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Behavioral/Systems/Cognitive

Incorporating Feedback from Multiple Sensory Modalities
Enhances Brain–Machine Interface Control

Aaron J. Suminski,1* Dennis C. Tkach,2* Andrew H. Fagg,3 and Nicholas G. Hatsopoulos1,2

1Department of Organismal Biology and Anatomy, 2Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois 60637, and
3School of Computer Science, University of Oklahoma, Norman, Oklahoma 73019

The brain typically uses a rich supply of feedback from multiple sensory modalities to control movement in healthy individuals. In many
individuals, these afferent pathways, as well as their efferent counterparts, are compromised by disease or injury resulting in significant
impairments and reduced quality of life. Brain–machine interfaces (BMIs) offer the promise of recovered functionality to these individ-
uals by allowing them to control a device using their thoughts. Most current BMI implementations use visual feedback for closed-loop
control; however, it has been suggested that the inclusion of additional feedback modalities may lead to improvements in control. We
demonstrate for the first time that kinesthetic feedback can be used together with vision to significantly improve control of a cursor
driven by neural activity of the primary motor cortex (MI). Using an exoskeletal robot, the monkey’s arm was moved to passively follow
a cortically controlled visual cursor, thereby providing the monkey with kinesthetic information about the motion of the cursor. When
visual and proprioceptive feedback were congruent, both the time to successfully reach a target decreased and the cursor paths became
straighter, compared with incongruent feedback conditions. This enhanced performance was accompanied by a significant increase in
the amount of movement-related information contained in the spiking activity of neurons in MI. These findings suggest that BMI control
can be significantly improved in paralyzed patients with residual kinesthetic sense and provide the groundwork for augmenting cortically
controlled BMIs with multiple forms of natural or surrogate sensory feedback.

Introduction
Over the past decade, substantial advances have been made in
cortically controlled brain–machine interfaces (BMIs) in both
animals and humans (Serruya et al., 2002; Taylor et al., 2002;
Carmena et al., 2003; Nicolelis et al., 2003; Kennedy et al., 2004;
Musallam et al., 2004; Hochberg et al., 2006). Despite these early
successes, first-generation clinical implementations suffered
from acute and pervasive problems such as underlying instabili-
ties and poor quality of control (Hochberg et al., 2006). Some of
these control issues have been mitigated as current BMI imple-
mentations demonstrate robust, stable performance on signifi-
cantly complex tasks requiring cursor stabilization (Kim et al.,
2008; Mulliken et al., 2008), self-feeding using a robotic arm
(Velliste et al., 2008), and the voluntary control of paralyzed mus-
cles (Moritz et al., 2008; Pohlmeyer et al., 2009). Additional con-
trol improvements may require next-generation BMIs to move
beyond the current paradigm in which feedback is only available
through the subject’s intact visual system to one that incorporates

feedback both from vision and other relevant sensory modalities
(i.e., proprioceptive, tactile, and force feedback).

Multiple sensory modalities are frequently used to estimate
the state of the body with respect to the external environment and
are thus critical for normal motor control (Rossetti et al., 1995;
van Beers et al., 1999; Sober and Sabes, 2005). Experimental evi-
dence indicates that abilities for on-line control and error correc-
tion are highly dependent on the proprioceptive system,
especially when visual feedback is unreliable or unavailable (Gordon
et al., 1995). Some shortcomings of current BMI control are mir-
rored in the movements of patients suffering from the loss of pro-
prioceptive feedback as a result of large-fiber sensory neuropathies.
These individuals can move by relying on vision, but their move-
ments require great concentration and are slow compared with
healthy individuals (Ghez et al., 1995; Sainburg et al., 1995).

The importance of proprioceptive feedback in the control of
artificial limbs has been recognized since the early 20th century
(Childress, 1980), and its utility for advanced BMI control has
been widely acknowledged (Abbott, 2006; Hatsopoulos and Do-
noghue, 2009). However, its effects on BMI control remain
mostly unexplored. We addressed this gap in BMI research by
conducting an experiment in which the presence and fidelity of
proprioceptive feedback during BMI control were systematically
varied. Using a robotic exoskeleton, we evaluated the hypothesis
that congruent visual and proprioceptive feedback would im-
prove the movement of a cortically controlled visual cursor com-
pared with a BMI relying solely on vision for feedback. Because of
the movement of the arm and its interaction with the exoskele-
ton, the monkeys received a very rich feedback experience. In
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addition to visual feedback, these conditions included sensory
information about limb position and velocity derived from re-
ceptors in the muscles, joints, and skin (Bosco and Poppele, 2001;
Johnson et al., 2008) and force and tactile cues from the interac-
tion of their arm with the exoskeleton. Within the scope of this
study, we define the term “proprioceptive feedback” to include all
movement-related sensory information originating from sensory
receptors in the arm.

Materials and Methods
Behavioral task
Two adult male rhesus macaques (Macaca mulatta) were operantly
trained to control a cursor in a two-dimensional workspace using a two-
link robotic exoskeleton (Scott, 1999). The animals sat in a primate chair
with their arm in the exoskeleton. Their shoulder joint was abducted 90°
and supported by the manipulandum such that all movements were
made within the horizontal plane. Direct vision of the limb was pre-
cluded by a horizontal projection screen above the monkey’s arm. Visual
feedback was available via a visual cursor projected onto the screen. The
position of the cursor was controlled by one of two sources: either the
position of the end effector of the robot (i.e., the monkey’s hand posi-
tion) or the output of a BMI that decoded the position of the cursor based
on recent neural activity. Cartesian coordinates of the visual cursor were
determined by digitizing the shoulder and elbow angle along with angu-
lar velocity at 500 Hz and transforming these variables into a visual
cursor position (in centimeters) using the forward kinematic equations
for the exoskeleton.

The random target pursuit (RTP) task required the monkeys to repet-
itively move a cursor (6 mm diameter circle) to a square target (2.25
cm 2). The target appeared at a random location within the workspace
(12 � 6 cm), and each time the monkey hit it, a new target appeared
immediately in a new random location. To complete a successful trial
and receive a juice reward, the monkey was required to sequentially
acquire two to seven targets, depending on the experimental condition.
Because of their increased difficulty, the number of successful hits per
trial was reduced in the BMI conditions to encourage continuous play.
Because each trial completion was followed by the immediate presenta-
tion of another target, the monkeys typically did not pause between trials
resulting in continuous movement trajectories. A trial was aborted if any
movement between targets took �2500 ms or if the monkey removed his
arm from the exoskeleton. After an aborted trial, a new sequence of
randomly presented targets appeared.

Experimental design
Before the experiment, a monkey used its arm to perform a random
target pursuit task designed to generate complex movements that thor-
oughly sampled the position and velocity space of the arm. We refer to
this case as the “active movement” (AM) condition (Fig. 1a). Next, the
animals observed the replay of target positions and cursor trajectories
recorded during the AM phase while they voluntarily maintained a static
arm posture in the robotic exoskeleton at a predetermined reference
position. Since neurons in the motor cortex demonstrate congruent ac-
tivity during active movement and observation of action (Tkach et al.,
2007; Suminski et al., 2009), we used the neural discharge recorded dur-
ing the playback to construct a neural decoder that predicted Cartesian
position of the cursor based on recorded cell activity. It is important to
note that this decoder was trained solely on the observed target positions
and cursor trajectories while the monkey’s arm remained motionless in
an attempt to mimic a training paradigm that could be used in patients
with severe motor dysfunction. A new neural decoder was trained during
each experimental session.

During the experiment, the monkey used a real-time decoding (BMI)
algorithm to move the cursor in the same task based on the activity of an
ensemble of recorded motor cortical [primary motor cortex (MI)] neu-
rons under three different conditions. In the first condition, referred to as
the visual feedback-only condition, VBMI, the animal moved the cursor
only via the neural decoder while maintaining a static arm posture in the
robotic exoskeleton at a predetermined reference position (Fig. 1b). If the

monkey moved the manipulandum away from this reference position
and outside an invisible “hold” region (1 cm radius around the reference
position) or removed his arm from the manipulandum, the game was
“turned off” (i.e., the visual cursor and target were extinguished) until
the monkey resumed proper posture. A gentle elastic force was applied to
the manipulandum to keep the animal’s arm from drifting away from the
reference position, but was not applied within the “hold” region. There-
fore, within the hold region, the small inherent friction of the exoskeletal
robot served as the only resistance.

The second condition, referred to as the visual and proprioceptive
feedback condition, V�PBMI, provided the animal with congruent visual
and proprioceptive feedback about the position of the decoded cursor
(Fig. 1c). Here, the animal controlled the cursor with the BMI while his
arm was moved by the exoskeleton to follow the visual cursor, thereby
transforming the monkey’s arm from an effector driving the movement
into a transducer providing an accurate proprioceptive estimate of the
position and velocity of the cursor. Cursor trajectories were reproduced
well by movements of the exoskeleton as the median (first quartile, third
quartile) correlation coefficient between hand and cursor position was
0.92 (0.81, 0.97) and 0.89 (0.76, 0.95) for the X and Y direction,
respectively.
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Figure 1. Experimental apparatus and single-trial kinematic data during the active move-
ment and BMI conditions. Monkeys performed the RTP task by moving a visual cursor (red
circle/trace) to randomly placed targets (squares). To receive a reward, the monkey was re-
quired to sequentially acquire either two or seven successive targets. a, During AM phase, the
position of the visual cursor was controlled by the movements of the monkey’s hand (black
trace). b– d, In the BMI phase, the position of the visual cursor was decoded from the spiking
activity of an ensemble of neurons in motor cortex. b, During the visual feedback-only condi-
tion, the animal voluntarily maintained a static posture in the exoskeleton. c, During the visual
and proprioceptive feedback condition, the monkey’s hand was moved (by the exoskeleton)
through the decoded cursor trajectories. d, In contrast, the monkey’s hand was moved through
a trajectory unrelated to the cursor during the visual and noisy proprioceptive feedback
condition.
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Last, we included a control condition, visual and noisy proprioceptive
feedback (V�NBMI), in which the monkey moved the cursor via the BMI
while its arm was moved by the exoskeleton through a trajectory that was
different from the cursor (Fig. 1d). The movement of the arm was driven
by the replay of cursor trajectories recorded during the visual only and
the visual and proprioceptive feedback BMI conditions that were com-
pleted earlier in the same experimental session. Despite the discrepancy
in their feedback signals, hand movements contained some information
about BMI cursor movements as the median (first quartile, third quar-
tile) correlation coefficient between the position of the BMI cursor and
the hand was 0.62 (0.48, 0.80) and 0.57 (0.46, 0.75) for the X and Y direction,
respectively. The purpose of this condition was to confirm that any perfor-
mance gains observed during the V�PBMI condition were attributable to
information contained in the proprioceptive feedback and not task-
irrelevant sensory stimulation related to the motion of the limb.

We implemented a proportional-derivative (PD) controller to mini-
mize the deviation between the commanded and realized position of the
exoskeleton during the V�PBMI and V�NBMI decoding conditions. Be-
cause of the dynamics of the exoskeleton, we found that this controller
introduced a time delay between the control signal and the realized po-
sition of the monkey’s arm, causing a delay in the proprioceptive feed-
back. To compensate for this delay, we imposed a 100 ms time delay on
the visual feedback in all of the decoding conditions, resulting in the
temporal alignment of the cursor position and the monkey’s hand during
the congruent feedback BMI condition.

Trial selection
To assess the accuracy of the proprioceptive feedback given by the PD
controller without voluntary control of the arm, we performed a separate
control experiment in which we measured the dynamics and average
error between the commanded (i.e., the cursor) and actual positions of
the robot (and arm) during replayed BMI trajectories with an anesthe-
tized animal. This experiment provided a means to reject trials in the
V�PBMI and V�NBMI conditions in which the monkey may have made
undesirable arm movements leading to large errors between hand and
cursor direction above and beyond the error introduced by the passive
dynamics of exoskeleton and monkey’s arm.

In this control experiment, the animal was anesthetized (ketamine, 2
mg/kg; dexmedatomidine, 75 �g/kg; atropine, 0.04 mg/kg) and then
placed in the primate chair with its arm strapped into the manipulan-
dum. Cursor position was digitized (500 Hz) and recorded indepen-
dently while the monkey’s relaxed arm was moved through the replayed
cursor trajectories for �5 min. Playback of each trajectory was repeated
three times for a total exposure time of 15 min. We computed the cross-
correlation between the X and Y cursor and hand positions during pas-
sive arm movements to measure the time delay between movement of the
cursor and the manipulandum. As expected, a strong correlation
(�0.95) was observed between cursor and hand position at average time
delays of 98 and 52 ms in the X and Y directions, respectively. To compute
the error between cursor and hand positions, we first corrected for the
dynamics of the position controller/manipulandum by shifting the hand
position data by the appropriate time delay and then used the dot prod-
uct to compute the angular difference in movement direction (error)
between the cursor and hand on a sample-by-sample basis. In this con-
trol experiment, when the animal was anesthetized, the error between the
cursor and hand direction averaged 41.6 � 7.5° (� � �) for monkey MK
and 42.8 � 6.7° for monkey B.

Based on the values obtained from the control passive movement ex-
periment, we computed the direction error between the hand and de-
coded cursor or replayed trajectory on a sample-by-sample basis for the
V�PBMI and the V�NBMI conditions, respectively. Trials with an aver-
age error exceeding the mean error plus 3 SDs (as obtained from the
control experiment described above) were excluded from additional
analysis. This threshold was 64.1° for monkey MK and 62.9° for monkey
B. We also excluded trials in which the monkey may have been voluntar-
ily contributing to the movement of the exoskeleton. Here, a cross-
correlation analysis between the commanded and actual hand position
on each trial was used to determine those trials in which the movement of
the hand preceded (i.e., led) the movement of the command signal by �0

ms. As a result, across all experiments in both monkeys, 385 of 1210 trials
and 335 of 561 trials from the V�PBMI and V�NBMI conditions, respec-
tively, passed both tests and were analyzed further. We varied the corre-
lation delay threshold in the V�PBMI to investigate the effect of the
monkeys’ voluntary contribution to movement of the exoskeleton on
BMI performance. In this analysis, we considered three additional
thresholds for the elimination of trials: (1) hand led BMI cursor by �25
ms, (2) hand led cursor by �50 ms, and (3) no lead/lag threshold (i.e., all
data were considered). A total of 650 (53%), 860 (71%), and 1210 (100%)
of V�PBMI trials were included in the analysis based on these exclusion
criteria. A total of 708 and 756 trials were analyzed from the VBMI and AM
conditions, respectively.

Electrophysiology
Each animal was chronically implanted with a 100 electrode (400 �m
interelectrode separation) microelectrode array (Blackrock Microsys-
tems) in MI contralateral to the arm used for the task (Maynard et al.,
1999). The electrodes on each array were 1.5 mm in length. The tips of the
electrodes were coated with iridium oxide. During a recording session,
signals from up to 96 electrodes were amplified (gain of 5000), bandpass
filtered between 0.3 Hz and 7.5 kHz, and recorded digitally (14 bit) at 30
kHz per channel using a Cerebus acquisition system (Blackrock Micro-
systems). Only waveforms that crossed a user-defined threshold were
used for real-time decoding and stored for additional analysis. The neu-
ral data used to train and drive the BMI during the real-time decoding
conditions were comprised of single and multiunit spiking events that
were spike-sorted on-line. On average, 43.67 � 1.43 and 44.80 � 2.35
(mean � 1 SE) neural channels were allocated for use with the decoder
per experimental session for monkeys MK and B, respectively. In con-
trast, the stored spike waveforms that were used in our neural analyses
were spike-sorted off-line, using Offline Sorter (Plexon). In total, 609
individual cell samples were identified via Offline Sorter: 337 cell samples
across six data sets from monkey MK and 272 cell samples across five data
sets from monkey B. Because of the chronic nature of our recordings, we
use the term “cell samples” when aggregating over data sets to make clear
that these represent independent samples across different data sets but
may or may not represent different neurons.

This study was conducted over an extended period of time and the
monkeys were trained on multiple variants of the task described above.
The 11 data sets (5 from monkey B and 6 from monkey MK) included in
our analysis represent all data collected using this particular experimental
design. A data set is defined as the simultaneously recorded neural activ-
ity during a single recording session. All of the surgical and behavioral
procedures were approved by the University of Chicago Institutional
Animal Care and Use Committee and conform to the principles outlined
in the Guide for the Care and Use of Laboratory Animals.

Robust linear filter decoder
The real-time decoder is implemented using a Wiener filter (Wessberg et
al., 2000; Serruya et al., 2002; Fagg et al., 2009). The spikes generated by a
single neuron or multiunit activity during 1 s before prediction were
binned into a total of 20 time bins, each of which was 50 ms in duration.
The predicted cursor position is a linear function of these binned spike
counts. The coefficients for the model are selected using a ridge regres-
sion approach that trades prediction accuracy on the training set for a
smoother prediction surface (Bjèorck, 1996). This approach helps to
address the overfitting problem that can occur with small training data
sets in high-dimensional feature spaces.

In our approach, a time series of hand position data points is recon-
structed from a linear combination of neural responses from many neu-
rons at multiple times as follows:

S�t� � �
j�	Tpre/dt

0 �
i�1

C

ai, j � N�i, t � j�,

where S(t) is the signal to be reconstructed, N(i, j) denotes the activity of
neuron i at time lag j, ai,j is the corresponding coefficient, C is the number
of cells, Tpre is the time before the current time t, and dt is the width of the
time bins (50 ms). The set of coefficients (ai,j) that minimizes a cost
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function that includes the least mean squared difference between the
actual and reconstructed signal can be solved for analytically as follows:

a � �NTN � �I�	1NTS,

where (NTN ) is the correlation matrix that contains the pairwise corre-
lations between each pair of neurons at different time bins, � is a regu-
larization constant required for the ridge regression, and I is the identity
matrix. Since hand movements are restricted to a plane, independent
estimates of the X and Y components of hand position were made to
predict the motion of the hand.

Chance decoder performance
We computed the chance percentage level of successful trials for each
animal by randomly shuffling the binned firing rate time series for each
unit during the VBMI and V�PBMI conditions. Cursor trajectories were
then generated (off-line) by applying the actual filters computed during
the experiment to the shuffled neural data. Each simulated trajectory was
required to hit the same sequence of targets as were presented during the
real-time decoding conditions. Just as in the real experiment, cursor
trajectories were allowed up to 2.5 s for the cursor to hit a target, and two
consecutive target hits constituted a successful trial. We repeated this
procedure 1000 times allowing us to compute a mean and SD for the
percentage of successful trials. The averaged chance success rate for mon-
key B was 29.9 � 0.8 and 36 � 0.4% (mean � 1 SE) for the VBMI and
V�PBMI conditions, respectively. The averaged chance success rate for
monkey MK was 38.7 � 2.2 and 32.6 � 0.8% for the VBMI and V�PBMI

conditions, respectively.

Analysis
Kinematics. Kinematic parameters (position and direction) of hand and
cursor movement in each condition were binned in 50 ms bins and
boxcar-smoothed using a 150 ms sliding window for most analyses. To
assess performance differences between the active movement and real-
time decoding conditions, we used three kinematic measures: (1) nor-
malized time-to-target, (2) normalized path length, and (3) normalized
path reversals. The normalized time-to-target metric is defined as the
time difference between consecutive target hits divided by the Euclidian
distance between the targets. The normalized path length metric is de-
fined as the path length of the cursor between consecutive targets divided
by the Euclidian distance between consecutive targets. Normalized path
length is a unitless ratio of distance measures and captures the straight-
ness of the cursor path. The normalized path reversal metric is defined as
the number of positive-to-negative zero crossings in the movement
speed directed along a line connecting consecutive targets. To compute
the number of normalized path reversals, we first rotated each trajectory
such that it started at the origin and ended at a point on the positive
x-axis. We then computed the velocity of the trajectory in the x direction
and counted the number of positive-to-negative zero crossings (i.e., the
number of times the visual cursor started to move away from the target).
Last, we divided the number of zero crossings for each target hit by the
Euclidian distance between consecutive targets. Kinematic observations
for each metric were pooled by monkey across data sets, and a one-way
ANOVA with post hoc t tests was used to determine whether BMI perfor-
mance differed as a function of experimental condition.

Spiking activity. In our off-line sorting and analysis, we sought to iso-
late single units possessing signal-to-noise ratios of 3 or higher. Signal-
to-noise ratios were defined for each sorted unit as the difference in mean
peak-to-trough voltage divided by twice the mean SD. The mean SD was
computed by averaging the SD of the spike waveform over all acquired
spikes at each of the 48 sample time points of the waveform. Unlike the
preceding kinematic analyses, we considered all observations related to
the spiking activity of single cells to be independent and pooled them
across subjects for all population analyses.

We performed a principal components analysis (PCA) on the ensem-
ble of neurons recorded in each data set to understand how the different
experimental conditions modulate spiking activity. Specifically, we were
interested in exploring whether passive movement of the arm in the BMI
conditions resulted in an increase in the “flexibility” of the neural activity
(i.e., the ability to use more degrees of freedom). The methodology has

been previously described (Yu et al., 2009). Briefly, spike trains (1 ms
resolution) for each neuron in the ensemble were binned in 20 ms bins
and the resulting spike counts were square root transformed to stabilize
the spiking noise variance. A smoothed estimate of the firing rate for each
neuron was then created by convolving the binned spike trains with a
Gaussian kernel (� � 60 ms). We then used PCA to determine the num-
ber of orthogonal bases required to account for 90% of the variance in the
ensemble activity. The number of bases in each condition was pooled
across both data sets and subjects, and a one-way ANOVA was used to
determine whether the number of bases varied across experimental
condition.

Mutual information between binned neural data and kinematics (50
ms bins) was calculated at multiple time leads and lags (Paninski et al.,
2004). This analysis captures both linear and nonlinear relationships
between the two variables by means of signal entropy reduction. The
computation yields a measure of the strength of the relationship between
the two variables when they are shifted with respect to each other by
different time lags. By examining the relative timing of the peak mutual
information, we were able to determine at what time lag the modula-
tion of a neuron was most related to the cursor movement. The kine-
matic probability distributions (one-dimensional distribution of
instantaneous movement direction) conditioned on the number of
observed spikes were estimated by histograms of the empirical data.
To account for biases in this estimation, the information calculated
from shuffled kinematic bins (mean of 100 shuffles) was subtracted
from the values obtained from the actual data for each cell. Last, the
lead/lag mutual information profiles were boxcar-smoothed with a 3
bin window (150 ms).

Electromyograms. Electromyograms (EMGs) were recorded from the
biceps and triceps using differential surface electrodes (Noraxon Myo-
system 1200). EMG signals were bandpass filtered between 10 and 450
Hz, amplified (100�), and digitized at 2000 Hz using the Cerebus
acquisition system. Residual offsets were subsequently removed from
the digitized EMGs, which were then rectified and filtered at 4 Hz with
a zero-phase low-pass filter (fourth-order Butterworth). Next, the
resulting time series of muscle EMG were normalized by the mean
value of the rectified and filtered activity recorded during the active
movement phase of the experiment. We then characterized the coor-
dination between muscles at the elbow by estimating the degree of
antagonist muscle co-contraction using a measure also known as
“wasted contraction” (Thoroughman and Shadmehr, 1999). For the
pair of antagonist muscles (biceps and triceps) at each sampling in-
stant, the minimum value of the two normalized EMG signals was
selected to yield a time varying co-contraction signal, which represents
the magnitude of normalized EMG that is equal and opposite in the
antagonist muscle pair. One-way ANOVAs were used to determine dif-
ferences in muscle activity and co-contraction across conditions.

We used a cross-correlation technique (Suminski et al., 2007) to eval-
uate the temporal relationship between elbow angular velocity and indi-
vidual muscle activities during each trial of the active movement and
real-time decoding conditions. The resulting correlation time series were
averaged across trials within each experimental condition for display
purposes. The peak correlation magnitude for successful trials in each
condition was Fisher transformed and compared using a one-way
ANOVA.

Eye position. Eye movements were recorded with an infrared oculom-
eter (R-HS-S6; Applied Science Laboratories) located in front of the
animal. The eye position was calibrated using the ASL EyeTracker Soft-
ware Suite while the monkey performed the RTP task with targets placed
in a 3 � 3 grid that spanned the rectangular workspace. During the BMI
conditions, the Cartesian positions of the monkey’s gaze were digitized at
1 kHz, time-stamped with respect to the neural and kinematic data, and
saved to disk. These values were regressed against the x and y target
positions in the active movement condition to determine the location of
gaze in the same coordinate frame as the cursor and target. Using the
resulting regression coefficients, x and y gaze position was then corre-
lated with the x and y target positions on a per-trial basis during each of
the BMI conditions. Correlation coefficients for each of the BMI condi-
tions were Fisher transformed and the means of the resulting distribu-
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tions were compared against each other using a one-way ANOVA
statistical test.

Results
Both monkeys achieved successful control of the cursor in all
three BMI conditions as assessed by the percentage of trials in
which two consecutive targets were hit within 2500 ms. Monkey
B achieved an average success rate of 75.0 � 6.2, 75.4 � 5.9, and
74.4 � 6.4% (mean � 1 SE; across all recording sessions) for the
VBMI, V�PBMI, and V�NBMI conditions, respectively. Monkey
MK achieved 81.7 � 4.5, 82.4 � 4.1, and 77 � 6.5% success rates
for the VBMI, V�PBMI, and V�NBMI conditions, respectively.
The success rates observed during the BMI conditions were less
than those observed during active movement (97.2 � 0.5 and
92 � 2.5% for monkeys B and MK, respectively) but were sub-
stantially greater than the chance rate computed off-line (see
Materials and Methods, Chance decoder performance). Because
of the daily retraining of the neural decoder, success rates varied
from day to day. We found no evidence of day-to-day gains in
success rate that have been reported by others using decoders that
were fixed across experimental sessions (Ganguly and Carmena,
2009). We were unable to determine the cause of missed trials
because the task did not require a specific behavior to initiate a
trial. Missed trials were likely attributable to some combination
of poor performance and sporadic periods of inattention. Success
rates were computed based on all trials and thus do not reflect the
trial selection criteria imposed in the subsequent analyses.

Improved performance with congruent feedback
Because our monkeys were trained to relax their arm and no
restraints were used during any of our experiments, it was impor-
tant to select only those trials for our analyses during which the
monkeys were receiving intended sensory feedback and to re-
move any trials during which the monkeys’ voluntary move-
ments interfered with the intended sensory information (see
Materials and Methods, Trial selection). Examination of the cur-
sor trajectories in each condition revealed that, on average, the
movements generated by the BMI incorporating both veridical
visual and proprioceptive feedback were straighter and less variable
compared with the other BMI conditions. We used three behavioral
metrics to quantify the effects of multisensory feedback on the qual-
ity of BMI performance: (1) the normalized time-to-target (i.e., the
time to reach a target divided by the distance to the target), (2)
normalized path length (i.e., the actual path length divided by the
target distance), and (3) the normalized number of path reversals
(i.e., the number of times the transiently moved away from the target
divided by the target distance). One-way ANOVAs with post hoc t
tests were used to evaluate the condition-dependent differences in
these metrics for each animal separately.

Consistent with our hypothesis, both monkeys moved the vi-
sual cursor faster and straighter when using a BMI that provided
veridical visual and proprioceptive feedback compared with a
BMI with visual feedback alone (Fig. 2a, Table 1). The mean
normalized time-to-target was significantly shorter during the
V�PBMI condition compared with both the VBMI and the
V�NBMI conditions ( p 
 0.05, for each animal). Monkeys also
generated straighter paths under the V�PBMI condition ( p 

0.05, for each animal). Interestingly, BMI performance was sig-
nificantly poorer according to the path length metric during the
V�NBMI condition compared with the VBMI condition indicat-
ing a detrimental effect of incongruent feedback ( p 
 0.05, for
each animal). Finally, we found that the BMI-generated paths
having the least number of trajectory reversals occurred during

the V�PBMI condition compared with the VBMI and V�NBMI

conditions. In fact, the average percentage difference between
V�PBMI and VBMI for these three metrics show a �40% improve-
ment when the monkeys moved a visual cursor using a BMI
incorporating congruent visual and proprioceptive feedback
compared with visual feedback alone (Table 1). According to
these metrics, cursor movements generated in the V�PBMI con-
dition reasonably approximated natural reaching movements
observed in the AM condition.

In addition to the presence of congruent multisensory feed-
back, the degree of congruence also contributed to the improve-
ment in BMI movements we observed. In examining the
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Figure 2. Kinematic performance during the active movement and BMI conditions for each
monkey. a, Decoding performance is enhanced by the incorporation of congruent naturalistic
proprioceptive feedback into the brain–machine interface in the V�PBMI condition (red bar)
compared with the visual feedback-only (VBMI, orange bar) and visual and noisy proprioceptive
feedback (V�NBMI, gray bar) BMI conditions. Improved performance is evident based on the
significantly shorter normalized time-to-target (top) and path length (bottom). The error bars
indicate �1 SE about the mean performance. b, Decoding performance in the V�PBMI condi-
tion improved, a reduction in time-to-target and path length, as the movement direction error
between the cursor and hand decreased (curves). Larger direction errors caused degradation in
BMI control. We varied the time lag threshold between hand and cursor movement to investi-
gate the effect of active movements on BMI performance. Performance decreased proportion-
ally to increases in the time hand movements were allowed to lead cursor movements. The
thresholds for elimination of trials were as follows: (1) hand led BMI cursor by �0 ms (red line;
metric used other analyses), (2) hand led BMI cursor by �25 ms (dashed red line), (3) hand led
cursor by �50 ms (dashed black line), and (4) no lag threshold (black line). Larger direction
errors caused degradation in BMI control. The poorest performance was found in the V�NBMI,
in which the direction errors were highest (gray circles). Performance in the active movement
condition was plotted at an error of 0 because the cursor was controlled by the exoskeleton (blue
circles). VBMI performance is represented by the yellow circles.
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relationship between task performance and direction error in the
V�PBMI condition, we found that, as the discrepancy between
cursor and hand movements decreased, both time-to-target and
path length decreased (i.e., improved performance) (Fig. 2b, solid
red curves). As the elimination criteria became less stringent,
performance decreased (Fig. 2b, dashed red, dashed black, and
solid black curves). As direction error became large, performance
degraded dramatically. The worst performance was observed in
the V�NBMI condition, in which the average direction error be-
tween the visual cursor and hand movement was greatest (Fig. 2b,
gray circle). Finally, in both V�PBMI and V�NBMI, we observed a
significant decrease in performance when all of the data were
included in the computations (Table 1, denoted as V�PALL,BMI

and V�NALL,BMI).
Task performance in the VBMI condition was likely influenced

by the 100 ms delay we imposed to compensate for the dynamics
of the exoskeleton. To investigate the magnitude of this effect, we
compared the performance of the BMI incorporating congruent
visual and proprioceptive feedback to the performance of a
vision-only BMI having no delay. We collected an additional 10
data sets (5 from monkey MK and 5 from monkey B), in which we
imposed no delay on the movement of the visual cursor in the
VBMI condition (Table 1, denoted as V0,BMI). For each monkey
separately, a two-sample t test was used to evaluate the condition-
dependent differences for each performance metric. As expected,
we found that performance improved when the 100 ms visual
delay was removed (two-sample t test; p 
 0.0005 for each met-
ric). However, we found that the BMI incorporating congruent
multisensory feedback (even with the imposed 100 ms delay)
outperformed the vision only BMI with no delay in the time-to-
target ( p � 0.019 and p � 0.004, for MK and B) and path length
( p � 0.007 and p 
 0.0005, for MK and B) metrics by 10 and
15%, respectively (Table 1). There was no difference in the num-
ber of trajectory reversals between these two conditions.

We collected surface EMGs from the biceps and triceps in
monkey MK to verify that the cursor movements observed dur-
ing the BMI conditions were not influenced by the monkey’s
active arm movements. Figure 3a compares the arm kinematics
and EMG activity during a representative experiment. Changes in
the magnitude of biceps and triceps muscle activity are readily
apparent in conditions in which the arm is moved, either by
the monkey (AM, blue bar) or the exoskeleton (V�PBMI and
V�NBMI, red and gray bars, respectively). To quantify condition-
related changes in muscle activity, we computed the trial-
averaged EMG magnitude for each muscle and compared them
with a one-way ANOVA. The test found a significant effect of
experimental condition for both muscles, with EMG magnitude
being significantly increased in the V�PBMI and V�NBMI condi-

tions compared with AM and VBMI (Fig. 3b) ( p 
 0.05). To verify
that the exclusion criteria were removing V�PBMI trials when
muscle activity may have contributed to improper kinesthetic
feedback, we compared EMG magnitude in the population of
included and excluded trials for both muscles. We found that
muscle activity was significantly reduced in the population of
V�PBMI trials that survived the exclusion process (two-sample t
test; p � 0.04 and p � 0.03 for biceps and triceps, respectively).

We used two measures to assess whether this increase in mus-
cle activity during the V�PBMI and V�NBMI conditions was re-
lated to the monkey’s attempt to move the visual cursor by
actively moving his arm. First, we computed a measure of the
antagonist muscle co-contraction for the biceps and triceps. A
one-way ANOVA found a significant increase in the magnitude
of co-contraction in the V�PBMI and V�NBMI conditions com-
pared with AM and VBMI (Fig. 3c) ( p 
 0.05). Next, we used a
cross-correlation analysis to examine the relationship between
muscle activity (the biceps and the triceps) and elbow angular
velocity during the AM and BMI conditions. A one-way ANOVA
and post hoc t test found no differences in the peak correlation
magnitude between EMG activity and elbow joint velocity across
the three BMI conditions ( p � 0.05). Furthermore, the correla-
tion magnitudes in the BMI conditions (at the time lag of peak
correlation in AM) were not different from zero, suggesting that
the monkey was not actively attempting to move its limb during
BMI control (Fig. 3d). Peak correlation magnitude between EMG
activity and elbow joint velocity significantly increased during the
AM condition compared with the BMI conditions ( p 
 0.05),
demonstrating the expected relationship between muscle activity
and joint motion during reaching movements (Fig. 3d).

In addition to collection of muscle activity, we recorded the
eye movements in monkey MK to confirm that our results are not
biased by the position of the monkeys’ gaze. A one-way ANOVA
found that there was no difference in cross-correlation magni-
tude between eye position and target location across the three
BMI conditions ( p � 0.27 and p � 0.61 for X and Y positions,
respectively), indicating no effect of gaze position on our behav-
ioral result.

Condition-dependent modulation of spiking activity
We next investigated how the condition-dependent modulation
in MI neurons contributed to the performance gains observed
when congruent visual and proprioceptive feedback were avail-
able to the monkeys during BMI control. We first examined neu-
ronal spike rate modulation during the AM and the three BMI
conditions. When viewed over the timescale of the entire exper-
iment, the responses of individual neurons varied substantially
across the experimental conditions (Fig. 4a, colored bar). Some

Table 1. Normalized behavioral performance per animal

Time-to-target (s/mm) Path length (mm/mm) Reversals (no./mm)

MK B MK B MK B

AM 0.019 � 0.0002 0.02 � 0.0003 2.45 � 0.03 2.84 � 0.04 0.012 � 0.001 0.022 � 0.002
VBMI 0.031 � 0.0008 0.035 � 0.0007 3.53 � 0.1 3.8 � 0.08 0.053 � 0.004 0.054 � 0.003
V�PBMI 0.021 � 0.0006 0.02 � 0.0009 2.65 � 0.08 2.21 � 0.06 0.023 � 0.002 0.027 � 0.002
V�NBMI 0.033 � 0.0014 0.034 � 0.0011 4.0 � 0.17 4.3 � 0.15 0.062 � 0.005 0.046 � 0.002
V0,BMI 0.023 � 0.0006 0.023 � 0.0004 3.0 � 0.09 2.88 � 0.05 0.027 � 0.002 0.023 � 0.001
V�PALL,BMI 0.030 � 0.0006 0.036 � 0.0007 3.94 � 0.08 4.20 � 0.08 0.044 � 0.002 0.060 � 0.003
V�NALL,BMI 0.035 � 0.0011 0.035 � 0.005 4.33 � 0.15 4.18 � 0.11 0.064 � 0.005 0.051 � 0.003

We used three behavioral metrics to quantify the effects of multisensory feedback on the quality of BMI performance: (1) time-to-target (i.e. the time to reach a target divided by the distance to the target), (2) path length (i.e. the actual
path length divided by the target distance), and (3) the number of path reversals (i.e. the number of times the cursor transiently moved away from the target divided by the target distance). Each value represents the mean � 1 SE of the
metric under AM, BMI control with vision only (VBMI ), BMI control using congruent visual and proprioceptive feedback (V�PBMI ), and BMI control with incongruent visual and proprioceptive feedback (V�NBMI ). The V0,BMI condition refers
to BMI control with vision only and without the 100 ms visual delay imposed to compensate for the dynamics of the exoskeleton (see Materials and Methods). V�PALL,BMI and V�NALL,BMI refer to conditions when all trials were included
in the computation of the behavioral metrics.
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neurons seemed to prefer active movement, whereas others pre-
ferred individual decoding conditions or some combination of
movement and the decoding conditions. This diverse, structured
neural activity is illustrated Figure 4a, which shows the normal-
ized binned firing rate (50 ms bins) as a function of time for each
of the 61 neurons recorded during a single session. Changes in the
experimental condition precisely correlate with substantial
changes in the firing rate of individual neurons appearing as ver-
tical striations in Figure 4a.

The modulation in the time series of firing rates raised the
possibility that the observed changes in BMI performance may be
caused by simple changes in the firing properties of neurons and
not the introduction of congruent multisensory feedback. We

performed two separate analyses to determine whether changes
in the rate of spiking could explain the observed differences in
BMI performance. First, we computed the average firing rate
during included trials for all 609 neuron samples in each BMI
condition. Figure 4b contains a set of scatterplots in which each
black dot represents the average firing rate of a neuron in the
indicated pair of conditions. A regression line was fit to the rate
data for all 609 neuron samples (Fig. 4b, red lines) and a one-way
analysis of covariance (ANCOVA) with post hoc t test was used to
test for differences in the gain (slope) and/or baseline firing rate
(intercept) between conditions. We observed a significant firing
rate gain (i.e., significantly greater than 1) when comparing the
rates measured in the AM condition with every other condition
( p 
 0.0005; gain � 1.08, 1.11, and 1.17 for VBMI, V�PBMI, and
V�NBMI, respectively). Furthermore, there were significant
firing rate gains in the V�PBMI and V�NBMI conditions com-
pared with VBMI ( p 
 0.0005; gain, 1.11 and 1.08, respec-
tively). ANCOVA found no significant gain effect between
firing rates in the V�PBMI and V�NBMI conditions ( p � 0.63;
gain, 1.01). Gain effects were not accompanied by similar
changes in baseline firing rate.

Next, we performed principal components analysis on the
ensemble of smoothed firing rate time series estimated for each
data set. We sought to show that the improvement in BMI per-
formance was not attributable to an increase in the “flexibility” of
ensemble neural activity (i.e., the possibility that MI enters a
higher dimensional space during some conditions, thereby using
more degrees of freedom). We computed the number of orthog-
onal bases required to account for 90% of the variance in the
ensemble activity for each data set. ANOVA found a significant
reduction in the number of bases required to explain the data
variance in the V�PBMI condition compared with the VBMI con-
dition ( p 
 0.05; 25 and 31 bases, respectively). This finding
demonstrates that the increase in BMI performance is accompa-
nied by increased efficiency in the ensemble spiking activity. The
AM and V�NBMI conditions required 30 and 27 bases to account
for 90% of the data variance.

Information in spiking neural activity
We computed the mutual information between the instanta-
neous firing rate of each cell and the instantaneous cursor direc-
tion for a range of time lags (Fig. 5). We considered only those
neurons whose mutual information peaked at a lag within the
range of 	600 to 600 ms (499 of 609 neuron samples satisfied this
criterion). The magnitude of mutual information varied from
neuron to neuron as seen in the three examples shown in Figure
5. Some neurons expressed graded amounts of information
about movement direction across the experimental conditions
(Fig. 5a), whereas others contained information during a subset
of the conditions. We found that the activity of many neurons
carried information only during the real-time decoding condi-
tions (Fig. 5b). Mutual information often peaked at positive lags,
indicating that cell activity carried information about the future
direction of cursor movement (Fig. 5a,b). This is consistent with
the idea that these cells causally “drive” the cursor movement
(Moran and Schwartz, 1999; Paninski et al., 2004; Suminski et al.,
2009). However, during V�PBMI, there were some neurons in
which the peak mutual information occurred at near zero or even
at negative time lags, indicating that the neural response occurred
after the cursor movement, suggestive of a sensory-type response
(Fig. 5c).

We were specifically interested in understanding how the
strength and temporal relationship of mutual information was
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Figure 3. EMG measures for the active movement and BMI conditions. a, Movement of the
arm (represented here by the elbow angle) was accompanied by large changes in muscle activ-
ity. The monkey was unable to suppress muscle activity in V�PBMI and V�NBMI. The colored
bar at the top of the figure shows the transitions among the four experimental conditions. b,
The average EMG magnitude for the biceps and triceps in the active movement (blue bar) and
three BMI conditions: visual feedback-only (VBMI, yellow bar), visual and proprioceptive feed-
back condition (V�PBMI, red bar), and visual and noisy proprioceptive feedback condition
(V�NBMI, gray bar). Muscle activity significantly increased in the decoding conditions in which
the arm was moved. c, This increase in muscle activity was associated with an increase in
co-contraction of these antagonist muscles. The error bars indicate �1 SE about the mean
muscle activity. d, We used a cross-correlation analysis to evaluate the relationship between
surface electromyograms recorded from the biceps (left) and triceps (right) and the elbow
angular velocity. Muscle activity causing movement at the elbow was only observed during the
active movement phase and not during the three BMI conditions.

Suminski et al. • Multisensory Feedback Brain–Machine Interface J. Neurosci., December 15, 2010 • 30(50):16777–16787 • 16783



modulated by sensory feedback modality
in cells whose activity contained signifi-
cant information about direction in each
of the experimental conditions. We in-
cluded cells in the following analyses if
they exhibited significant peak mutual
information with the direction of cursor
movement in at least one condition.
Based on this criterion, 410 (82.2%), 218
(43.7%), 147 (29.5%), and 126 (25.3%) of
the 499 neurons were analyzed in the AM,
VBMI, V�PBMI, and V�NBMI conditions,
respectively.

Summarizing the strength of the mu-
tual information profiles pooled across
both monkeys (Fig. 6a), a one-way ANOVA
with post hoc t tests found that neural ac-
tivity carried the greatest amount of infor-
mation about the direction of cursor
movement during the condition that pro-
vided the monkeys with congruent visual
and proprioceptive feedback about the
decoded cursor movement (V�PBMI con-
dition; 0.09 � 0.005 bits). The addition of
congruent proprioceptive feedback yielded
a 125% increase in mutual information in
neural activity compared with the VBMI

condition (0.04 � 0.002 bits; p 
 0.05).
This increase was not attributable simply
to movement of the arm, as the informa-
tion magnitude was greater than that ob-
served in the V�NBMI (0.057 � 0.003 bits;
p 
 0.05). We found no difference in the
amount of information in the neural
activity about the direction of cursor
movement during the VBMI and V�NBMI

conditions. The neural activity recorded
in the AM condition carried 0.06 � 0.003
bits of information about movement di-
rection. It should be noted that, when all
499 neurons (regardless of their signifi-
cance) or when only those neurons that ex-
hibited a significant information peak in all
conditions (97 neurons) were used, the re-
lationship between the magnitudes of mu-
tual information in all conditions remained
unchanged to those described above.

Our results also indicated a shift in the
lag at which the mutual information
peaked with respect to cursor direction
during the BMI conditions compared
with the AM condition. The mean lag of
peak mutual information during the AM
condition was 67 � 6 ms (Fig. 6b), but
shifted to a longer lag time of 189 � 8 and 209 � 13 ms during
VBMI and V�NBMI conditions, respectively (Fig. 6c,e). This
longer delay time during the BMI conditions (�130 ms) can be
explained by the combination of the computational delay im-
posed by the neural decoder and the visual feedback delay we
imposed to compensate for the dynamics of the exoskeleton. Un-
like the other conditions, we found a bimodal distribution of
peak mutual information lags during the V�PBMI condition (Fig.
6d). We characterized the two modes using a mixture of Gauss-

ians model and an expectation–maximization clustering algo-
rithm (Hastie et al., 2001), which found two modes at lags of
	63 � 14 and 242 � 10 ms. The actual distribution of lags fit the
model with an R value of 0.83. To understand the condition-
dependent relationship between the magnitude of information
carried by the neural activity and the timing of peak information,
we computed the mean mutual information profiles across the
two populations of neurons categorized by the sensory and mo-
tor modes of the V�PBMI distribution (Fig. 7a,b, respectively).
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all units recorded during a single session (B0428). Firing rates from each individual neuron were binned (50 ms bin size) and
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with VBMI (left and middle panels, respectively) revealed an increase in the firing rate gain when the arm was moved by the
exoskeleton during BMI control. This gain modulation was unrelated to the performance increase, as there was no difference in rate
gain between the V�PBMI and V�NBMI conditions (right panel). Each black dot represents the firing rate of a single neuron. The
ensemble data was well fit by a linear model in each condition (red line). A firing rate gain of unity is denoted by the black dashed
line.
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Despite the very different timing of the two modes, we found that
the magnitude of peak information in each mode was signifi-
cantly enhanced in the conditions in which visual and proprio-
ceptive sensory feedback were congruent (AM and V�PBMI)
relative to the VBMI and V�NBMI conditions.

Discussion
Our results are the first to demonstrate the utility of feedback
modalities other than vision in a cortically controlled brain–ma-
chine interface. Congruence in sensory feedback was an impor-
tant factor driving performance as we observed that both time-
to-target and path length decreased (i.e., increased performance)
as the error between the visual and proprioceptive estimates of
hand position decreased. Improvements in behavioral perfor-
mance were accompanied by an increase in the magnitude of
direction-related mutual information in the spiking activity of
MI at time lags indicative of both sensory and motor activity.

A 100 ms visual feedback delay was imposed in all BMI con-
ditions to synchronize the visual and proprioceptive feedback
modalities in the V�PBMI, which, by definition, increased the
time-to-target values in all conditions. However, even when
the delay was removed in the vision-only condition (V0,BMI), the
performance in V�PBMI condition (with the delay) was still im-
proved by 10 –15% relative to that in the V0,BMI condition. This

smaller yet significant performance im-
provement (comparison of V�PBMI and
V0,BMI in Table 1) is likely conservative
and could be increased by providing feed-
back at physiological latencies through im-
provements in exoskeleton control or via a
surrogate methodology (e.g., direct electri-
cal stimulation of the nervous system).

We observed an increase in EMG ac-
tivity in the conditions in which the arm
was moved by the exoskeleton. This mus-
cle activity was not the driver of improved
performance as our correlation analysis
demonstrated it was unrelated to the
monkey’s volitional attempt to move the
visual cursor with its arm (thereby effect-
ing movement of the BMI cursor). Rather,
this muscle activity caused an increase in
co-contraction at the elbow. In some
V�PBMI trials, the force generated by this
undesired muscle activity was sufficient
to overcome the force generated by the
exoskeleton causing feedback to be incon-
gruent. Therefore, we removed those tri-
als in which the sensory feedback was
inappropriate or improperly timed (in the
V�PBMI and V�NBMI conditions). This
filtering procedure removed a significant
number of trials in both conditions but
ensured that the sensory feedback was ap-
propriate in each condition.

Comparison with current
BMI performance
We chose to use a decoder based on a lin-
ear filter because of its computational
simplicity and its strong presence in the
literature (Serruya et al., 2002; Taylor et
al., 2002; Carmena et al., 2003; Musallam
et al., 2004; Hochberg et al., 2006; Kim et

al., 2008; Mulliken et al., 2008; Ganguly and Carmena, 2009).
Other decoding algorithms were not considered because the fo-
cus of our paper was on the effect of feedback on BMI control.
However, we believe that any gains achieved through the addition
of multisensory feedback would transfer, at least partially, to sys-
tems using other decoding algorithms.

Our results compare favorably with state-of-the-art BMIs that
rely on vision for feedback during closed-loop control. Ganguly
and Carmena (2009) trained monkeys to use a linear filter based
BMI that decoded the Cartesian position of a visual cursor using
MI spiking activity. After performance reached a steady state, the
movement time for their monkeys averaged 3.76 s for a 7 cm
cursor movement (0.054 s/mm in our normalized time-to-target
metric). In contrast, the normalized time-to-target for V�PBMI

averaged 0.021 s/mm. This large performance difference may be
attributable in part to the numbers of neurons included in the
neural decoder. Because Ganguly and Carmena were interested
in decoding from a stable population of neurons, they restricted
their decoder to at most 15 neurons, whereas our BMI averaged
�44 neural channels for monkeys MK and B. Performance in
V�PBMI also surpassed that reported in a clinical experiment
involving two human patients with tetraplegia (Kim et al., 2008).
After a 500 ms dwell time was removed from the movement times
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reported in the manuscript, the time-to-target averaged 2.58 s
(0.027 s/mm) and 2.8 s (0.029 s/mm) for the 9.2 cm cursor move-
ments generated by either a position-based linear filter decoder
or velocity-based Kalman filter decoder, respectively.

Mechanism for BMI control improvement
The performance increase with congruent sensory feedback was
accompanied by three significant changes in the spiking activity
of MI neurons during the BMI conditions. First, we found a
significant gain modulation in the firing rate of MI neurons dur-
ing the V�PBMI condition compared with VBMI. This result was
not surprising given the well documented effect of passive move-
ment on the activity of neurons in MI (Fetz et al., 1980; Suminski
et al., 2009). However, this firing rate gain between VBMI and
V�PBMI does not appear to be the source of the performance
increase because the firing rate gain between V�PBMI and
V�NBMI were not statistically different from one another despite
a significant difference in BMI performance between these con-
ditions. We cannot determine whether the decreased perfor-
mance observed in V�NBMI resulted from a sensory integration
strategy in which visual information was weighted more heavily
than proprioception or whether the disparity in visual and pro-
prioceptive feedback was simply distracting. We believe the
former to be the case, given the similarity in performance in VBMI

and V�NBMI, as well as the higher than expected correspondence
between the cursor and hand direction in the V�NBMI condition.

Second, principal components analysis on the ensemble neu-
ral activity from each data set found a reduction in the average
dimensionality of the space spanned by the spiking activity in
V�PBMI compared with VBMI. This is inconsistent with the hy-
pothesis that performance improvements may result from
greater “flexibility” of the neural activity (i.e., the ability to use
more degrees of freedom) when the restrictions on arm move-
ment were relaxed during BMI control (V�PBMI). Instead, the
increase in BMI performance in V�PBMI was accompanied by
greater efficiency of the neural ensemble possibly resulting from a
better estimate of the state of the system because of the integration of
visual and proprioceptive feedback (Wolpert and Ghahramani,

2000). In support of this view, we found a strong relationship
between BMI performance and the magnitude of the error be-
tween cursor and hand movements. As the degree of congruence
between the visual and proprioceptive feedback increased, the
monkeys’ ability to command the BMI cursor was significantly
improved. Similarly, the poorest BMI performance was found in
VBMI and V�NBMI, when the discrepancy between cursor and
hand movements was greatest.

Third, our mutual information analysis provides the strongest
evidence supporting the hypothesis that the performance gains
observed in V�PBMI were the result of congruent visual and pro-
prioceptive feedback. The bimodal distribution of peak mutual
information lag times for the V�PBMI condition suggests two
distinct neural populations. The population with positive lag
times exhibits a substantial increase in information during
V�PBMI relative to VBMI. This enhancement is particularly evi-
dent at the positive—“motor”—lag times. These are the only
relevant lag times for the neural decoder because they imply a
causal relationship between neural modulation and cursor move-
ment. Therefore, we believe that this population is primarily re-
sponsible for the enhanced BMI performance observed in the
congruent condition.

However, the population with negative lag times exhibits a
short-latency “sensory” peak during V�PBMI, which is not evi-
dent in the visual or incongruent feedback conditions. This pop-
ulation appears to be sensitive to limb state information via
proprioception that is known to reach the cortex in as little as 10
ms (Conrad et al., 1975; Lemon et al., 1976; Evarts and Fromm,
1977; Fetz et al., 1980; Suminski et al., 2009). Although this popula-
tion may not be directly responsible for the enhanced BMI perfor-
mance in V�PBMI, it may be mediating the increase in motor
information in the first population perhaps via horizontal connec-
tivity between the two populations (Huntley and Jones, 1991).

This “sensory” information may contribute to improved BMI
performance in two ways. First, the integration of visual and
kinesthetic feedback may provide the monkey a more accurate
estimate of the current state of the system. Second, the kinesthetic
feedback generated by moving the arm was likely smoothed with
respect to the visual feedback because of the dynamics of the
arm/exoskeleton. This feedback smoothing may partially con-
tribute to the improved performance that we report because of its
effect on the activity of MI.

Application to clinical neuroprostheses
Our findings may have important practical implications for severely
motor-disabled patients with residual proprioception. Incomplete
spinal cord injury, such as anterior cord and central cord syndromes,
results in severe loss of motor function but can leave a certain degree
of proprioception intact. Moreover, other conditions such as ALS
and locked-in syndrome have devastating motor consequences but
may not affect proprioception. With the recent advent of light-
weight wearable robotic exoskeletons (Kiguchi et al., 2005; Rocon et
al., 2007), these patient populations may be served with a cortically
controlled BMI that drives these devices and, in turn, moves the
affected but proprioception-intact limbs, thereby augmenting these
systems with proprioception.

More importantly, these findings provide a key foundation for
additional research involving the integration of different forms of
sensory feedback in BMI systems including bidirectional BMIs, in
which surrogate feedback is provided via electrical stimulation.
Direct stimulation of the primate somatosensory cortex via mi-
croelectrodes has been shown to elicit discernable sensory per-
cepts for reach target cuing (Fitzsimmons et al., 2007; London et
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Figure 7. Separable neural populations during the congruent visual and proprioceptive
feedback condition (V�PBMI). a, Mean (�1 SE) mutual information profiles of cells belonging
to the first mode of the bimodal distribution of peak mutual information lags during the
V�PBMI condition as seen in top inset. b, Mean (�1 SE) mutual information profiles of cells
belonging to the second mode of the bimodal distribution of peak mutual information lags
during the V�PBMI condition as seen in the top inset.
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al., 2008). This paradigm offers the benefit of a bidirectional BMI
to a larger group of patients who have lost both motor and sen-
sory function because of complete spinal cord injuries or limb
amputation.
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