in the posterior 

tibialis. 



 
Fig. 3. Group averages and standard error bars of timing of hindfoot kinematic peaks during gait in the sagittal, 

coronal, and transverse planes with (black) and without (gray) a wire electrode in the posterior tibialis. 

 
Fig. 4. Individual change scores (CS) in kinematic peaks and range of motion in the sagittal, coronal, and 

transverse planes stratified by trial order. Black triangles indicate the “Wire 1st” group and the gray squares 

indicate the “Wire 2nd” group. 



 
Fig. 5. Individual change scores (CS) in timing of kinematic peaks in the sagittal, coronal, and transverse planes 

stratified by trial order. Black triangles indicate the “Wire 1st” group and the gray squares indicate the “Wire 

2nd” group. 

4. Discussion 
The central finding of this study is that fine wire electrode insertion into the posterior tibialis does not alter the 

gait patterns of children with equinovarus secondary to hemiplegic CP. No differences were observed in 

temporal-spatial parameters or hindfoot kinematics with the introduction of a fine wire electrode in the 

posterior tibialis. The similarities between the “with wire” and “without wire” trials were further supported with 

strong correlations among both the temporal-spatial and kinematic variables. Thus, these findings suggest that 

electromyographic (including fine wire analysis of the posterior tibialis) and kinematic data gathered during a 

gait analysis can be collected simultaneously without the risk of data corruption for children with equinovarus 

due to hemiplegia. When executed in such a manner, simultaneous data collection efficiently provides a 

comprehensive evaluation of the multisegmental and multiplanar nature of equinovarus, as well as, identifies 

the potential neuromuscular contributor(s) that can aid in surgical decision making. 

It has been postulated that the presence of a fine wire electrode can result in pain, alterations in muscular 

activity, and changes in gait mechanics [2]. Data from the current study identified two potential outliers 

presenting with either an alteration in peak motion or timing of peak motion isolated to the end of stance 

phase. After closer observation of their data, the other parameters were consistent between conditions, and any 

deviations were not considered clinically meaningful. These individuals consistently presented with more severe 

gait deviations that extended into proximal lower extremity segments (Winters type III and IV gait patterns) [9]. 

Without excluding their data from the analysis, strong associations were observed among the temporal-spatial 

and kinematic parameters. 

The current study's findings regarding the effect of fine wire insertion on gait are in contrast to previous reports 

of children with diplegia who demonstrated reductions in temporal-spatial parameters following fine wire 

insertion into the posterior tibialis [3]. This discrepancy can be explained when reviewing the fundamental 

differences in the two patient populations. Damiano et al. demonstrated that among participants with CP at a 

similar level of functional mobility, i.e. Gross Motor Functional Classification System (GMFCS) Level, children 

with hemiplegia had a tendency to perform consistently better at tasks associated with gait (including measures 

of walking speed and stride length) and lower extremity function than children with diplegia [5]. These 

functional differences may result from the presence of one higher functioning, if not normal, lower limb in 



children with hemiplegia [15]. Thus, the potential response to a treatment, or in this case an evaluation 

technique, is likely to vary with different distributions of limb involvement. These findings are further supported 

by the current study where the presence of a wire electrode did not impact temporal-spatial or kinematic 

parameters during locomotion in childen with hemiplegia. 

The current study also found no effect of trial order on hindfoot kinematic peaks or ROM. Neither the Wire 1st 

nor Wire 2nd groups demonstrated obvious trends in kinematic change scores. Thus, this patient population 

should be able to tolerate walking up to 20–30 trials on a 30 m walkway without alterating their gait pattern. 

A limitation in the current study was that localization of wire EMG electrode into the posterior tibialis was not 

performed with imaging techniques, i.e. ultrasound. Verification was performed with the use of pulsed electrical 

stimulation and viewing real-time raw EMG output during voluntary contraction of the posterior tibialis and 

flexor hallicus longus. Also, the results of the current study are based on a relatively small, homogenous group of 

children with flexible equinovarus deformity due to hemiplegic CP. Therefore, generalization of these results to 

other patient populations commonly presenting with equinovarus deformity, such as diplegic CP, talipes 

equinovarus, and Charcot–Marie–Tooth, should be cautioned. 

In conclusion, the results of the current study demonstrate that fine wire electrode placement into the posterior 

tibialis did not affect the gait of children with equinovarus secondary to hemiplegic CP. This allows researchers 

and clinicians to collect multiple forms of data simultaneously during gait analysis to efficiently and effectively 

determine the etiology of the equinovarus deformity for surgical decision making as well as to measure post-

operative outcomes. 
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