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A library of Zymomonas mobilis genomic DNA was constructed in the broad-host-range cosmid pLAFR1.
The library was mobilized into a variety of Escherichia coli and Pseudomonas putida trp mutants by using the
helper plasmid pRK2013. Five Z. mobilis trp genes were identified by the ability to complement the &rp mutants.
The trpF, trpB, and trpA genes were on one cosmid, while the ¢rpD and trpC genes were on two separate
cosmids. The organization of the Z. mobilis trp genes seems to be similar to the organization found in Rhizobium
Spp., Acinetobacter calcoaceticus, and Pseudomonas acidovorans. The trpF, trpB, and trpA genes appeared to be
linked, but they were not closely associated with trpD or trpC genes.

Zymomonas mobilis is a gram-negative bacterium with
good potential for industrial fermentation of ethanol, but it is
also interesting for its unusual biology (25, 35, 37). It is
obligatorily fermentative, using only an Entner-Doudoroff
pathway leading to the production of ethanol and CO,. The
catabolism of carbohydrates appears to be limited, since
only glucose, fructose, or sucrose will support growth.
However, Z. mobilis is able to synthesize its own amino
acids and nucleotides (37).

Genetic analysis of Z. mobilis has been limited by ineffi-
cient methods of gene transfer (4, 25, 35, 37). Conjugation
with broad-host-range plasmids is possible (4, 25, 35), but
the plasmids are often unstable in Z. mobilis (25). The Z.
mobilis chromosome can be mobilized by using the broad-
host-range plasmid R68.45 (27, 35), but genetic mapping has
not been reported. Since classical genetic mapping tech-
niques are limited, it may be necessary to study the organi-
zation of Z. mobilis genes by molecular cloning and physical
mapping. A few of the genes necessary for glycolysis and
ethanol production have been cloned and sequenced (3, 7-9).
It appears that glyceraldehyde-3-phosphate dehydrogenase
and phosphoglycerate kinase are encoded in an operon in Z.
mobilis (7, 8).

As an initial step in the analysis of how biosynthetic genes
are organized and expressed in Z. mobilis, genes involved in
tryptophan biosynthesis have been cloned. The organization
of genes involved in tryptophan biosynthesis has been inves-
tigated in a variety of organisms. The reactions required to
synthesize tryptophan from chorismic acid are the same in
all organisms investigated (10, 11). However, the number,
organization, and regulation of the genes vary considerably
(10, 11). For example, in enteric bacteria there are five or six
genes arranged in an operon (10, 41). In other gram-negative
bacteria, such as Pseudomonas putida (17), Pseudomonas
aeruginosa (10, 18), Acinetobacter calcoaceticus (32), Rhi-
zobium spp. (21), Pseudomonas acidovorans (5), and Cau-
lobacter crescentus (39), there are seven genes, some of
which are clustered or in an operon but unlinked to other trp
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genes. In many organisms there are three separate linkage
groups encoding one to four of the trp genes.

In this study, five Z. mobilis trp genes were cloned by
complementation of E. coli and P. putida trp mutants. The
trpD and trpC genes were on two different cosmids, while
trpF, trpB, and trpA were on a third cosmid.

MATERIALS AND METHODS

Bacterial strains and growth conditions. Strains and plas-
mids used in this study are listed in Table 1. Z. mobilis was
grown at 30°C without shaking in rich medium containing
(per liter) 10 g of yeast extract, 20 g of glucose, and 2 g of
KH,PO,. E. coli and P. putida were grown with shaking in
LB (24) or Vogel Bonner medium (38) at 37 and 30°C,
respectively. Streptomycin (100 pg/ml) and tetracycline (20
wng/ml for E. coli and 5 png/ml for P. putida) were added to
media for selection. When necessary, 20 pg of tryptophan
per ml and 0.5% methionine were added to minimal media.

Isolation of chromosomal DNA. Z. mobilis and E. coli
genomic DNA was isolated by a modification of a method
described by Sato and Miura (31). A 1-g (wet weight) sample
of cells was suspended in 5 ml of buffer containing 0.1 M
EDTA and 0.15 M NaCl. Lysozyme was added to a final
concentration of 12 mg/ml for Z. mobilis or 2 mg/ml for E.
coli. Cells were incubated for 30 min at 37°C. Z. mobilis cells
were subjected to two freeze-thaw cycles in a dry ice-
ethanol bath. A 25-ml solution containing 1% sodium dode-
cyl sulfate and 0.1 M Tris (pH 9.0) was added, and cells were
subjected to additional freeze-thaw cycles until lysis oc-
curred. E. coli cells were lysed as previously described (33).

The lysed cells were mixed with an equal volume of
phenol and were shaken gently for 15 min at 4°C. The phenol
and aqueous phases were separated by centrifugation for 5
min at 3,000 X g in a Sorvall SS34 rotor. After additional
extractions with phenol and phenol-chloroform, the DNA
was precipitated with 2 volumes of cold ethanol. High-
molecular-weight DNA was recovered by spooling onto a
glass rod. DNA was rinsed in 70% ethanol and dissolved in
TE-8 (10 mM Tris [pH 8.0], 1 mM EDTA). The DNA was
treated with 100 ug of RNase per ml at 37°C for 30 min and
extracted several times with equal volumes of phenol and
phenol-chloroform. Ammonium acetate (5 M) was added to
a final concentration of 2.5 M, and DNA was precipitated by
adding 2 volumes of isopropanol.
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TABLE 1. Bacterial strains and plasmids

Strain or plasmid

Relevant characteristic(s)

Source or reference

Zymomonas mobilis 29192 Wild type ATCC?
Escherichia coli
w3110 Wild type
T-3 trpE3 Yanofsky collection
T-58 trpD2 Yanofsky collection
T-80 trpD3 Yanofsky collection
T1073 trpC2 36
T1028 trpC5 36
T1227 trpC9 36
T1153 trpC8 36
T-41 trpB4 Yanofsky collection
WRT-4 trpB8 Yanofsky collection
T-8 trpA2 Yanofsky collection
K12, trp trpA23 Yanofsky collection
HB101 recA str hsdR hsdM pro leu 2
TC4 recA hsdR pro thi 7
BH2688 In vitro packaging strain 19
BH2690 In vitro packaging strain 19
Pseudomonas putida
trpE602 17
22 met-601 trpD611 17
19 trpF221 17
18 trpC615 17
20 trpC31 17
21 trpA655 17
6 trpB661 17
Plasmids
PLAFR1 Tet" mob cos 15
pRK2013 Km" mob tra 14
pC2 pLAFR1 trpC This study
pCS pLAFR1 trpC This study
pD3 pLAFR1 trpD This study
pD4 pLAFR1 trpD This study
pFBA9 pLAFR1 trpF trpB trpA This study
pF20 pLAFR1 trpF This study
pAl pLAFR1 trpA This study
pF17 17-kb EcoRI fragment from pFBA9 in pLAFR1 This study
pF5.8 5.8-kb EcoRlI fragment from pFBA9 in pLAFR1 This study

“ ATCC, American Type Culture Collection.

Preparation of plasmid DNA. Plasmids were isolated from
E. coli by using the alkaline lysis method (23).

Restriction enzymes and ligase. Restriction enzymes, pur-
chased from International Biochemicals Inc., Bethesda Re-
search Laboratories, or Pharmacia, and T4 DNA ligase,
purchased from Bethesda Research Laboratories, were used
according to the instructions of the manufacturer.

Lambda in vitro packaging. Packaging extracts were pre-
pared as described by Rodriguez and Tait (29) by using E.
coli BH2688 and BH2690. Aliquots (25 pl) were stored at
—70°C in 1.5-ml Eppendorf tubes. In vitro packaging was
performed as described by Rodriguez and Tait (29) with the
following modifications. After the packaging extract and
DNA were incubated for 30 min at 37°C, a second packaging
extract containing 5 ug of DNase I and 2.5 pl of 0.5 M MgCl,
was added. The reaction mixture was incubated for an
additional 30 min at 37°C and stopped by the addition of 0.5
ml of SM buffer (100 mM NaCl, 5 mM MgSO,, S0 mM Tris
hydrochloride [pH 7.5], 0.01% gelatin) and 2 drops of
chloroform. The extract was mixed gently and centrifuged
for 30 s in a microfuge. The supernatant was stored at 4°C.
Alternatively, Gigapack Plus packaging extracts from Stra-

tagene Cloning Systems were used according to the instruc-
tions of the manufacturer.

Construction of a cosmid library. Z. mobilis total genomic
DNA was partially digested with EcoRI and electrophoresed
through a 0.4% low-melting-point agarose gel. Fragments of
20 to 30 kilobases (kb) in length were isolated from the
agarose gel (23). The purified genomic DNA was mixed with
pLAFR1, previously cut with EcoRlI, at a ratio of 5 to 1. T4
DNA ligase was added, and the mixture was incubated at
4°C for 48 h.

The ligation mix was packaged in vitro and used to
transfect E. coli HB101. Aliquots of the transfected cells
were plated on LB plates containing tetracycline to deter-
mine the number of cells that received a cosmid. The rest of
the transfected cells were grown overnight in 5 ml of liquid
LB with tetracycline to enrich for cells containing cosmids.
Permanent cultures were made by mixing 0.8 ml of the
enriched cultures with 0.2 ml of 80% glycerol in glass vials
and freezing in a dry-ice—ethanol bath. The library was
stored at —70°C.

Identification of Z. mobilis trp genes by conjugation. Cos-
mids were transferred from HB101 to the E. coli and P.
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putida trp mutants by triparental mating using pRK2013 as a
helper plasmid. The donor, helper, and recipient strains
were grown overnight in LB. For crosses into the E. coli
mutants, 0.1-ml samples of each of the three overnight
cultures were mixed on an LB plate, which was incubated
for 4 h at 37°C. To transfer cosmids into P. putida trp
mutants, 0.15 ml of the E. coli donor and helper strains were
mixed with 0.05 ml of the P. putida mutant in a sterile
Eppendorf tube. The cells were collected by centrifugation.
All but about 50 pl of the supernatant was removed. The
cells were resuspended in the remaining broth and spread
onto a nitrocellulose filter (25-mm diameter, 45-pm pore
size) previously placed on an LB plate.

All crosses were suspended and washed twice in S ml of
saline. Dilutions of these suspended crosses were plated for
single colonies on the following media: LB with tetracycline
and streptomycin to determine the number of donors; mini-
mal medium with tryptophan to determine the number of
recipients; minimal medium with tetracycline to select for
complemented colonies; and minimal medium with tetracy-
cline and tryptophan to determine the titers of the transcon-
jugants. Each time a gene bank or an individual cosmid was
crossed into an E. coli or P. putida trp mutant, pLAFR1
alone was transferred into that mutant in a separate cross to
test for reversion of the mutant.

Three to ten potentially complemented colonies were
picked from selection plates and grown overnight in 5 ml of
LB broth with tetracycline. Plasmids isolated from these
cultures were used to transform E. coli HB101 or TC4. The
cosmid was conjugated from strain HB101 or TC4 back to
the trp mutant from which it was isolated to confirm that the
cosmid contained a trp gene.

Southern hybridization. Restriction digests of cosmids and
total genomic DNA were run on 0.7% agarose gels and
blotted to nitrocellulose (23). About 3 pg of total genomic
DNA or 300 to 600 ng of isolated cosmid DNA was used per
lane. Isolated cosmid DNA was labeled with [a->>P]CTP
from New England Nuclear Corp. by using a nick translation
kit from Amersham Corp. Approximately 800 ng of labeled
DNA with a specific activity of 1 X 107 to 4 X 10’ cpm/ug of
DNA was used to probe each blot (12 by 16 cm) containing
up to 16 lanes of DNA. The hybridizations were carried out
at 65°C for 18 to 24 h. Blots were washed once for 5 min in
2x SSC (23; 1x SSC is 0.15 M NaCl plus 0.015 M sodium
citrate) and 0.1% sodium dodecy! sulfate at room tempera-
ture followed by three 15-min washes at 65°C in 0.1x SSC
and 0.1% sodium dodecyl sulfate. Autoradiographs were
prepared by exposing X-Omat ARS X-ray film from Kodak
for 2 to 24 h at —70°C.

RESULTS

Construction of a cosmid library. A cosmid library of Z.
mobilis genomic DNA was constructed in the broad-host-
range vector pLAFR1. Over 2,700 independent cosmids
were transferred into E. coli HB101 in six separate experi-
ments. Twenty randomly chosen cosmids were isolated,
digested with EcoRI, and analyzed on 0.7% agarose gels. An
average of 22 kb of Z. mobilis DNA was inserted into the
EcoRI site of 80% of the cosmids. A total of 2,000 cosmids
with 22-kb inserts would give a greater than 99.9% probabil-
ity that any particular Z. mobilis gene had been cloned (6).

Isolation and characterization of cosmids containing trp
genes. The cosmid library of Z. mobilis genomic DNA was
conjugated en masse into E. coli trpE, trpD, trpC, trpF,
trpB, and trpA mutants and into P. putida trpE and trpD

J. BACTERIOL.

C2 C5 D3 D4 FBA F20 Al
17 17 7 W e
16
14
13
103 103 10
76
6.1
5.8 58 |
48 4.8
34 34
3.2
1.7
13
0.8 08

FIG. 1. EcoRI fragments of Z. mobilis DNA inserted in six
isolated cosmids. Data on the left indicate the sizes of the EcoRI
fragments in kilobases. On the right are strips from ethidium
bromide-stained agarose gels of EcoRI digests of the cosmids. The
top band in each lane is the 21.6-kb vector pLAFR1.

mutants. The Tet" marker of the cosmid was transferred
from the library to each of the E. coli mutants at a frequency
of ~10~* per recipient and to the P. putida mutants at about
1076, Tet" Trp™* transconjugants of E. coli trpD, trpC, trpF,
and trpA mutants and P. putida trpD mutants arose at
103-fold-lower frequencies. The gene bank did not comple-
ment trpB or trpE mutants. Transfer of pLAFR1 to the
mutants resulted in Tet" at frequencies of 10~ for E. coli and
10~% for P. putida, while Tet" Trp* transconjugants ap-
peared at frequencies of less than 10~ in all control crosses
in which the vector alone was transferred.

Several cosmids that complemented E. coli trpC, trpF,
and trpA mutants and a P. putida trpD mutant were chosen
for further study (Table 1 and Fig. 1). Cosmids pC2 and pC5
complemented only trpC mutants, and pD3 and pD4 com-
plemented only trpD mutants. Cosmid pFBA9 comple-
mented trpF, trpB, and trpA mutants, whereas pF20 and pAl
could complement only #rpF or trpA mutants, respectively.
None of the isolated cosmids complemented the E. coli or P.
putida trpE mutants.

The ability of the Z. mobilis trp genes to complement the
E. coli and P. putida trp mutants varied. Growth of E. coli
and P. putida trpF mutants containing either pPFBA9 or pF20
was accelerated only slightly by the addition of tryptophan
to minimal-medium plates. At the other extreme, comple-
mented trpC, trpB, and trpA mutants appeared 3 to 5 days
later on minimal-medium plates than on minimal-medium
plates with tryptophan.

Molecular analysis of isolated cosmids. Restriction digests
(Fig. 1) and cross-hybridization (data not shown) of pC2 and
pCS indicated that they shared 10.3- and 3.4-kb EcoRI
fragments. Both cosmids hybridized to the same restriction
fragments in digests of Z. mobilis chromosomal DNA as
were found in the isolated cosmids (Fig. 2). An EcoRI-
HindIIl restriction map of the 13.7-kb region likely to
contain the Z. mobilis trpC gene is shown in Fig. 3A.

Cosmids that complemented trpD mutants shared a 17-kb
EcoRI fragment (Fig. 1 and 3B). The 17-kb EcoRI fragments
from the cosmids cross-hybridized (data not shown). This
EcoRI fragment was not cut by digestion with HindIII but
was cleaved into five fragments by BamHI digestion. These
are the fragments common to the EcoRI-BamHI digestions
of pD3 and pD4 in Fig. 2. Both cosmids hybridized to the
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FIG. 2. Restriction digests and hybridization of cosmids to chro-
mosomal DNA. Lanes labeled A are ethidium bromide stains of
EcoRI-Hindlll double digests of pC2, pCS5, pF20, pAl, and pFBA9
and EcoRI-BamHI double digests of pD3 and pD4. The top band in
each lane is the vector. Lanes labeled B are autoradiographs of
EcoRI-HindIIl double digests of Z. mobilis genomic DNA probed
with pC2, pCS, pF20, pAl, or pFBA9 or EcoRI-BamHI double
digests of Z. mobilis genomic DNA probed with pD3 or pD4. Lane
C from pFBAS9 is an autoradiograph of a HindlIII digest of E. coli
W3110 DNA probed with pFBA9.

same-size restriction fragments in digests of chromosomal
DNA as observed in digests of the cosmids (Fig. 2).

EcoRlI restriction digests (Fig. 1) and cross-hybridization
(data not shown) indicated that pFBA9 shared a 17-kb EcoRI
fragment with pF20 and 5.8- and 4.8-kb EcoRI fragments
with pAl. The 17- and 5.8-kb EcoRI fragments were sub-
cloned from pFBAY into pLAFR1 and conjugated into E.
coli trpF, trpB, and trpA mutants. The 17-kb subclone
complemented only trpF mutants. The 5.8-kb subclone
complemented only trpA mutants. The #rpB mutant was
complemented by only intact pFBA9.

Cosmids pAl and pF20 hybridized to the same restriction
fragments in digests of Z. mobilis chromosomal DNA as
were observed in digests of the cosmids (Fig. 2). However,
hybridization of pFBA9 to chromosomal digests revealed
that this cosmid had undergone at least some rearrangement
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FIG. 3. EcoRI (| )and HindIII (\) restriction maps of regions of
Z. mobilis DNA that complemented trp mutants from E. coli and P.
putida. (A) 13.7-kb region common to pC2 and pCS. The trpC gene
could be located anywhere within this entire 13.7-kb region. (B)
17-kb EcoRI fragment of pD3 and pD4. (C) Fragments likely to
contain the trpF and rrpA genes found in pF20, pAl, and pFBAY.
The maps were constructed by analyzing partial and complete
EcoRI and Hindlll restriction digests of the isolated cosmids and of
chromosomal DNA probed with the cosmids. The 17-kb fragment
common to pD3 and pD4 was not cut by HindIII digestion.
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during cloning. The 2.0- and 2.3-kb EcoRI-HindIII fragments
of pFBA9 were not present as such in the Z. mobilis
chromosome (Fig. 2). On the other hand, pFBA9 had ho-
mology to a 1.3-kb EcoRI-HindlIIl fragment in the chromo-
some that was not found in digests of the cosmid. The DNA
rearrangement was not due to the presence of E. coli DNA
(Fig. 2, FBAY, lane C). At this stringency, none of these
cosmids hybridized to E. coli chromosomal DNA (data not
shown).

Restriction digests and hybridizations indicated that the
17-kb EcoRI fragment containing the trpF gene was adjacent
to the 5.8-kb EcoRI fragment containing the trpA gene (Fig.
3C). Cosmid pFBA9 contained an 11-kb HindIII fragment
and hybridized to an 11-kb HindIII fragment in chromosomal
DNA (Fig. 4, lanes 1 and 2). Cosmids pF20, pF17, and pAl
also hybridized to an 11-kb HindIII fragment in digests of Z.
mobilis chromosomal DNA (Fig. 4, lanes 3 to 5). The 11-kb
HindIII fragment in pFBA9 and in the chromosome was cut
by EcoRI. The 4.8-kb EcoRI fragment was cut by HindIII
(Fig. 2). The 17.0-, 5.8-, and 4.8-kb EcoRI fragments of
pF20, pAl, and pFBA9 were arranged as shown in Fig. 3C.

DISCUSSION

The vector pLAFR1 can be transferred to and maintained
in a variety of gram-negative bacteria, including E. coli, P.
putida, and Rhizobium leguminosarum (15). However, at-
tempts to transfer pLAFR1 or the cosmid library into Z.
mobilis 29192 or into trp mutants derived from this strain
were unsuccessful. Therefore, Z. mobilis trp genes were
identified by complementation of E. coli and P. putida trp
mutants. E. coli or P. putida trp mutants have been used to
clone trp genes from a variety of organisms, including
species of Caulobacter (39), Agrobacterium (24), Leptospira
(42), Brevibacterium (13), Saccharomyces (26), and Neu-
rospora (34).

All attempts to complement E. coli or P. putida trpE
mutants were unsuccessful. The lack of complementation of
these trpE mutants could have been caused by poor expres-
sion of the Z. mobilis trpE gene, lack of the trpE gene in the
genomic library, or instability of the cosmids containing the
trpE gene.

Cosmid pFBA9 contained some restriction fragments that
were not present in the chromosome (Fig. 2). The aberrant
restriction fragments may have arisen by duplication and/or
deletion of normal sequences while pFBA9 was in the Rec*
E. coli trpF mutant. Cosmid pFBA9 was kept in the E. coli
mutant for over 1 week before it was isolated and transferred
to HB101. Gross rearrangements of the other cosmids were
avoided by removing them from the Rec* background as
soon as complementation was recognized.

The trpF and trpA genes were clustered on adjacent EcoRI
fragments (Fig. 2 and 3C). The trpB gene and its regulatory
sequences may have spanned the EcoRlI site separating the
17-kb trpF fragment from the 5.8-kb trpA fragment, or they
may have been contained in sequences unique to pFBA9.

In most of the bacteria that have been investigated, the
trpF, trpB, and trpA genes are closely linked (Table 2). The
Rhizobium meliloti trpF, trpB, and trpA genes were present
on an R-prime plasmid that contained a minimum of 5.8 kb of
Rhizobium DNA (21). The trp genes of P. acidovorans were
mapped by transduction (5). The trp genes of Acinetobacter
calcoaceticus were mapped by transformation (32). Analysis
of the DNA sequences of the trpA and #rpB genes from E.
coli, Salmonella typhimurium, P. aeruginosa, and C. cres-
centus indicate that these genes overlap or are separated by
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TABLE 2. Organization of tryptophan genes in some gram-negative purple bacteria

Species orgt;’l’\ ii: ?izn“ Superfamily® References
Zymomonas mobilis D C FBA* C This study
Rhizobium spp. EG DC* FBA* C 21
Caulobacter crescentus EDC* FBA C 39
Pseudomonas acidovorans E GDC* FBA* A S
Acinetobacter calcoaceticus E GDC FBA* B 32
Pseudomonas putida EGDC F BA B 17
Escherichia coli E(G)DC(F)BA¢ B 41

“ The gene order within linkage groups marked with an asterisk (*) is not known. Since the different organisms have been analyzed by different genetic

techniques, linkage has different physical meanings in each organism.

b Superfamilies are subdivisions of the gram-negative purple bacteria as defined by rRNA homology (40). The A, B, and C designations are those described
by Jensen (20). The placement of Z. mobilis (16) and C. crescentus (28) in superfamily C is based on hybridization analysis of rRNA and DNA.
< Parentheses indicate that the trpG gene is fused to the rpD gene and the trpF gene is fused to the trpC gene in E. coli.

a few base pairs (12, 18, 30). If Z. mobilis is like these other
bacteria, then the trpB gene should be closely associated
with the trpA gene.

The Z. mobilis trpD and trpC genes were not directly
associated with the t¢rpF, trpB, and trpA gene cluster.
Restriction digests and Southern hybridizations indicated
that a 4.8-kb EcoRI fragment flanked the 5.8-kb EcoRI (trpA)
fragment on the right as shown in Fig. 3C. Cosmid pF20
contained 14- and 3.2-kb EcoRI fragments (Fig. 1) that
flanked the 17-kb trpF fragment on the left as it is shown in
Fig. 3C. Therefore, the zrpD and trpC genes must be a
minimum of 4.8 kb away from the #rpA gene and 17 kb away
from the trpF gene.

The minimal distance separating the ¢rpC and trpD genes
from each other has not been determined. Although two

12345

FIG. 4. Identification of an 11-kb HindIII fragment that overlaps
the internal EcoRI sites of pFBA9 shown in Fig. 3C. Lanes: 1,
ethidium bromide stain of a HindIIl digest of pFBA9; 2 to 5,
autoradiographs of HindIII digests of Z. mobilis chromosomal DNA
probed with pFBA9 (lane 2), pF17 (lane 3), pF20 (lane 4), and pAl
(lane S). The arrow indicates the 11-kb fragment. Hybridization of
pF20 and pF17 is expected to be weak, as only about 1 kb of the
DNA contained in these cosmids should be homologous to the 11-kb
HindIII fragment.

cosmids containing the trpC gene and two cosmids contain-
ing the trpD gene were examined, nonoverlapping regions of
these cosmids were not mapped. The possibility that the
EcoRI fragments containing the trpD and trpC genes are
adjacent has not been ruled out. However, it seems unlikely
that these genes are closely linked, since cosmids containing
both the trpC and the trpD genes were not identified.

The trpD and trpC genes are linked or clustered in the
gram-negative purple bacteria shown in Table 2. Analysis of
trpD and trpC DNA sequences from E. coli (41) and A.
calcoaceticus (22) showed that these genes are separated by
less than 20 base pairs. In other bacteria, these genes were
mapped by less precise genetic methods. For example, the
trpD and trpC genes from Rhizobium leguminosarum were
isolated on an R-prime plasmid containing a minimum of 30
kb of Rhizobium DNA. That particular R-prime plasmid did
not complement any other trp genes (21). The isolation of the
Z. mobilis trpC and trpD genes on different sets of plasmids
suggests that they are probably separated by more than a few
base pairs. However, they could be within 30 kb of each
other.

Comparisons of rRNA cistrons (16) and analysis of phe-
nylalanine biosynthesis (1) suggest that Z. mobilis is related
to organisms in superfamily C of the purple bacteria, such as
Acetobacter spp., Agrobacterium spp., and Rhizobium spp.
The organization of the Z. mobilis trp genes appears to be
similar to the organization observed in Rhizobium spp. and
other nonenteric gram-negative bacteria in that the trp genes
are encoded in two or three distinct regions of the chromo-
some instead of in an operon (Table 2).
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