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Behavioral/Cognitive

Neural Dynamics of Phonological Processing in the Dorsal
Auditory Stream

Einat Liebenthal,1,2,3,4 Merav Sabri,1 Scott A. Beardsley,2,3 Jain Mangalathu-Arumana,1,3 and Anjali Desai1

1Department of Neurology, and 2Clinical Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, 3Department of
Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201, and 4Department of Psychiatry, Brigham & Women’s Hospital, Chestnut Hill,
Massachusetts 02467

Neuroanatomical models hypothesize a role for the dorsal auditory pathway in phonological processing as a feedforward efferent system
(Davis and Johnsrude, 2007; Rauschecker and Scott, 2009; Hickok et al., 2011). But the functional organization of the pathway, in terms of
time course of interactions between auditory, somatosensory, and motor regions, and the hemispheric lateralization pattern is largely
unknown. Here, ambiguous duplex syllables, with elements presented dichotically at varying interaural asynchronies, were used to
parametrically modulate phonological processing and associated neural activity in the human dorsal auditory stream. Subjects per-
formed syllable and chirp identification tasks, while event-related potentials and functional magnetic resonance images were concur-
rently collected. Joint independent component analysis was applied to fuse the neuroimaging data and study the neural dynamics of brain
regions involved in phonological processing with high spatiotemporal resolution. Results revealed a highly interactive neural network
associated with phonological processing, composed of functional fields in posterior temporal gyrus (pSTG), inferior parietal lobule (IPL),
and ventral central sulcus (vCS) that were engaged early and almost simultaneously (at 80 –100 ms), consistent with a direct influence of
articulatory somatomotor areas on phonemic perception. Left hemispheric lateralization was observed 250 ms earlier in IPL and vCS than
pSTG, suggesting that functional specialization of somatomotor (and not auditory) areas determined lateralization in the dorsal auditory
pathway. The temporal dynamics of the dorsal auditory pathway described here offer a new understanding of its functional organization
and demonstrate that temporal information is essential to resolve neural circuits underlying complex behaviors.

Introduction
Under adverse listening conditions when speech is distorted,
noisy, or delivered with a foreign accent, phonemic perception
is effortful and facilitated by phonological processing. Phono-
logical processing consists of short-term maintenance of
sound sequences in auditory memory during analysis of their
auditory, somatosensory, and motor properties to support
phonemic categorization (Wise et al., 2001; Buchsbaum et al.,
2005; Hickok and Poeppel, 2007). Categorization of ambigu-
ous syllables engages a dorsal pathway, from primary auditory
cortex to posterior temporal gyrus (pSTG) and ventral parietal
regions, associated with auditory short-term memory and in-
teraction with somatosensory and motor areas (Callan et al.,
2004; Golestani and Zatorre, 2004; Dehaene-Lambertz et al.,
2005; Desai et al., 2008; Liebenthal et al., 2010; Kilian-Hütten
et al., 2011a).

The functional organization of auditory regions in the dorsal
pathway during phonological processing, particularly the time
course of interactions with somatosensory and motor regions
and the hemispheric lateralization pattern, is largely unknown.
The notion of a simple hierarchical organization in posterior
temporal cortex has been challenged by findings of phonemic
neural representations not only in left pSTG (Dehaene-Lambertz
et al., 2005; Chang et al., 2010; Liebenthal et al., 2010; Kilian-
Hütten et al., 2011a), but also near the auditory core (Kilian-
Hütten et al., 2011a), though the relative timing of phonemic
activity in these areas is unknown. Interhemispheric differences
in sensitivity to temporal and spectral sound properties (Zatorre
and Belin, 2001; Poeppel, 2003; Boemio et al., 2005), or in rest-
ing– oscillatory properties of neurons (Giraud et al., 2007), have
been suggested to predispose the left auditory cortex for process-
ing of fast spectral transitions characteristic of phonemes. In the
ventral auditory pathway, the first left-lateralized speech-specific
stage of processing may be when phonemic representations in
middle STG are accessed (Liebenthal et al., 2005; Obleser et al.,
2007). However, it has been argued that phonological processing
in pSTG is bilateral (Hickok and Poeppel, 2007).

Here, ambiguous duplex syllables, with elements presented
dichotically at varying interaural asynchronies [stimulus-onset
asynchronies (SOAs)], were used to parametrically modulate
phonological processing and associated neural activity in the dor-
sal auditory pathway. Subjects performed a syllable and a chirp
identification task with identical stimuli, while event-related po-
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tentials (ERPs) and functional magnetic resonance (fMR) images
were concurrently collected. The premise for the experimental
design was that duplex syllable identification would degrade with
increasing SOA, whereas duplex chirp identification would not,
permitting characterization of the neural network associated
with phonological processing independent of general auditory
analysis. Joint independent component analysis (jICA) was
applied to the neuroimaging data to study the neural dynamics
of brain regions involved in phonological processing with high
spatiotemporal resolution (Calhoun et al., 2006; Mangalathu-
Arumana et al., 2012).

Results showed that phonological processing is highly inter-
active, with functional fields in pSTG, inferior parietal (IPL), and
ventral central sulcus (vCS) engaged early and almost simultane-
ously (at 80 –100 ms latency), and with activity rebounding in a
similar network after 300 ms. Left hemispheric lateralization was
observed in IPL and vCS at 120 –130 ms, but in pSTG only at 380
ms, suggesting that dorsal stream lateralization stems from a
functional specialization of articulatory somatomotor (and not
auditory) fields.

Materials and Methods
Subjects. Participants were 25 adults (15 females; mean age, 24 years) with
no history of neurological or hearing impairments, native speakers of
English, and right handed according to the Edinburgh Handedness In-
ventory (Oldfield, 1971). Data from five participants were excluded from
ERP analysis, and data from one participant was excluded from fMR
image analysis, due to excessive artifact contamination (determined as
�15% of trials in a condition that was affected). In four additional par-
ticipants, ERP data were not obtained due to equipment malfunction. In
total, the report is based on behavioral and fMRI results from 24 partic-
ipants, and ERP and jICA results from 15 participants. Informed consent
was obtained in accordance with the Medical College of Wisconsin Insti-
tutional Review Board.

Stimuli. The duplex stimuli were derived from a natural utterance of
/ga/, resynthesized to a two-formant syllable using Multispeech 3700
(Kay Elemetrics) as described in prior work (Liebenthal et al., 2005), and
edited to 295 ms duration. The second formant (F2) spectral transition of
/ba/ and /ga/ was separated from the remaining sound structure to create
an isolated chirp (containing the distinctive cue for syllable identifica-
tion) and a base (identical for the two syllables), each presented to one of
the ears (with equal frequency) at four SOAs (0, 20, 40, and 80 ms; Fig. 1).

Sounds were delivered using a pneumatic audio system (Avotec) at �70
dB, adjusted individually to accommodate differences in hearing and in
positioning of the ear tips. Stimulus delivery was controlled with Presen-
tation (Neurobehavioral Systems).

Task design and procedure. Trials, consisting of a sequence of three
identical duplex stimuli presented at 1 Hz, were presented in eight runs
during which simultaneous ERP/fMRI data were acquired. In half of the
runs (presented in random order), participants were instructed to iden-
tify the duplex syllables as ba or ga (syllable task), and in the other half
they were instructed to identify the initial chirp as falling or rising (chirp
task). Participants responded by pressing one of two keys at the end of
each trial. In each run, 20 trials per SOA and 20 silence baseline trials were
presented in random order, for a total of 80 trials per SOA and task
condition.

In a prescan session, participants practiced the syllable identification
task with the original (nonduplex) syllables and the duplex syllables at an
SOA of 0 ms, and the chirp identification task with the isolated chirps and
duplex syllables at an SOA of 80 ms. This practice set was selected for each
task because performance with it was expected to be the highest. Partic-
ipants were required to achieve 90% accuracy in two consecutive practice
runs to proceed to the neuroimaging session, and all were able to reach
this accuracy level in two to six practice runs.

fMR image acquisition and analysis. Images were acquired on a 3 T
Excite scanner (GE Medical Systems). Functional data consisted of T2*-
weighted, gradient echo, echoplanar images acquired using clustered ac-
quisition at 7 s intervals (echo time � 20 ms, flip angle � 77°, acquisition
time � 2 s). The sound sequences were positioned to start 500 ms after
the end of each image acquisition to avoid perceptual masking by the
acoustic noise of the scanner and to synchronize the next image acquisi-
tion with the estimated peak of the BOLD response to the sounds
(Vagharchakian et al., 2012). Functional images consisted of 35 axially
oriented 3.5 mm slices with a 0.5 mm interslice gap (field of view � 192
mm, 64 � 64 matrix), covering the whole brain. A total of 72 images were
acquired per run. High-resolution anatomical images of the entire brain
were obtained, using a 3-D spoiled gradient-recalled acquisition in a
steady state, as a set of 130 contiguous axial slices with 0.938 � 0.938 �
1.0 mm voxel dimensions.

Image analysis was conducted in AFNI (Cox, 1996). Within-subject
analysis consisted of spatial coregistration of the functional images to
minimize motion artifacts and registration to the anatomical images.
Voxelwise multiple linear regression was applied to analyze individual
time series, with reference functions representing the task (syllable,
chirp), and the four SOA levels coded as a linear progression (1, 2, 3, 4).
The trial reaction time (RT) was also modeled to remove activity related
to behavioral performance, and six motion parameters were included as
covariates of no interest. In each analysis, general linear tests were con-
ducted between conditions.

The individual statistical maps and the anatomical scans were pro-
jected into standard stereotaxic space (Talairach and Tournoux, 1988) by
linear resampling and then smoothed with a Gaussian kernel of 4 mm
FWHM. Group maps were created in a random-effects analysis. The
group condition maps were thresholded at a voxelwise p � 0.01 and were
corrected for multiple comparisons by removing clusters �380 �l, resulting
in a mapwise two-tailed p�0.01. The group contrast maps were thresholded
at a voxelwise p � 0.05 and were corrected for multiple comparisons by
removing clusters �1641 �l, resulting in a mapwise two-tailed p � 0.05. The
cluster thresholds were determined through Monte-Carlo simulations that
provide the chance probability of spatially contiguous voxels exceeding the
voxelwise p threshold.

ERP acquisition and analysis. Sixty-four-channel EEG activity was ac-
quired using the Maglink system (Compumedics) in a continuous mode,
with Quik-Cap electrodes positioned according to the International
10 –20 System, and CPz serving as the reference. Activity was recorded at
full bandwidth and digitally sampled at 500 Hz per channel. Vertical eye
movements and electrocardiogram activity were monitored with bipolar
recordings. Interelectrode resistance was kept below 5 k�.

EEG analysis was conducted in Scan 4.4 (Compumedics) and con-
sisted of bandpass filtering at 0.1–30 Hz; ballistocardiogram artifact re-
moval (Ellingson et al., 2004); creation of epochs of �100 to �500 ms

Figure 1. Schematic of duplex stimulus and onset time manipulation. Spectrograms of the
chirp and base portions of the duplex syllable /ba/ are shown, with intensity of acoustic energy
color coded from dark red to bright yellow. The two horizontal yellow bands represent peaks in
acoustic energy with steady states centered at 0.8 kHz (first formant) and 1.4 kHz (second
formant). The base, consisting of the entire syllable except the chirp portion, is 295 ms long and
presented to one ear. The chirp, consisting of the initial second formant rising spectral transi-
tion, is 50 ms long and presented to the other ear with an SOA of 80 – 0 ms before the base. The
chirp is depicted here at 80 ms SOA, with dotted traces in red, blue, and green indicating the
presentation time at SOAs of 40, 20, and 0 ms, respectively. For the duplex syllable /ga/ (data
not shown), the base is identical and the chirp second formant spectral transition is falling.
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from sound onset, baseline correcting each epoch by removing the mean
voltage value of the whole sweep; and rejection of epochs with voltage
values exceeding �100 �V. The remaining epochs were sorted and aver-
aged according to task and SOA condition.

jICA of ERP and fMRI. In a variation of previous jICA approaches to
multimodal neuroimaging data (Calhoun et al., 2006), condition-wise
fMR images and ERP epochs at 62 electrode sites were integrated in a
within-subject analysis (Mangalathu-Arumana et al., 2012). This version
of jICA is powerful in that it is sensitive to nonlinear (and linear) patterns
of dependence on an experimental variable, and is readily amenable to
incorporation of the full array of spatiotemporal information in the
ERPs. Here, jICA was applied in each subject across the four SOA levels in
each task. The fMR images and ERP data in each task were restructured
into a joint matrix where each row corresponds to the flattened t score
functional image for one SOA level relative to baseline, concatenated
with the ERP temporal sequence (�100 to �500 ms from stimulus on-
set) and flattened across electrodes for one SOA level. Principal compo-
nent analysis was applied to the joint matrix to whiten the data without
reducing its dimensionality, and jICA was then applied to the principal
components using the Fusion ICA Toolbox (http://mialab.mrn.org/
software/fit/). Four components were returned, each containing a flat-
tened array of fMRI/ERP activity covarying across SOA levels. The
components were expanded into their native spaces, resulting in four
jICA-fMRI maps and four corresponding jICA-ERP field map time series
in each task. The jICA-fMRI maps with the highest positive amplitude
values in the syllable and chirp tasks were considered to represent the
bulk of the activity related to phonological and general auditory process-
ing, respectively, and were selected for further analysis. In a second step,
to consider the possibility that relevant activity was also represented in
other components, jICA-fMRI maps with amplitude values reaching at
least 50% of those in the map selected in the first step were added. Using
this two-step procedure, one joint component per task was selected in 12
subjects, and two components were selected and summed together in one
of the tasks in 3 subjects.

Grouping of the individual jICA-fMRI maps was performed using a
random-effects model and mapwise correction levels as used in the mul-
tiple regression fMRI analysis (computed relative to the distribution of
the nonselected jICA-fMRI components). To gain greater sensitivity in
the temporal cortex, the jICA-fMRI task-contrast map was also corrected
by removing clusters smaller than 800 �l in the left and right superior and
middle temporal gyri, resulting in two-tailed p � 0.05 in these areas (see
Fig. 5, bottom row). Grand average (across subjects) jICA-ERP wave-
forms were computed for each task condition.

jICA-ERP source reconstruction. Source reconstruction of the grand
average (n � 15) jICA-ERP waveform was performed using the weighted
minimum norm estimate to solve the inverse problem (Brainstorm 3.0),
and a template head model created from T1-weighted MR images of the
Colin brain available in Brainstorm, using a three-shell sphere Berg ap-
proximation representing the brain, scalp, and skull. The cortical surface
was parsed and represented as a high-density mesh of 15,000 vertices,
with sample electric dipoles positioned at each vertex perpendicular to
the cortical surface. Electrode positions were approximated based on a
template electrode position file. Activity in vertices at the base of the
temporal pole was masked because the assumption of uniform skull
thickness is violated and a spherical head model is therefore inadequate
in this region (Teale et al., 2002; Hamalainen et al., 2007).

Current source density estimates in each task (see Fig. 6 A, B, top and
middle rows) were expressed as time point by time point z-scores relative
to the mean activity in the baseline period (�100 to �2 ms before stim-
ulus onset). Contrast maps between tasks (see Fig. 6 A, B, bottom rows)
were computed by subtraction of the z-score source maps. The task maps
were thresholded vertexwise at z-scores of �4, and the contrast maps at
z-scores of �3, corresponding to p � 10 �5 and p � 10 �3, respectively,
relative to the poststimulus distribution of all vertices across time. Clus-
ter thresholding at seven contiguous vertices, spatial smoothing with a
Gaussian kernel SD of five vertices, and low-pass temporal filtering at 15
Hz were applied to remove spatially and temporally spurious activity.

A region-of-interest (ROI) analysis of the jICA-ERP source maps was
performed to examine the temporal course of processing in brain areas

involved in the two tasks. The ROIs were seeded in areas in which fMRI
activity related to SOA was stronger in one of the tasks (see Figs. 3, 5,
bottom rows), but was not correlated with RT. Using a conservative
approach guided by general anatomical (arrangement of functional re-
gions according to gyral patterns) and methodological (lower spatial
resolution of ERP compared with fMRI) considerations, the ROIs were
expanded along gyri so as to cover the posterior superior temporal, pa-
rietal, and precentral cortex, without overlap. Seven ROIs were created in
the left hemisphere and then mirrored on the right. The regions (Fig.
7 A, B, middle) consisted of the pSTG (blue), IPL (magenta), superior
parietal lobule (SPL; cyan), ventral post-central gyrus (vPostCG; red),
dorsal post-central gyrus (dPostCG; yellow green), ventral pre-central
gyrus (vPreCG; green), and dorsal pre-central gyrus (dPreCG; yellow
brown). Note that, based on these considerations, IPL included only the
anterior part of the supramarginal gyrus. The pSTG included the portion
of STG ventral and posterior to Heschl’s gyrus. The temporal course of
jICA-ERP mean source activity across vertices in each ROI was computed
in each task and expressed as z-scores at each time point relative to the
mean activity in the baseline period (�100 to �2 ms). Differences in time
course between the two tasks and hemispheres in each ROI were consid-
ered significant at pointwise t scores corresponding to p � 0.0002, sus-
tained for a period of at least 30 ms, resulting in a corrected p � 0.005
relative to a temporally randomized distribution of points (Guthrie and
Buchwald, 1991).

Results
Ambiguous duplex syllables, consisting of a brief spectral transi-
tion containing the cue for syllable identification (the chirp) and
a base containing the remainder of the syllable, were each pre-
sented to one ear at interaural stimulus onset intervals (i.e., SOA)
ranging from 0 to 80 ms (Fig. 1). Subjects were asked to identify
the syllables as /ba/ or /ga/ (syllable task), or the chirps as rising or
falling (chirp task). In this paradigm, only syllable identification
is expected to depend on SOA, thereby allowing disentanglement
of the neural processes associated with phonological processing
(engaged in the syllable task) from those associated with general
auditory (nonlinguistic, engaged in the chirp task) analysis of the
speech sounds.

Behavioral performance
The effects of task (syllable, chirp) and SOA (0, 20, 40, 80 ms) on
the behavioral accuracy and RT of duplex stimulus identification
were examined in an ANOVA and are summarized in Figure 2.
Overall, the results confirm that the performance accuracy and
RT were dependent on SOA only in the syllable task.

Mean accuracy across SOAs was significantly lower in the syl-
lable (78%) than in the chirp (92%) task (F(1,23) � 34.66, p �
0.00001). Across tasks, accuracy was lower at an SOA of 80 ms
than at SOAs of 0, 20, and 40 ms (F(3,69) � 9.10, p � 0.00005).
There was also an interaction between task and SOA, with accu-
racy in the syllable task lower at SOAs of 80 ms (66%, SE � 3%)
and 40 ms (78%, SE � 3%) than at SOAs of 20 ms (86%, SE �
3%) and 0 ms (83%, SE � 2%); at an SOA of 80 ms than at an
SOA of 40 ms; and no accuracy change as a function of SOA in the
chirp task (F(3,69) � 15.37, p � 0.00001).

For RT, there was a trend for an overall longer RT in the
syllable (1025 ms) than in the chirp task (965 ms; p � 0.07).
Across tasks, the RT was longer at an SOA of 80 ms than at SOAs
of 40, 20, and 0 ms (F(3,69) � 6.01, p � 0.001). There was also a
significant interaction between task and SOA, with RT in the
syllable task significantly longer at SOAs of 80 ms (1073 ms, SE �
40 ms) and 40 ms (1034 ms, SE � 37 ms) than at SOAs of 20 ms
(1001 ms, SE � 35 ms) and 0 ms (992 ms, SE � 34 ms); at an SOA
if 80 ms than at an SOA of 40 ms; and no RT change as a function
of SOA in the chirp task (F(3,69) � 3.74, p � 0.01).
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Importantly, the mean RT in the syllable task was related to
SOA, such that the increase in RT at each SOA (relative to SOA 0
ms) was generally consistent with the SOA (81 ms at SOA 80 ms,
43 ms at SOA 40 ms, and 10 ms at SOA 20 ms). This suggests that

the longer RT in the syllable relative to chirp task was largely due
to an increase with SOA in the duration of the initial portion of
the syllable (consisting of the chirp and corresponding portion
of the base) containing the relevant information for syllable
identification (Fig. 1), and not to an inherent longer neural
processing time for phonological relative to nonlinguistic au-
ditory processing.

Functional magnetic resonance imaging
The effects of task and SOA on the fMRI activity were investigated
in a voxelwise multiple regression coding the trial SOA as a linear
progression, and including regressors representing trial RT to
model activity related to behavioral performance.

In the syllable task, activity in bilateral pSTG, IPL, and vCS
increased proportionally with SOA (Fig. 3, top row). In the chirp
task, only activity negatively related with SOA was found, in left
angular gyrus (AG), right inferior frontal gyrus (IFG), and the
postcentral gyrus, and in bilateral supplementary motor area
(SMA; Fig. 3, middle row). The areas of negative activation in the
chirp SOA correlation map largely coincided with areas of posi-
tive activation seen in the correlation map with RT, suggesting
that the chirp SOA correlation map primarily reflected a decrease
in executive functions with SOA in this task. Activity systemati-
cally related to behavioral performance may have been less effec-
tively modeled (and removed) by the RT regressor in the chirp
condition because of the limited variability in mean performance
measures in that condition (Fig. 2). A direct comparison of the
SOA effect in the two tasks revealed a stronger linear relationship
with SOA in the syllable task in left pSTG, IPL, and vCS (Fig. 3,
bottom row). Other foci of activation seen in this contrast were
either in areas related with RT and negatively activated in the chirp
condition (right IFG, bilateral SMA, and anterior cingulate) or re-

flected stronger activity during the baseline
period (left anterior temporal pole; see Fig.
5). Importantly, the activity positively and
linearly related to SOA in the syllable task, in
left pSTG, IPL, and vCS was in areas in
which activity was not associated with be-
havioral performance. The size, mean, and
peak amplitude, and the peak location of ac-
tivation clusters in each contrast in Figure 3
are given in Table 1.

Event-related potentials
The ERP waveforms in the two tasks, shown
averaged across SOA conditions in Figure 4,
were characterized by a frontocentral nega-
tivity peaking at �160 ms followed by a
frontocentral positivity peaking at �250
ms, consistent with the spatiotemporal
characteristics of N1 and P2 responses
evoked by syllables (Näätänen and Picton,
1987; Martin et al., 1997). In the syllable
task, this sequence of ERPs was followed by
a prolonged frontal negativity peaking at
�350 ms, coinciding with the range of the
N320 and N350 components previously as-
sociated with phonological processing
(Bentin et al., 1999).

Joint independent component analysis of fMRI and ERP
Integration of the fMRI and ERP results was conducted using a
within-subject variant of jICA (Mangalathu-Arumana et al.,

Figure 2. Behavioral accuracy and reaction time. Mean accuracy and RT at each SOA in the syllable
(full trace) and chirp (dotted trace) identification tasks. Error bars represent the SEM across subjects.

Figure 3. FMRI linear SOA effects. Multiple regression analysis showing group fMRI activity linearly related to SOA in the syllable (top
row) and chirp (middle row) tasks, and in the contrast between the tasks (bottom row). The color scale indicates the voxelwise probability
for false positives, for positive (orange-yellow) and negative (blue-cyan) activations, in each task (legend above color scale) and in the
contrast between the tasks (legend below color scale). The maps were corrected for multiple comparisons, as indicated in Materials and
Methods.
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2012), to examine the temporal course of processing in brain
regions showing linear or nonlinear variation with SOA. In each
subject and task, the mean fMRI and ERP signals covarying as a
function of SOA were associated with a joint component consist-
ing of an fMRI spatial map (jICA-fMRI) and an ERP topograph-
ical map time series (jICA-ERP). Group jICA-fMRI maps in each
task were computed using a random-effects model (Fig. 5), and
the neural generators of the grand average jICA-ERP in each task
were estimated using a minimum norm solution (Fig. 6). The
temporal course of neural activity, in seven brain regions in each
hemisphere that were more strongly activated in one of the tasks,
was assessed in an ROI analysis of the jICA-ERP sources (Fig. 7).

jICA-fMRI
The syllable and chirp tasks (compared with baseline) induced
overall similar patterns of activation, with greater signal (Fig. 5,
two top rows, orange-yellow colors) in bilateral STG, IPL, IFG,
SMA, and thalamus, and in left SPL, and pre- and post-central
gyri. Greater signal in the baseline (blue-cyan colors) was ob-
served in bilateral anterior temporal pole, AG, parieto-occipital
cortex, middle frontal gyrus, anterior cingulate, and precuneus. A
direct comparison between the two tasks showed greater activa-
tion in the chirp task (Fig. 5, third row, blue-cyan colors) in IPL
and SPL bilaterally. Stronger activity for the syllable over the

chirp task was observed in the left pSTG, albeit only at a more
lenient threshold using a small-volume temporal lobe mask cor-
rection (Fig. 5, bottom row). Importantly, there was not signifi-
cant activity in the right temporal cortex at this lenient correction
level. Other small foci of activity in the task contrast, in left AG,
bilateral precuneus, medial superior frontal gyrus, and anterior
temporal pole, were due to greater activation in the baseline rel-
ative to task conditions (observed as negative activation in Fig. 5,
two top rows), consistent with task-induced deactivations possi-
bly reflecting suspension of spontaneous semantic processing
during rest (McKiernan et al., 2006). The small foci in the task
contrast in bilateral SMA were in areas where activity was related
to RT. The size, mean, and peak amplitude, and the peak location
of activation clusters in each contrast are given in Table 2.

Together, the linear regression (Fig. 3) and jICA (Fig. 5) fMRI
maps suggest that neural activity in the syllable task in left pSTG,
IPL, and vCS varied linearly with SOA and independently of per-
formance RT. This activity was better described in the linear re-
gression analysis (which was based on trial-by-trial variations
with SOA and included regressors for trial RT) than in the jICA
(which was based on average variations with SOA across trials).
In contrast, neural activity in the chirp task in bilateral IPL and
SPL varied nonlinearly with SOA and was therefore better de-
scribed in the jICA-fMRI map (which was sensitive to nonlinear
variations).

jICA-ERP
ERP activity in both tasks was observed during two main time
periods, an early period �80 –230 ms and a late period �300 ms
and onward. Neural source reconstructions of the grand average
jICA-ERP waveforms in the early and late time periods (Fig.
6A,B, respectively) are shown for the syllable (Fig. 6A,B, top
row) and chirp (Fig. 6A,B, middle row) tasks, and for the task
difference (Fig. 6A,B, bottom row). The main activity stronger in
the syllable task was seen in bilateral pSTG, and left ventral pari-
etal and posterior frontal areas (IPL, vPostCG, and vPreCG).
Activity stronger in the chirp task was seen primarily in bilateral
STG and right parietal areas (SPL, IPL, and dPostCG). Other
activation foci in the task contrast (in bilateral SMA, left anterior
STG, left parieto-occipital cortex, and right IFG) were in areas in
which activity was found to be stronger in the baseline condition
(Fig. 5, jICA-fMRI maps) or was related to RT.

The temporal course of ERP activity in each ROI, represented
as mean z-scores across all vertices in the ROI in the period after
stimulus presentation (0 –500 ms) relative to the baseline (�100

Table 1. Size, mean and peak amplitude, and approximate peak location in standard stereotaxic space and Brodmann area, of activation clusters in multiple regression
maps showing group fMRI activity linearly related to SOA in the syllable and chirp tasks versus rest, and in the contrast between the tasks

Cluster size (mm 3) Mean amplitude (z-scores) Peak amplitude (z-scores) Peak x-coordinate (mm) Peak y-coordinate (mm) Peak z-coordinate (mm) Structure BA

Syllable task versus rest
3256 3.0876 4.7889 56 �10 6 R STG 22
3121 3.0659 5.4576 �63 �15 8 L STG 22

Chirp task versus rest
946 �2.9914 �4.4785 34 31 30 R IFG 44/45
700 �3.0859 �4.6969 52 �24 32 R PostCG 2
641 �2.9057 �3.7492 8 18 47 R SMA 6
413 �3.0559 �4.5292 �36 �51 38 L AG 39

Syllable task versus chirp task
4478 2.4697 4.4798 �67 �30 19 L pSTG 42/22
2097 2.2952 3.9870 �4 11 28 L aC 24
1810 2.4784 3.9056 43 10 31 R IFG 44/45
2615 �2.4060 �3.9634 �43 19 �23 L aMTG 21

Peaks listed were at least 30 mm apart. Clusters with negative amplitude values are listed in separate tables and reflect activation stronger in the second relative to first condition in the contrast. For some of the larger clusters, multiple peaks
are listed (Talairach and Tournoux, 1988). R, Right; L, left; BA, Brodmann area; a, anterior; C, cingulate; MTG, middle temporal gyrus.

Figure 4. Grand average ERP waveforms. The grand average ERP waveforms in the syllable
(black trace) and chirp (gray trace) tasks, displayed here averaged across SOAs and across fron-
tocentral electrodes.
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to �2 ms), is shown for the syllable (full trace) and chirp (dotted
trace) tasks in the left and right hemispheres (Fig. 7A,B, respec-
tively). The pattern of lateralization in each ROI and task is
shown in Figure 7C. Overall, neural activity was stronger in the
left hemisphere and centered in ventral parietal areas in the syl-
lable task, and it was stronger in the right hemisphere and cen-
tered in dorsal parietal areas in the chirp task. In the syllable task,
the earliest activity was observed in bilateral pSTG starting at 80
ms and peaking at �100 ms, and was closely followed and dom-
inated by activity in left IPL starting at 96 ms and peaking at �140
ms, and somewhat weaker activity occurred in left vPostCG and
vPreCG with a similar temporal profile to left IPL. The activity
was significantly left lateralized in the ventral parietal regions
(IPL, vPostCG), vPreCG, and SPL in the early time window, and
in pSTG, vPostCG, and vPreCG in the late time window. In the
chirp task, the earliest and strongest activity was observed in right
SPL, starting at 90 ms and peaking at �160 ms, with activity in
bilateral STG exceeding the significance threshold only at �120
ms. Activity in the chirp task was right lateralized in all ROIs
except STG and dPreCG in both the early and late time windows.

Discussion
The neural dynamics of phonological processing were examined
independently of those of auditory processing, by parametrically
modulating the perception of ambiguous speech stimuli. The
behavioral and neuroimaging results, showing a significant inter-
action between the effects of task type and interaural SOA on
both behavioral performance measures and functional brain
maps, confirm that different neural processing of identical du-
plex stimuli was elicited in each task. The dependence of behav-
ioral and neural measures on interaural SOA specifically in the
syllable task, suggests that dichotic fusion of the chirp and base
portions of the syllable was required for syllable identification,
consistent with prior reports (Repp et al., 1983; Bentin and
Mann, 1990). Phonemic perception in the duplex syllable task

emerged from dichotic fusion of tempo-
rally misaligned spectral elements of the
syllable. Under these listening conditions
with distorted speech input, a dorsal audi-
tory stream associated with phonological
processing (Wise et al., 2001; Buchsbaum
et al., 2005; Hickok and Poeppel, 2007)
was activated, with relatively stronger ac-
tivity in the syllable task in a perisylvian
network including left pSTG, IPL, and
vCS.

Activity in left pSTG, IPL, and vCS in-
creased linearly with interaural SOA spe-
cifically in the syllable task and
independently of fluctuations in behav-
ioral performance (Fig. 3), consistent with
a role for these areas in phonological pro-
cessing. jICA of the EEG and fMRI data
indicated that activity correlated with
SOA in the syllable task arose in bilateral
pSTG at 80 –90 ms after stimulus onset,
was quickly followed and dominated by
strong activity in left IPL, vPostCG, and
vPreCG at 95–230 ms; and rebounded in
bilateral STG, IPL, left vPostCG, and
vPreCG after 300 ms (Figs. 6, 7). This pat-
tern of neural dynamics is incompatible
with a simple hierarchical organization in
an afferent pathway, whereby neural ac-

tivity flows from primary to higher fields that process increas-
ingly complex auditory patterns, and on to cognitive and
executive areas. Rather, the finding that the left IPL, an area as-
sociated with short-term phonological storage (Paulesu et al.,
1993; Buchsbaum and D’Esposito, 2009), possibly subvocaliza-
tion (Koelsch et al., 2009; Price, 2010) and somatosensory artic-
ulatory feedback (Tourville et al., 2008), and the left vCS,
associated with orofacial somatomotor control (Corfield et al.,
1999; Fesl et al., 2003), are active early during the period of per-
ceptual analysis of the sounds in superior temporal cortex points
to interactive processing with efferent feedback from somatomo-
tor to auditory cortex. The period 80 –230 ms after sound onset
coincides with the N1 and P2 electrophysiological responses, re-
flecting neural processes related to auditory analysis and object
perception in superior temporal cortex, including analysis of
speech spectrotemporal features relevant to phonemic percep-
tion (Liégeois-Chauvel et al., 1999; Eggermont and Ponton, 2002;
Ahveninen et al., 2006; Chang et al., 2010; Liebenthal et al., 2010;
Steinschneider et al., 2011; Tsunada et al., 2011). The strong and
early activity in left ventral parietal and central sulcus regions
observed here provides firm evidence that the somatomotor cor-
tex associated with orofacial movement control plays a direct role
in phonemic perception, at least when speech is ambiguous. Later
activity observed after 300 ms in the duplex syllable task, in the
same left temporoparietal–posterior frontal perisylvian network,
could reflect the activation and maintenance of categorical neural
representations of the syllables for task-related response selection.
Indeed, this time range coincides with the N2 and P3 ERP compo-
nents, shown to accurately reflect speech categorization in discrim-
ination tasks (Maiste et al., 1995; Martin et al., 1997; Toscano et al.,
2010), and with the negative N320 and N350 responses to pro-
nounceable letter strings, associated with the activation of phonolog-
ical representations from print (Bentin et al., 1999).

Figure 5. jICA-fMRI maps. jICA showing group fMRI activity varying with SOA in the syllable (top row) and chirp (second row)
tasks, and in the contrast between the tasks (third and bottom rows). The color scale indicates the voxelwise probability for false
positives, for positive (orange-yellow) and negative (blue-cyan) activations, in each task (legend above color scale) and in the
contrast between the tasks (legend below color scale). The maps were corrected for multiple comparisons by removing small
clusters in the whole brain (three top rows) or in the temporal cortex (bottom row), as indicated in Materials and Methods.
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Despite the mounting evidence for involvement of the dorsal
auditory stream in perceptual processes, the neural mechanisms
underlying auditory and somatomotor interactions are far from
resolved. Recent neuroanatomical models (Rauschecker and
Scott, 2009; Hickok et al., 2011) postulate a primary role for the
dorsal auditory stream in speech perception as a feedforward
efferent system, from frontal premotor to posterior temporal au-
ditory areas via inferior parietal cortex, whereby predictive motor
signals modulate sensory processing, at least when the speech
input is degraded. Motor influences on phonemic categorization
performance have been described in the ventral precentral gyrus
at the level of the premotor cortex (Wilson et al., 2004; Meister et
al., 2007; Chang et al., 2011; Osnes et al., 2011) and primary
motor cortex (Mottonen et al., 2009). In ventral parietal cortex,
neurons representing the somatosensory (tactile and propriocep-
tive) articulatory properties of speech sounds have been hypoth-
esized to exert a modulatory influence on phonemic perception
(Guenther, 2006; Tourville et al., 2008). Feedback from IPL to left
posterior auditory areas has been suggested to play an important
role in perceptual learning of ambiguous phonemic categories
(Kilian-Hütten et al., 2011b). Indeed, the left IPL is activated
during overt categorization tasks of phonemic and also of trained
nonphonemic sounds, with the level of activity positively related
with categorization ability (Caplan and Waters, 1995; Celsis et al.,
1999; Jacquemot et al., 2003; Dehaene-Lambertz et al., 2005;
Raizada and Poldrack, 2007; Desai et al., 2008). Feedback to the
pSTG from areas representing the somatomotor articulatory
properties of speech sounds may act as a top-down selection
mechanism to tune the auditory areas to the set of possible
phonemic inputs (Hickok et al., 2011) and to facilitate activa-
tion of phonemic representations in pSTG. Neurocomputa-

tionally, the role of bottom-up and top-down interactions in
perceptual processing can be understood in terms of predic-
tive coding, whereby forward connections conveying predic-
tion errors and reciprocal backward connections mediating
predictions are balanced to minimize prediction errors and
optimize the probabilistic representation of sensory input
(Friston, 2010). Such an inference scheme can be used to
model the neural computations underlying perceptual catego-
rization, corresponding to the mapping of noisy and dynamic
sensory input to a fixed point in perceptual space (Friston and
Kiebel, 2009).

The present findings, revealing the temporal dynamics of the
temporoparietal–posterior frontal perisylvian network during a
phonemic categorization task, permit the updating of our current
understanding of auditory dorsal pathway function in phonemic
perception in several important ways. The early timing of the IPL
and vCS activity, during the phase of auditory perceptual analysis
and a mere 15–20 ms after the pSTG, alleviates any concerns
regarding potential confounding effects of subarticulatory or be-
havioral decision-making processes (Callan et al., 2004; Hickok
et al., 2011) and confirms a genuine role for these regions in
phonemic perception. The location of the BOLD activity in the
ventral tip of the post- and pre-central gyri is consistent with that
of primary sensorimotor cortex associated with orofacial motor
control (Corfield et al., 1999; Fesl et al., 2003), although involve-
ment of premotor fields cannot be ruled out. The strong activity
in inferior parietal cortex further suggests that somatosensory
feedback contributed significantly to phonemic perception in the
syllable task. On the other hand, the ventrolateral prefrontal cor-
tex was not differentially activated during phonological process-
ing despite the use of an overt categorization task, consistent with

Figure 6. jICA-ERP source maps. A, B, Source reconstruction maps of the grand average jICA-ERP components in the early (A) and late (B) time windows, in the syllable (Syll; top rows) and chirp
(Ch; middle row) tasks, and in the contrast between the tasks (Syll-Ch, bottom row). Maps in each task (Syll, Ch) are expressed as z-scores computed from current source density values at each time
point relative to the mean values in the baseline period (�100 to �2 ms), and as the difference between z-scores in the task contrast (Syll–Ch). Maps in each task were thresholded at z-scores of
�4, and the contrast maps are thresholded at z-scores of �3, as detailed in Materials and Methods.
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a domain-nonspecific role for this region.
Together, the results suggest the existence
of a direct feedback loop from ventral pa-
rietal and ventral central sulcus regions to
posterior temporal cortex, representing
an influence of somatosensory and artic-
ulatory representations of speech sounds
on phonemic perception. In the monkey
(Seltzer and Pandya, 1978; Petrides and
Pandya, 1984, 2009) and more recently in
the human (Frey et al., 2008; Makris et al.,
2009), the anterior part of the IPL was
demonstrated to have strong reciprocal
connections with ventral premotor (and
ventrolateral prefrontal) areas controlling
orofacial musculature via the superior
longitudinal fasciculus, and with the pos-
terior superior temporal cortex via the
middle longitudinal fasciculus. These
anatomical connections could form the
basis for the functional phonological
loop activated here. Feedback from dis-
crete somatomotor representations of
speech may serve to narrow the range of
possible sound inputs, and to activate
categorical phoneme representations in
pSTG. The activation and maintenance
of categorical phonemic representations
may correspond to the second phase of
neural activity observed in this study.
According to this view, neural represen-
tations of both graded and categorical
properties of sounds are present within
the same general posterior temporal re-
gion, but are activated at different time
phases, consistent with the existence of
feedforward and feedback processes in
this region.

An important aspect of the findings is
that left lateralization in the syllable task
was observed in IPL and vCS in the early
time period, but in the pSTG only at �380
ms latency. This pattern implies that left
lateralization in the phonological dorsal
pathway is due initially to stronger activa-
tion of left IPL and vCS, and is imposed
only later on the pSTG through feedback
interactions. The results are generally in-

Figure 7. Region-of-interest analysis of the jICA-ERP source maps. A, B, Temporal course of the grand average jICA-ERP source
activity in seven temporal and parietal ROIs in the syllable (full trace) and chirp (dotted trace) tasks, in the left (A) and right (B)
hemispheres. The source activity is expressed as z-scores computed relative to the mean activity in the baseline period (�100 to

4

�2 ms). The z-score values exceeding 1.65 were considered
significant deviations from the baseline. Periods of significant
task differences in each ROI are indicated by shaded rectan-
gles. The ROIs (A and B, middle) correspond to regions acti-
vated more strongly in one of the tasks, and include the pSTG
(blue), IPL (magenta), SPL (cyan), vPostCG (red), dPostCG (yel-
low green), vPreCG (green), and dPreCG (brown). C, Lateral-
ization pattern along time ( y-axis) in each ROI (x-axis),
represented as periods of significantly stronger activity in the
left (L; left of vertical line) or right (R; right of vertical line)
hemisphere, is shown for the syllable (red) and chirp (yellow)
tasks, and for periods of overlapping lateralization between
tasks (striped yellow).

Liebenthal et al. • Dorsal Stream Dynamics in Phonological Processing J. Neurosci., September 25, 2013 • 33(39):15414 –15424 • 15421



compatible with theories emphasizing hemispheric differences in
auditory processing (Boemio et al., 2005; Giraud et al., 2007), at
least as the basis for left hemispheric dominance during phono-
logical processing. Instead, functional specialization of somato-

sensory and motor areas may determine lateralization in the
dorsal auditory stream.

In summary, the neural dynamics of phonological processing
in the dorsal auditory pathway described here are consistent with

Table 2. Activation clusters in multiple regression maps showing group jICA fMRI activity varying with SOA in the syllable and chirp tasks versus rest, and in the contrast
between the tasks, using a whole-brain and temporal lobe correction

Cluster size (mm 3)
Mean amplitude
(z-scores)

Peak amplitude
(z-scores)

Peak
x-coordinate (mm)

Peak
y-coordinate (mm)

Peak
z-coordinate (mm) Structure BA

Syllable task versus rest
67,140 3.7938 7.6776 �59 �23 14 L STG 41/42

6.299 �39 �20 48 L pCG 3
5.125 �32 21 14 L insula 13

28,906 4.3227 7.4931 36 �30 16 R STG 41/42
24,454 3.1576 4.9798 37 �57 �24 R cerebellum

4.337 �53 �51 �19 L ITG 37
13,627 3.6721 5.8282 �5 �5 52 L SMA 6
1486 3.0261 3.9805 57 �11 46 R pCG 3
813 3.2498 3.9794 �28 �89 �12 L IOG 17/18
493 2.7659 3.4431 29 �94 �6 R IOG 17/18
455 2.914 3.5029 �1 �36 54 L PL 5
36,991 �3.2547 �5.371 �44 �77 11 L MOG 19

�4.842 �24 �42 �8 L PH 36/37
�4.301 �15 �97 10 L MOG 17/18

6950 �3.1506 �4.2970 3 �47 39 R pC 31
3873 �3.1827 �4.3460 �23 19 42 L MFG 8
3305 �3.0464 �4.3736 16 �79 �11 R IOG 17/18

�4.710 33 �84 18 R MOG 19
�4.070 26 �43 �9 R PH 36/37

2798 �2.9790 �4.1373 �2 30 12 L aC 24
1175 �3.3262 �4.6389 50 �6 �13 R MTG 21
385 �2.8291 �3.4027 26 11 50 R SFG 6

Chirp task versus Rest
109,730 3.7135 7.4443 �59 �24 13 L STG 41/42

6.547 �6 �4 50 L SMA 6
6.266 �49 �35 44 L SPL 2
4.563 11 �37 63 R PL 5

37,748 3.8121 7.4224 61 �16 5 R STG 22
4.981 33 �29 12 R insula 13
4.391 19 �2 24 R caudate

9618 3.3176 5.0629 9 �51 �16 R cerebellum
3422 2.9151 3.883 �49 �48 �32 L cerebellum
1468 3.1435 4.005 21 �89 �15 R IOG 17/18
970 3.3666 5.881 �26 �13 �6 L hippocampus
400 3.0663 3.8728 �26 �91 �12 L IOG 17/18
38,427 �3.1726 �5.0905 33 �79 21 R MOG 19

18,821 �3.0881
�4.8003 18 36 34 R SFG 9
�3.800 �2 56 19 L SFG 9/10

4109 �3.0150

�3.8834 �26 �77 �6 L IOG 17/18
�4.427 �5 �65 15 L pC 31
�4.259 �7 �45 39 L pC 31

3486 �3.1294 �4.3608 �60 0 �15 L aMTG 21
2990 �3.133 �4.5389 �21 27 43 L SFG 8
1410 �3.2806 �4.685 �23 �40 �7 L PH 36/37
965 �3.2411 �4.3769 53 �2 �19 R aMTG 21
651 �2.8234 �3.3943 17 �80 �10 R IOG 17/18
624 �2.8712 �3.4028 �23 �72 �38 L cerebellum
561 �2.8232 �3.4613 23 8 �30 R PH 38
424 �3.1688 �4.0731 �52 �58 22 L AG 39

Syllable task versus chirp task (whole-brain analysis)
3695 2.3653 4.256 13 31 52 R SFG 8
4989 �2.2825 �3.7420 �4 �38 60 L PL 5
4768 �2.3816 �3.4364 54 �33 41 R IPL 40
3247 �2.3895 �3.1479 �51 �43 31 L IPL 40

Syllable task versus chirp task (temporal lobe mask)
2722 0.8027 3.4377 �50 3 �12 L aMTG 21/38
801 2.2772 2.786 �59 �23 2 L pSTG 21/22

R, Right; L, left; a, anterior; p, posterior; v, ventral; d, dorsal; SFG, superior frontal gyrus; MFG, middle, frontal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; C, cingulate; MOG, middle occipital gyrus; IOG, inferior occipital
gyrus; PL, paracentral lobule; PH, parahippocampus; BA, Brodmann area.

15422 • J. Neurosci., September 25, 2013 • 33(39):15414 –15424 Liebenthal et al. • Dorsal Stream Dynamics in Phonological Processing



reciprocal activity in pSTG, IPL, and vCS, and with left lateraliza-
tion originating in IPL and vCS.

Notes
Supplemental material for this article is available at http://www.neuro.
mcw.edu/�einatl/files/. This material has not been peer reviewed.
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