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Abstract 
Anaerobic treatment is a sustainable and economical technology for waste stabilization and production 

of methane as a renewable energy. However, the process is under‐utilized due to operational 

challenges. Organic overload or toxicants can stress the microbial community that performs waste 

degradation, resulting in system failure. In addition, not all methanogenic microbial communities are 

equally capable of consistent, maximum biogas production. Opinion varies as to which parameters 

should be used to monitor the fitness of digester biomass. No standard molecular tools are currently in 

use to monitor and compare full‐scale operations. It was hypothesized that determining the number of 

gene copies of mcrA, a methanogen‐specific gene, would positively correlate with specific 

methanogenic activity (SMA) rates from biomass samples from six full‐scale anaerobic digester 

systems. Positive correlations were observed between mcrA gene copy numbers and methane 

production rates against H2 : CO2 and propionate (R2 = 0·67–0·70, P < 0·05) but not acetate 

(R2 = 0·49, P > 0·05). Results from this study indicate that mcrA gene targeted qPCR can be used as an 

alternate tool to monitor and compare certain methanogen communities in anaerobic digesters. 

Significance and Impact of the Study 
Using quantitative PCR (qPCR), we demonstrate that the abundance of mcrA, a gene specific to 

methane producing archaea, correlated with specific methanogenic activity (SMA) measurements 

when H2 and CO2, or propionate were provided as substrates. However, mcrA abundance did not 

correlate with SMA with acetate. SMA values are often used as a fitness indicator of anaerobic 

biomass. Results from qPCR can be obtained within a day while SMA analysis requires days to weeks to 

complete. Therefore, qPCR for mcrA abundance is a sensitive and fast method to compare and monitor 

the fitness of certain anaerobic biomass. As a monitoring tool, qPCR of mcrA will help anaerobic 

digester operators optimize treatment and encourage more widespread use of this valuable 

technology. 

Introduction 
Anaerobic waste treatment is often a sustainable, economical process in which the degradation of 

organic compounds in industrial and municipal wastes result in the biological production of a 

renewable energy source: methane. However, anaerobic bioprocesses may be under‐utilized due to 

operational challenges, such as difficult start‐up and transient periods of poor operation 

(Speece 1996). Prudent use of monitoring and control has been used or suggested to help prevent 

failure or encourage faster start‐up and recovery of stressed digesters (Castellano et al. 2007; Schauer‐

Gimenez et al. 2010). Activity testing, such as specific methanogenic activity (SMA) assays, has been 

used to determine maximum methane production rates of anaerobic biomass given specific substrates 

(Coates et al. 1996, 2005). Unfortunately, days to weeks are typically required to obtain activity results, 

limiting applicability for real‐time optimization. 



Digester microbial communities are complex, with multiple trophic levels in which different groups of 

organisms carry out waste degradation in a series of steps (Schink 1997; Fernandez et al. 1999; 

White 2000; Leclerc et al. 2004; Liu and Whitman 2008; Rivière et al. 2009). The methanogens are 

especially important as the last link in the food chain, performing the final step in the degradation of 

organic waste to methane (McCarty and Smith 1986). Additionally, their function is closely tied to that 

of the syntrophic fatty‐acid degrading bacteria that metabolize these compounds and depend upon 

hydrogen removal by methanogens (Schink 1997; Conrad and Klose 1999). Furthermore, 

methanogenesis is often considered to be the rate‐limiting step in anaerobic treatment of many 

wastes (Liu and Whitman 2008). Therefore, methanogens are critical for digester stability. Monitoring 

this specific group of organisms may provide an important link between digester function and 

microbial community structure. 

Methanogens possess an operon that encodes the methyl coenzyme M reductase (MCR). The presence 

and transcription of the gene that encodes the alpha subunit of MCR (mcrA) has been used to detect 

methanogen presence and activity in the environment (Springer et al. 1995; Luton et al. 2002; 

Juottonen et al. 2008; Steinberg and Regan 2009; Kampmann et al. 2012; Zeleke et al. 2013; 

Bocher et al. 2015). Previously, we showed that mcrA gene copy numbers, but not transcript numbers, 

positively correlated with SMA values in laboratory methanogenic enrichments (Morris et al. 2014). An 

advantage of qPCR of mcrA over SMA analysis is that relevant data can be obtained in a much shorter 

period of time. 

This study was performed to test the hypothesis that the mcrA gene copy numbers positively correlate 

to SMA values determined for industrial and municipal anaerobic biomass. Herein, we report the 

comparison of mcrA gene abundance to SMA values from biomass collected from six full‐scale 

anaerobic treatment plants. 

Results and discussion 
Methanogen community fingerprint with denaturing gradient gel electrophoresis (DGGE) 

Biomass from the six different full‐scale digesters (Table 1) was examined for the presence and 

structure of the methanogen community by fingerprinting using the mcrA gene and DGGE. The results 

revealed a unique methanogen community within each full‐scale digester (Fig. 1a). A dendogram 

constructed from the densitometric data from the gel confirmed that the communities were different 

even when the substrates were similar (Fig. 1b). For example, the biomass from both MSS and MBR, 

which were municipal anaerobic digesters, appeared in different clades (Fig. 1b). 

Table 1. Description of anaerobic waste treatment systems and operating conditions. Results provided by 
operators in response to a questionnaire 

Digester Substrate Operating 
temperature 
(oC) 

pH Biogas production Organic loading rate Hydraulic 
retention 
time 

CB Brewery 
waste 

26·7–29·4 6·5–
8·0 

351·3 l kg−1 COD 
removed 

NP 4·4 h 

KI Milk‐derived 
food additive 
waste 

35·6–36·7 7·0 19 369 SCM day−1 NP 7–10 days 



CF Dairy cow 
manure 
waste 

NP NP NP NP NP 

JBS Beef 
slaughter 
waste 

36·1 7·0 130 SCM day−1 1·6 kg COD m−3 day−1 3–4 days 

MBR Municipal 
waste 

36·2 7·1 6884 SCM day−1 0·80 kg VS m−3 day−1 53 days 

MSS Municipal 
waste 

35·8 7·2 17 238 SCM day−1 0·32 kg VS m−3 day−1 47 days 

NP = not provided by operator; COD = chemical oxygen demand; SCM = standard cubic meter; VS = volatile 
solids. 

 

 
Figure 1. Community fingerprint analysis using denaturing gradient gel electrophoresis (DGGE) of mcrA from full‐
scale industrial and municipal anaerobic digesters. (a) DGGE fingerprint of mcrA genes present in full‐scale 

biomass samples. Lanes are labelled with sample names. See Table 1 for more information regarding each 
sample. (b) Dendrogram showing relationships between the methanogen communities in the full‐scale digesters 
based on optical density data from the DGGE gel. 

 

Quantitative PCR (qPCR) of mcrA 
All qPCR analyses were performed in one run, and critical parameters were as follows: slope −3·662, y‐

intercept 5·465, correlation coefficient 0·933, efficiency 87·5%, Ct of the no‐template control 26·45. 

Total mcrA copy number per ng DNA (Fig. 2a) and per g of wet pellet biomass (Fig. 2b) was calculated 

from qPCR results. When the results were normalized to g of pellet as opposed to ng of DNA the 

digester with the highest mcrA copy number switched from biomass JBS to biomass CB (Fig. 2). This 

normalization with pellet biomass was performed because it was thought to be more similar to the 

volatile suspended solids (VSS) measurement used to normalize the SMA values. 

https://sfamjournals.onlinelibrary.wiley.com/cms/asset/533e6bd7-a53b-4440-b9d3-8215fcc309d2/lam12515-fig-0001-m.jpg


 
Figure 2. Results of qPCR using industrial and municipal anaerobic digester biomass. Each bar represents results 
from three technical replicates. Error bars show standard deviation from the mean. (a) mcrA gene copies 
ng−1 DNA. (b) mcrA gene copies g−1 pellet of centrifuged biomass with the supernatant removed. Note that the y‐
axis numeration is different between a and b. 

 

SMA assays 
SMA assays were used to compare the biomass samples' maximum specific ability to produce methane 

given a particular substrate (Table 2) (Coates et al. 1996, 2005). Biomass sample CB had the highest 

SMA values for all three substrates tested (Table 2), biomass KI had the second highest activity against 

propionate and acetate, followed by biomass CF. However, biomasses MSS, MBR and JBS had higher 

activities against H2 : CO2 than KI and CF. 

Table 2. Anaerobic waste treatment systems from which biomass was collected and their specific methanogenic 
activity (SMA) assay results 

Digester Substrate SMA against 
calcium 
propionate 

 SMA 
against 
calcium 
acetate 

 SMA 
against 
H2 : CO2 

 

  
(in ml 
CH4 g−1 VSS−h) 

 
 

 
 

 

  
Average Cv (%)a Average Cv (%) Average Cv 

(%) 

CB Brewery waste 14·9 6·7 21·7 2·5 31·4 0·0 

KI Milk‐derived food additive waste 3·6 6·3 11·0 6·3 8·8 3·7 

CF Dairy cow manure waste 1·1 97·0 10·1 9·4 8·6 16·0 

JBS Beef slaughter waste 0·8 29·6 4·7 48·5 12·1 0·0 

MBR Municipal waste 0·0 0·0 5·6 66·3 10·2 26·0 

MSS Municipal waste 0·0 0·0 6·6 97·4 15·0 17·0 
a Cv (%) is the coefficient of variation for the triplicates from each sample. 

Methanogen abundance and methane production rates 
Digester biomass qPCR results normalized to g of wet pellet correlated well with corresponding SMA 

against H2 : CO2 (R2 = 0·67, P = 0·046; Fig. 3a) and propionate (R2 = 0·70, P = 0·038; Fig. 3b) but not with 

acetate (R2 = 0·49, P = 0·12; Fig. 3c). These data obtained from SMA assays and qPCR performed on full‐

scale digester samples confirmed findings from a previous study that demonstrated a relationship 

between methane production rates and methanogen abundance in hydrogen enrichment cultures 

(Morris et al. 2014), although the correlation in this study was not as strong as found in the previous 

https://sfamjournals.onlinelibrary.wiley.com/cms/asset/023a3064-e9d0-4dac-b522-96f1e4c4846b/lam12515-fig-0002-m.jpg


study. This finding is likely due to the nature of the biomass from the laboratory maintained 

enrichment cultures when compared to the industrial and municipal biomass. 

 
Figure 3. Correlation between specific methanogenic activity (SMA) assays and mcrA gene copy number per unit 
biomass from the six industrial and municipal digesters sampled. (a) SMA and H2 : CO2. (b) SMA and propionate. 
(c) SMA and acetate. 

 

The association between SMA against acetate in this study was not significant (Fig. 3c). This latter 

finding likely resulted from the fact that several groups of micro‐organisms in digesters, in addition to 

acetoclastic methanogens, are able to utilize acetate, and that the relative abundance of these 

organisms could vary among the biomass samples tested. 

The relationship between SMA and mcrA copy number was not dependent on the structure of a 

particular methanogen community or its composition (Fig. 1). This agreed with the results of the 

previous study which compared clone libraries to SMA values (Morris et al. 2014). 

Taken together, the results of this study support the hypothesis that mcrA copy number can be used to 

monitor and compare methanogen communities in some anaerobic digesters. Useful methods of 

monitoring systems must be sensitive and fast (Castellano et al. 2007; Molina et al. 2009). The ability of 

this methodology to produce results within a day that correlate well with SMA assays (which may take 

days to weeks to complete) satisfies both of these criteria, suggesting that quantifying methanogens 

may be a very useful technique for comparing biomass from different sources. 

Although methanogenesis is often proposed to be the rate‐limiting step in anaerobic digestion, the 

actual metabolic process that limits the rate of methane production may depend upon substrate 

composition (Liu and Whitman 2008). While monitoring micro‐organisms at all trophic levels of the 

https://sfamjournals.onlinelibrary.wiley.com/cms/asset/027377fd-b444-426e-b3c4-691208b9a95f/lam12515-fig-0003-m.jpg


anaerobic food chain could provide valuable diagnostic information, this study shows a direct link 

between methanogen abundance and methane production rates in certain situations. 

Materials and methods 

Sample collection 
Anaerobic biomass was collected from six industrial/mu‐nicipal full‐scale anaerobic systems that varied 

in substrate in the state of Wisconsin, USA (Table 1). Biomass samples CB and JBS were taken from an 

upflow anaerobic sludge blanket reactor and an anaerobic contact process, respectively, whereas the 

remaining biomass samples were from continuously‐stirred tank reactors with no recycle. Biomass 

samples were collected in DNase‐free centrifuge bottles, placed on dry ice for transport, and then 

stored at −80°C until processing (24–48 h). 

SMA assays 
Methanogenic activity assays were conducted in triplicate under anaerobic conditions in 160‐ml serum 

bottles with 25 ml (<3 g VSS, l−1) of biomass. The VSS concentration was determined according to 

Standard Methods (American Public Health Association et al. 1998) at the beginning and the end of 

activity tests and the average of the two values was employed for specific activity calculations. SMA for 

H2 : CO2 was determined by the method of Coates et al. (1996). Serum bottles were sparged with gas 

(4 : 1 v/v H2 : CO2) and sealed with solid Balch‐type butyl rubber stoppers. Immediately thereafter, 

100 ml of the H2 : CO2 gas blend at ambient pressure and temperature was injected through the 

stopper using a syringe and a needle. Acetate and propionate SMAs were determined as described by 

Sorensen and Ahring (1993). Assays were supplied with 3 g l−1 propionate or 10 g l−1 acetate, each as 

the calcium salt, whereas the control assays were not supplied with substrate (Sorenson and 

Ahring 1993; Zitomer et al. 2008). All the propionate and acetate assays were then sparged with gas 

(7 : 3 v/v N2 : CO2) to establish anaerobic conditions and sealed as stated above. Immediately after the 

addition of substrate to the test assays, all bottles were incubated at 35°C and shaken at 150 rev min−1. 

Bottle head‐space volume was measured at ambient pressure (approx. 1 atm) for 30 days by inserting 

the needle of a glass syringe with wetted barrel. The syringe content was re‐injected into the serum 

bottle after volume measurement. Headspace methane content was analysed by gas chromatography 

(Agilent Technologies, Santa Clara, CA). Methane produced by the control assays accounted for 

endogenous decay, and was subtracted from methane produced by the test assays. Finally, maximum 

methane production rate (ml CH4 g−1 VSS‐h−1) was determined as described elsewhere 

(Owen et al. 1979). 

DNA extraction 
Frozen biomass samples were thawed at room temperature. All samples were centrifuged at 

10 000 g for 10 min at 4°C (Avanti J‐25, Beckman Coulter, Brea, CA). The supernatant was discarded, 

and DNA was extracted from the pellet using a combination of treatments from the RNA 

PowerSoil™ Total RNA Isolation Kit and DNA Elution Accessory Kit (MOBIO, Carlsbad, CA) according to 

manufacturer's instructions. DNA was then purified using the PowerClean™ DNA Clean‐up Kit (MOBIO). 

DNA integrity was examined by using a 1·5% (w/v, Tris‐acetate‐EDTA buffer, Sambrook and 

Russell 2001) agarose gel. DNA concentration of purified extracts was determined 

spectrophotometrically (Nanodrop ND‐1000, Thermo‐Scientific, Wilmington, DE). 



Quantitative PCR (qPCR) 
qPCR was performed according to the recommendations by Smith et al. (2006) and Smith and Osborn 

(2009) except for the standard curve, and according to MIQE guidelines (Bustin et al. 2009) which were 

applicable to environmental samples. qPCR standards were created using pooled mcrA DNA clones 

from anaerobic biomass samples as described previously (Morris et al. 2014). Quantification was 

performed using the primers designed by Luton et al. (2002): mcrF 5′‐

GGTGGTGTMGGATTCACACARTAYGCWACAGC‐3′ and mcrR 5′‐TTCATTGCRTAGTTWGGRTAGTT‐3′, as 

described previously (Vianna et al. 2006; Goffredi et al. 2008; Freitag and Prosser 2009; 

Freitag et al. 2010; Morris et al. 2014). The final qPCR mix per 25 μl reaction was as follows: 1× 

iQ™ SYBR®‐Green Supermix reaction buffer containing dNTPs, iTaq DNA polymerase 

and 3 mmol l−1 MgCl2 (Bio‐Rad, Hercules, CA); 750 nmol l−1 mcrF and mcrR; and template DNA (0·3–

1 ng). Each qPCR run included a no‐template control. Quantification was performed on the 

MyIQ™ Single‐Color Real‐Time PCR Detection System (Bio‐Rad) using the following programme: initial 

denaturation at 95°C (10 min), 35 cycles of 95°C (30 s), 58·5°C (1 min), and 72°C (3 min), with a final 

extension of 7 min at 72°C. The amplification programme was followed by a denaturation curve 

programme (80 cycles 10 s in length starting at 55°C and increasing in 0·5°C increments) to check for 

product specificity. Products from optimization runs were also examined for specificity using 1·5% 

agarose gels as described above. Starting quantity amounts and threshold cycle values were calculated 

using the Myiq™ optical system software ver. 1.0 (Bio‐Rad). Normalization ‘per g of wet pellet’ was also 

calculated using the g of biomass pellet after centrifugation and supernatant removal. Results were 

normalized to this parameter to account for differences in total solids among the biomass samples. 

Statistical analysis of qPCR and SMA results 
Linear correlation of the SMA data with the qPCR results normalized to ng of DNA and g of biomass 

pellet, respectively, was performed using R to calculate R2 and P‐values (Team 2008). Values were 

plotted with a trend line for visual analysis. 

Denaturing gradient gel electrophoresis 
DNA extracts from the full‐scale digester biomass samples were PCR amplified with the mcrA specific 

primers described above with the exception that the forward primer was modified to include a GC 

clamp (5′‐

CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCCCGCCCGGGTGGTGTMGGATTCACACARTAYGCWACAGC‐

3′) (Muyzer et al. 1993; Luton et al. 2002). The final component concentrations per 50 μl PCR reaction 

were as follows: 100 nmol l−1 each primer, 0·2 mmol l−1 dNTPs, 1× Colorless GoTaq Reaction Buffer 

(Promega, Madison, WI) which contained 1·5 mmol l−1 MgCl2 and 1·2U goTaq Polymerase (Promega). 

Template concentrations were approx. 100 ng per reaction tube. The PCR conditions were as follows: 

initial denaturation at 95°C (5 min), 35 cycles of 95°C (1 min), 58°C (1 min), and 72°C (3 min), with a 

final extension of 10 min at 72°C. The programme included a slow ramp in temperature (0·1°C s−1) 

between the annealing and extension steps of the first five cycles of the protocol as recommended by 

Luton et al. (2002). The amplicon size was confirmed using a 1% agarose gel as described above. Forty 

μl of PCR product was then used for DGGE in a 1 mm thick 8% polyacrylamide gel (37·5 : 1 acrylamide 

to bis‐acrylamide) with 40–70% denaturant gradient (urea and formamide). Electrophoresis at 100V for 

15 h was performed using the DCode™ Universal Mutation Detection System (Bio‐Rad). The DGGE gel 



was stained with 1% SYBR Gold Nucleic Acid Stain (Invitrogen, Grand Island, NY) for 30 min and 

visualized using the GelDoc™‐It Imaging System (UVP, Upland, CA). 

A dendogram representing the relationships between DGGE patterns of full‐scale biomass samples was 

constructed using optical density data collected using labworks™ software (Lablogics, Inc., Mission 

Viejo, CA). Pearson's correlation coefficient (r) was calculated using the densitometric data for each 

pair of samples. A distance matrix representing the relationships among the densitometric data was 

calculated using 1‐r values. An unweighted pair group method with arithmetic mean (UPGMA) tree was 

plotted using the distance matrix and the PHYLIP software package (Felsenstein 2005). 
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