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A Computationally Efficient Ground‐Motion 
Selection Algorithm for Matching a Target 
Response Spectrum Mean and Variance 

Nirmal Jayaram,a) Ting Lin,a) M.EERI, and Jack W. Bakera) M.EERI 

Dynamic structural analysis often requires the selection of input ground 

motions with a target mean response spectrum. The variance of the target response 

spectrum is usually ignored or accounted for in an ad hoc manner, which can bias 

the structural response estimates. This manuscript proposes a computationally 

efficient and theoretically consistent algorithm to select ground motions that 

match the target response spectrum mean and variance. The selection algorithm 

probabilistically generates multiple response spectra from a target distribution, 

and then selects recorded ground motions whose response spectra individually 

match the simulated response spectra. A greedy optimization technique further 

improves the match between the target and the sample means and variances. The 

proposed algorithm is used to select ground motions for the analysis of sample 

structures in order to assess the impact of considering ground-motion variance on 

the structural response estimates. The implications for code-based design and 

performance-based earthquake engineering are discussed. 

INTRODUCTION 

Dynamic structural analysis is commonly used in performance-based earthquake 

engineering to predict the response of a structure subjected to earthquake ground motions. In 

the past, a wide variety of techniques have been developed for selecting input ground motions 

for the structural analysis (e.g., Haselton et al., 2009; Katsanos, 2010). One commonly used 

approach is to select recorded or simulated ground motions whose response spectra match a 

target mean response spectrum (e.g.,  Beyer and Bommer, 2007; Shantz, 2006; Watson-

Lamprey and Abrahamson, 2006). Commonly used target spectra include the uniform hazard 
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spectrum and more recently, the conditional mean spectrum (Baker, 2010). Irrespective of the 

procedure used to obtain a target response spectrum, there are several methods for selecting 

input ground motions that match a desired spectrum. One approach is to select ground 

motions (sometimes after scaling) that individually deviate the least from the target response 

spectrum. The deviation can be measured using the sum of squared differences between the 

response spectrum of the record and the target response spectrum (e.g., Youngs et al., 2007). 

An alternate approach is to select a ground-motion set, rather than one record at a time, by 

minimizing the mean spectrum of the selected records from the target response spectrum. 

This is a more complicated subset selection optimization problem, and this optimization has 

been carried out in the past using genetic algorithms (Naeim et al., 2004). 

In some situations, matching only a target mean response spectrum is not sufficient since 

the approach ignores the inherent variance that may exist in the response spectrum. For 

instance, the conditional mean spectrum is derived by conditioning on spectral acceleration at 

only a single period, *( )aS T , so the response spectra at other periods have variance. This is 

discussed in more detail in a subsequent section. Another approach might be to choose 

ground motions associated with a scenario earthquake (having a specified magnitude, 

distance, etc.), but not conditioned on any spectral values (e.g., Jayaram and Baker, 2010). In 

that case, the response spectrum will have variance at all periods. The commonly used 

uniform hazard spectrum (UHS), on the other hand, is an envelope of the spectral 

accelerations at all periods that are exceeded with a specified rate, as computed using 

probabilistic seismic hazard analysis (PSHA). PSHA already accounts for variability in 

spectral accelerations at each period being considered, and construction of the UHS is a 

conservative method of combining these spectral values. No further variance need be applied 

to the UHS, as varying the spectral values is equivalent to varying the associated exceedance 

rate of the spectral accelerations from period to period (an operation which is unlikely to 

produce meaningful results). In other words, if the UHS is used as the target mean spectrum, 

the ground motions should be chosen so that their spectra match the UHS and not have 

additional variance about the UHS.  

In cases where a response spectrum has a non-zero variance, estimates of structural 

response obtained using the ground motions selected only based on the target mean spectrum 

will show smaller than ‘actual’ dispersion (logarithmic standard deviation) and may also have 

a biased mean value. Selecting ground motions based only on a target response spectrum 
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mean is computationally inexpensive since it can be done by choosing ground motions whose 

response spectra individually deviate the least from the target, and so the search time is 

proportional to the number of ground motions considered. When matching a target response 

spectrum mean and variance, it does not suffice to treat ground motions individually, but 

rather requires comparisons of the mean and variance of sets of ground motions to the target 

values. That is, the suitability of a particular ground motion can only be determined in the 

context of the complete ground-motion set in which it might be included. There is generally 

an intractably large number of possible ground-motion sets, and so identifying the best set is a 

computationally expensive combinatorial optimization problem. No automated procedures are 

available in the literature, however, to select ground motions that match the response 

spectrum mean and variance. One notable work in this regard is that of Kottke and Rathje 

(2008), who proposed a semi-automated procedure that first selects ground motions based on 

matching the mean spectrum, and subsequently applies individual scale factors on the ground 

motions to achieve the target variance. This technique, however, does not easily scale to work 

with large ground-motion datasets, and also cannot be used for the selection of unscaled 

ground motions.  

The current work proposes a new, computationally fast and theoretically consistent 

ground-motion selection algorithm to match the target response spectrum mean and variance. 

The selection algorithm first uses Monte Carlo simulation to probabilistically generate 

multiple response spectra from a distribution parameterized by the target means and 

variances. For each simulated response spectrum, a ground motion with a similar response 

spectrum is then selected. Since the Monte Carlo simulated response spectra have the desired 

mean and variance, the response spectra of the selected recorded ground motions will also 

have the desired mean and variance. A greedy optimization technique then further improves 

the match between the target and the sample means and variances. This step replaces one 

previously selected ground motion at a time with a record from the ground-motion database 

that causes the best improvement in the match between the target and the sample means and 

variances.  

The proposed algorithm is then used to select ground motions for estimating the seismic 

response of sample single-degree-of-freedom (SDOF) and multiple-degree-of-freedom 

(MDOF) structures, in order to assess the impact of considering ground-motion variance on 
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the structural response estimates. The implications for code-based design and performance-

based earthquake engineering are discussed. 

GROUND-MOTION SELECTION ALGORITHM 

The objective of the proposed algorithm is to select a suite of ground motions whose 

response spectra have a specified mean and variance. This algorithm is based on the 

empirically verified observation that the set of logarithmic spectral accelerations (lnSa) at 

various periods is a random vector that follows a multivariate normal distribution (Jayaram 

and Baker, 2008). The first step in this algorithm is to parameterize the multivariate normal 

distribution of lnSa’s at multiple periods. The parameters of the multivariate normal 

distribution are the means and the variances of the lnSa’s at all periods and the correlations 

between the lnSa’s at all pairs of periods. Equivalently, the distribution can be parameterized 

using the means of the lnSa’s and the covariances between the lnSa’s at all pairs of periods. In 

order to achieve the desired properties in the selected ground motions, these parameters 

should be set to their target values (i.e., target means and variances for the ground motions to 

be selected). A subsequent section illustrates this parameterization. 

Once the distribution means and covariances are set equal to the desired target values, 

Monte Carlo simulation is used to probabilistically generate response spectra from the above 

mentioned multivariate normal distribution. This can be performed using a standard function 

in many programming languages. The number of response spectra to be simulated equals the 

desired number of ground motions. For each simulated response spectrum, a ground motion 

with a similar response spectrum is then selected. The similarity between a ground-motion 

response spectrum and a Monte Carlo simulated response spectrum is evaluated using the 

sum of squared errors (SSE) described below: 

             ( )2( )

1
ln ( ) ln ( )

P
s

a j a j
j

SSE S T S T
=

= −∑  (1)  

where ln ( )a jS T is the logarithmic spectral acceleration of the (optionally scaled) ground 

motion in consideration at period jT , ( )ln ( )s
a jS T  is the target lnSa at period jT  from the 

simulated response spectrum, p is the number of periods considered and SSE is the sum of 

squared errors, which is a measure of dissimilarity. The measure of similarity defined by 

Equation 1 is not unique, and discussion of other measures of similarity can be found in 
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Beyer and Bommer (2007) and Buratti et al. (2010). The selection is done by computing SSE 

for each ground motion in the database, and then choosing the ground motion having the 

smallest SSE. Other ground motion properties can be accounted for at this stage by, for 

example, considering only ground motions falling within a specified range of magnitudes and 

distances. Note that this is identical to comparison procedures in use today, except that here 

we are comparing to simulated spectra rather than a target mean spectrum.  

The mean and the variance of the simulated response spectra will approximately match 

the corresponding target values because they were sampled from the desired distribution. This 

match will be nearly exact if a large number of spectra are simulated and will be approximate 

otherwise. Since the simulated response spectra have approximately the desired mean and 

variance, the response spectra selected using this approach will also have approximately the 

desired mean and variance. Additionally, this ground-motion selection approach also ensures 

that the selected set has the target correlation structure (i.e., correlation between lnSa’s at pairs 

of periods) specified while parameterizing the distribution of the response spectrum. This 

implies that, in the particular case where the logarithmic response spectrum follows a 

multivariate normal distribution, the proposed algorithm actually matches the entire response 

spectrum distribution. Another advantage of this approach is that this algorithm allows the 

selection of unscaled ground motions (Jayaram and Baker, 2010). 

As mentioned above, when ground motions are selected using the approach described 

above, the sample means and variances may deviate slightly from the target values, 

particularly when the number of ground motions selected is small. Therefore, a ‘greedy’ 

optimization technique is used to further improve the match between the sample and the 

target means and variances. In this approach, each ground motion selected previously is 

replaced one at a time with a ground motion from the database that causes the best 

improvement in the match between the target and the sample means and variances. If none of 

the potential replacements causes an improvement, the original ground motion is retained. 

The mismatch is estimated as the sum of squared differences between the target and the 

sample means and variances over the period range of interest. The deviation of the set mean 

and variance from the target mean and variance (denoted sSSE ) is estimated as follows: 

             ( ) ( )2 2
( ) ( )

ln ( ) ln ( ) ln ( ) ln ( )
1

ˆ ˆ
a j a j a j a j

p
t t

s S T S T S T S T
j

SSE m w sμ σ
=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑  (2)             
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where sSSE  is the sum of squared errors of the set, which is the parameter to be minimized, 

ln ( )ˆ
a jS Tm  is the set mean lnSa at period jT , ( )

ln ( )a j

t
S Tμ  is the target mean lnSa at period jT , ln ( )ˆ

a jS Ts  

is the set standard deviation of the lnSa at period jT , ( )
ln ( )a j

t
S Tσ  is the target standard deviation 

of the lnSa at period jT , w is a weighting factor indicating the relative importance of the 

errors in the standard deviation and the mean (A possible value for w is 1, but it can be 

chosen depending on the desired accuracy in the match between the sample and the target 

means and standard deviations), and p is the number of periods ( jT ) at which the error is 

computed. 

The set mean and standard deviation can be calculated as follows:  

             ln ( )
1

1ˆ ln ( )
a j i

n

S T a j
i

m S T
n =

= ∑  (3)             

             ( )2

ln ( ) ln ( )
1

1ˆ ˆln ( )
1a j i a j

n

S T a j S T
i

s S T m
n =

= −
− ∑  (4)             

where ln ( )
ia jS T  denotes the lnSa of the ith record in the set at period jT , and n denotes the 

number of records in the set. 

Note that the greedy optimization technique does not explicitly account for the correlation 

structure of selected sets. This correction structure is captured in the initial selection step, and 

is approximately retained after the greedy optimization as well. 

The steps involved in the greedy optimization technique are summarized below. 

• Step 1: Set j = 1.  

• Step 2: Set i = 1. Denote the sSSE  of the set as ,s oldSSE  

• Step 3: If the ith database ground motion (Gi) is not already present in the set, replace the jth 

ground motion in the set with Gi. Compute ,s iSSE  (i.e, the sSSE  of the set after the 

replacement is carried out).  

• Step 4: Reverse the replacement carried out in Step 3. Increment i by 1.  

• Step 5: If i is less than or equal to the size of the ground-motion database, go to Step 3. 

Otherwise, identify the ground motion i  that results in the minimum value of ,s iSSE . If 
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,, s olds iSSE SSE< , replace the jth ground motion in the set with the i th ground motion in the 

database.  

• Step 6: Increment j by 1. If j is less than the size of the set, go to Step 2. Otherwise, 

terminate the algorithm.  

This is called a ‘greedy’ optimization technique because it tries to improve the match 

between the target and the sample properties in every iteration locally without necessarily 

achieving a global optimum solution. In this application, the initial simulation and selection 

steps result in a ground motion set that is already approximately optimal (for reasonably large 

sets), so it has been observed that only this greedy technique is needed to find solutions that 

are essentially globally optimal. Observational experience suggests that this algorithm never 

produces sets of ground motions with poor matches between the sample and the target means 

and variances (even for sets with as few as 10 ground motions, as illustrated in a subsequent 

section).  

Appendix “An Alternate Ground-Motion Selection Algorithm” describes an alternate 

selection algorithm that does not require knowledge of the response spectrum distribution or 

the correlation structure. 

ILLUSTRATIVE GROUND-MOTION SELECTION 

This section describes the application of the proposed algorithm for selecting structure-

specific ground motions that have a specified spectral acceleration at the structure’s 

fundamental period. In this example, the target response spectrum mean and covariance 

matrices are obtained using the conditional mean spectrum (CMS) method (Baker, 2010), 

which provides the mean and variance (and correlations) of the response spectrum 

conditioned on the specified spectral acceleration. It is to be noted that while this example 

uses the targets from the CMS method, the proposed algorithm can be used with any arbitrary 

target mean and covariance (e.g., Jayaram and Baker, 2010). 

PARAMETERIZATION OF THE TARGET RESPONSE SPECTRUM DISTRIBUTION 

As described in the previous section, the first step in the algorithm is to parameterize the 

multivariate normal distribution of the lnSa’s using the means and the variances of the 

spectral accelerations (chosen to equal the target mean and the target variance respectively) 
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and the correlations between the spectral accelerations at two different periods. The steps 

involved in parameterizing the distribution using the CMS method are listed below. 

• Step 1: Determine the target spectral acceleration (Sa) at a given period T* (e.g., the 

fundamental period of the structure), and the associated magnitude (M), distance to source 

(R) and ε(T*), where ε(T*) is the number of standard deviations by which a given lnSa 

differs from the mean predicted (by a ground-motion model) lnSa at the period of interest 

T*. In general,  

             ln ( )

ln ( )

ln ( )
( ) a

a

a S T

S T

S T
T

μ
ε

σ
−

=  (5)             

where ln ( )aS T  is the ground motion's logarithmic spectral acceleration at period T, and 

ln ( )aS Tμ  and ln ( )aS Tσ  are the predicted mean and standard deviation, respectively, of 

ln ( )aS T  given M, R, etc. (e.g.,  Campbell and Bozorgnia, 2008). The values of M, R and 

ε(T*),  can be obtained from deaggregation (e.g.,  USGS, 2008). 

• Step 2: For all Tj of interest, compute the unconditional mean and the unconditional 

standard deviation of the response spectrum, given M and R. In other words, compute 

ln ( )aS Tμ  and ln ( )aS Tσ .  

• Step 3: Compute the mean of ( )1 2ln ( ), ln ( ), ..., ln ( )a a a nS T S T S T  conditioned on ε(T*). This 

mean matrix (denoted μ) is computed as follows:  

             

1 1

2 2

* *
ln ( ) 1 ln ( )

* *
ln ( ) 2 ln ( )

* *
ln ( ) ln ( )

( , ) ( )

( , ) ( )

.

.
( , ) ( )

a a

a a

a n a n

S T S T

S T S T

S T n S T

T T T

T T T

T T T

μ ρ ε σ
μ ρ ε σ

μ ρ ε σ

⎡ ⎤+
⎢ ⎥

+⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

μ  (6)             

where ρ(Tj,T*) is the correlation between ε(Tj) and ε(T*)  provided by, for instance, Baker 

and Jayaram (2008). 

• Step 4: Compute the covariance of ( )1 2ln ( ), ln ( ), ..., ln ( )a a a nS T S T S T  conditioned on ε(T*). 

This covariance matrix (denoted Σ) is estimated as follows: 
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Let 0Σ  denote the (unconditional) covariance matrix of the vector 

( )1 2ln ( ), ln ( ), ..., ln ( )a a a nS T S T S T .  

1 1 2 1

2 1 2 2

1 2

2
ln ( ) 1 2 ln ( ) ln ( ) 1 ln ( ) ln ( )

2
2 1 ln ( ) ln ( ) ln ( ) 2 ln ( ) ln ( )

0

2
1 ln ( ) ln ( ) 2 ln ( ) ln ( ) ln ( )

( , ) ( , )

( , ) ( , )

. . .

. . .
( , ) ( , )

a a a a a n

a a a a a n

a n a a n a a n

S T S T S T n S T S T

S T S T S T n S T S T

n S T S T n S T S T S T

T T T T

T T T T

T T T T

σ ρ σ σ ρ σ σ
ρ σ σ σ ρ σ σ

ρ σ σ ρ σ σ σ

=Σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   (7) 

Let 1Σ  denote the covariance between ( )1 2ln ( ), ln ( ), ..., ln ( )a a a nS T S T S T  and *ln ( )aS T , 

defined as follows:  

             

*1

*2

*

*
1 ln ( ) ln ( )

*
2 ln ( ) ln ( )

1

*
ln ( ) ln ( )

( , )

( , )

.

.
( , )

a a

a a
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S T S T

S T S T

n S T S T

T T

T T

T T

ρ σ σ

ρ σ σ

ρ σ σ
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⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ  (8)             

The covariance matrix of ( )1 2ln ( ), ln ( ), ..., ln ( )a a a nS T S T S T  conditioned on *ln ( )aS T  can 

be computed as follows (e.g., Johnson and Wichern, 2007):  

             
*

'
0 1 12

ln ( )

1  
aS T

σ
= −Σ Σ Σ Σ  (9)             

where '
1Σ  denotes the transpose of 1Σ . The conditional standard deviation of the lnSa’s is 

the square root of the diagonals of Σ, also given by Equation 10.  

             ( )*

2*
ln ( )ln ( )|ln ( )

1 ,
aa a

S TS T S T
T Tσ σ ρ= −  (10)             

Figure 1 shows the target conditional response spectrum mean and standard deviation 

obtained corresponding to magnitude = 7, distance to the rupture = 10km, T* = 2.63s and ε(T*) 

= 2.0. These values have been chosen to be compatible with ground-motion studies carried 

out by Haselton et al. (2009). The unconditional lnSa means and standard deviations 

corresponding to this scenario, ln ( )a jS Tμ and ln ( )a jS Tσ , are obtained from the Campbell and 

Bozorgnia (2008) ground-motion model. (Since lnSa’s at multiple periods follow a 
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multivariate normal distribution, the exponential of the mean lnSa equals the median spectral 

acceleration. This is why the axis of Figure 1 is labeled as ‘Median Sa’.) 

Figure 1. (a) Response spectrum mean (b) Response spectrum standard deviation. 

RESPONSE SPECTRUM SIMULATION 

Forty response spectra are simulated (using Monte Carlo simulation) by sampling from a 

multivariate normal distribution with the mean and covariance matrices defined by Equations 

6 and 9 for the target scenario described above. The response spectra are simulated at 20 

periods logarithmically spaced between 0.05s and 10.0s, and are shown in Figure 2a. A large 

period range is used to ensure a good match in the entire response spectrum that covers 

regions of higher modes and nonlinearity. Because individual spectra may vary while still 

achieving a target mean and variance of the overall set, there is often little penalty in 

considering a broad period range in this step. 

Figure 2. (a) Simulated response spectra (b) Response spectra of ground motions selected before 
greedy optimization (c) Response spectra of ground motions selected after greedy optimization. 

Figure 1a compares the mean of the Monte Carlo simulated response spectra to the target 

mean. It can be seen that the mean values agree reasonably well. Figure 1b shows a 

reasonable agreement between the standard deviation of the simulated lnSa values and the 

target standard deviation. The small deviation seen in these figures is because the sample 

mean and standard deviation for moderately small sample sizes do not necessarily match the 

target mean and standard deviation. 

SELECTION OF GROUND MOTIONS TO MATCH SIMULATED SPECTRA 

Forty ground motions are selected from the Next Generation Attenuation (NGA) database 

(Chiou et al., 2008) that individually match the forty response spectra simulated in the 

previous step. For two-dimensional structural models, a single ground motion component is 

required as an input for every time history analysis. (For three-dimensional structural models, 

two ground motion components can be selected by considering their geometric mean 

response spectrum, as described in Jayaram and Baker 2010.) Here, each horizontal 

component of a recording from the same station in the NGA database is treated separately as 

an individual ground motion. No constraints on, for example, the magnitudes and distances of 

the selected recordings are used, but such constraints are easily accommodated by simply 
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restricting the set of ground motions considered for selection. Prior to selection, each of the 

available 7102 ground motions in the NGA database is scaled so that its *( )aS T  matches the 

target *( )aS T  from the target mean spectrum (seen in Figure 1a) when T* is equal to 2.63s. 

Figure 2b shows the response spectra of the selected ground motions. The sample and the 

target means and standard deviations are shown in Figure 1. The figure shows that the sample 

and the target response spectrum mean and variance match reasonably well. Additionally, the 

selected ground motion spectra also match the specified target correlation structure (specified 

by the non-diagonal terms of the covariance matrix in Equation 9) reasonably well, as 

indicated by a mean absolute error between the sample and the target correlations of 0.12. 

The computational time required for selecting the set of 40 ground motions is 10 seconds 

using a MATLAB implementation on an 8GB RAM 2.33GHz quad core processor. This 

computational efficiency allows for the algorithm to be optionally applied multiple times if 

one wants several candidate sets to choose from. While selecting the ground motions shown 

in Figure 2, we applied the algorithm multiple times (twenty times, in particular) to obtain 

multiple candidate ground-motion sets and chose the set with the minimum value of SSE. 

This approach is also beneficial to work around situations where recorded ground motion 

spectra that adequately match one or more of the simulated spectra are not available. 

GREEDY OPTIMIZATION TECHNIQUE 

The greedy optimization technique is used to modify the ground-motion suite selected in 

the previous step. The spectra of the selected ground motions are shown in Figure 2c. The 

means and the standard deviations of the set are shown in Figure 1, and have a near perfect 

match with the target means and standard deviations. The mean absolute error between the 

sample and the target correlations is 0.15. 

In total, the computational time required to select the set of 40 ground motions from the 

7102 available ground motions is about 180 seconds using a MATLAB implementation on an 

8GB RAM 2.33GHz quad core processor. A MATLAB implementation of the proposed 

ground-motion selection algorithm can be downloaded from 

http://www.stanford.edu/~bakerjw/gm_selection.html. 
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SELECTION OF A SMALLER NUMBER OF GROUND MOTIONS 

To test the effectiveness of the algorithm in sampling smaller ground motion sets, it is 

repeated to select a set of 10 ground motions for the scenario described earlier (magnitude = 

7, distance to rupture = 10km, T* = 2.63s and ε(T*) = 2). The response spectra of the selected 

records are shown in Figure 3a. The set means and standard deviations are compared to the 

target means and standard deviations in Figure 3b-c. It can be seen that the matches are good, 

illustrating the effectiveness of the algorithm in selecting small sets of ground motions. The 

mean absolute error between the sample and the target correlations is 0.17. The computational 

time required to select the set of 10 ground motions is about 25 seconds using a MATLAB 

implementation on an 8GB RAM 2.33GHz quad core processor. The computational time 

required for selecting the set of 10 ground motions without using the greedy optimization 

technique is 4 seconds. 

Figure 3. (a) Response spectra of 10 selected ground motions (b) Response spectrum mean (c) 
Response spectrum standard deviation. 

IMPACT OF MATCHING SPECTRUM VARIANCE ON STRUCTURAL RESPONSE 

Code-based structural design and performance-based earthquake engineering applications 

require statistics such as the mean (e.g., ASCE, 2005) or the median and the dispersion (e.g., 

ATC-58, 2009) of the structural response. It is of interest in this section to evaluate the impact 

of ground-motion selection considering a target response spectrum mean and variance (as 

compared to considering only a target mean) on these statistics. 

GROUND-MOTION SELECTION 

The ground motions used for evaluating structural response are selected using the method 

described in the previous section for a target scenario with magnitude = 7, distance to rupture 

= 10km, Vs30 = 400m/s, and a strike-slip mechanism. The Campbell and Bozorgnia (2008) 

ground-motion model is used to estimate the mean and variance of the response spectrum. 

The values of ε and period T* are varied to obtain multiple test scenarios. Three typical ε 

values of 0, 1 and 2 are considered. The structures considered in this work have periods (T*) 

ranging between 0.5s and 2.63s.  
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In order to investigate the impact of matching response spectrum variance (Equation 9) on 

the structural response statistics, sets of forty ground motions are selected using two methods: 

‘Method 1’ in which only the target mean is matched (a common approach in current 

practice, e.g., Baker and Cornell, 2006 and Method 300 in Haselton et al., 2009) and ‘Method 

2’ in which both the target mean and the target variance are matched using the approach 

proposed here. The target response spectrum mean and covariance matrices are evaluated 

using Equations 6 and 9 for each combination of ε and T*. Figure 4 shows example response 

spectra of ground motions selected using these two methods (for ε = 2 and T* = 2.63s).  

Figure 4. Response spectra of 40 selected ground motions for ε = 2 and T* = 2.63s (a) Using Method 
1: Match target response spectrum mean, and (b) Using Method 2: Match target response spectrum 
mean and variance. 

STRUCTURAL RESPONSE 

This section describes the response of sample nonlinear single-degree-of-freedom (SDOF) 

structures and multiple-degree-of-freedom (MDOF) buildings designed according to modern 

building codes. In this work, we consider only maximum displacement for the SDOF 

structures and maximum interstory drift ratio (MIDR) for the MDOF structures. 

Description of structural systems 

The SDOF structures considered in this work follow a non-deteriorating, bilinear force-

displacement relationship (Chopra, 2007). They have T* = 0.5s, 5% damping and post-

yielding stiffness equal to 10% of elastic stiffness. SDOF structures with ‘R factors’ (the ratio 

of the target spectral acceleration at the period of the structure, *( )aS T , to the yield spectral 

acceleration = ω2 * yield displacement, where ω is the structure’s fundamental circular 

frequency) of 1, 4 and 8 are considered to study varying levels of non-linear behavior. The R 

factor is controlled by varying the yield displacements of the SDOF structures relative to the 
*( )aS T  value obtained from the target spectrum. The SDOF structures are non-deteriorating 

systems, so structural collapse is not considered. 

The MDOF structures used in this study were designed per modern building codes and 

modeled utilizing the Open System for Earthquake Engineering Simulation (OpenSEES) 

(2007) by Haselton and Deierlein (2007). The structural models consider strength and 

stiffness deterioration (Ibarra et al., 2005) unlike in the SDOF case. The designs for these 
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buildings have been checked by practicing engineers as part of the Applied Technology 

Council Project ATC-63 (FEMA, 2009). They have also been used for previous extensive 

ground-motion studies (Haselton et al., 2009). The two buildings used in the current study are 

a 4-story reinforced concrete moment frame structure with T* = 0.94s, and a 20-story 

reinforced concrete moment frame structure with T* = 2.63s. The buildings show 

deterioration, and collapse is said to occur if dynamic instability (large increases in the drift 

for small increases in the ground-motion intensity) is reached in the model (Haselton and 

Deierlein, 2007). 

Response of SDOF systems 

Table 1 shows the mean, median and dispersion (dispersion refers to logarithmic standard 

deviation) of ductility ratios (spectral displacement divided by the yield displacement) of the 

SDOF structures under the different ground-motion scenarios described earlier. The ductility 

statistics are estimated using the two sets of 40 ground motions selected using Method 1 

(ground motions selected by matching only the target response spectrum mean) and Method 2 

(ground motions selected by matching the target response spectrum mean and variance). It 

can be seen from Table 1 that the median ductilities are similar across the two ground-motion 

selection methods, while the mean and the dispersion of the response are higher in Method 2, 

when the ground-motion variance is considered. The higher dispersion of the response seen 

while using Method 2 is a result of considering the uncertainty in the response spectra, which 

is ignored in Method 1. As expected, the increase in dispersion is particularly significant at 

large R values when the structure behaves in a non-linear manner. Note that there are no 

differences between the methods when R = 1, because the response is dependent only 

on *( )aS T , which is identical in both cases. 
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Table 1. Ductility ratio of SDOF structure. 

ε R Median Ductility Dispersion of Ductility Mean Ductility 
Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 

0 
1 1.00 1.00 0 0 1.00 1.00 
4 3.93 3.76 0.24 0.31 4.21 4.18 
8 10.76 9.97 0.28 0.42 10.82 10.74 

1 
1 1.00 1.00 0 0 1.00 1.00 
4 3.55 3.35 0.22 0.33 3.79 3.93 
8 8.04 8.16 0.28 0.46 8.57 9.46 

2 
1 1.00 1.00 0 0 1.00 1.00 
4 3.27 3.04 0.19 0.28 3.39 3.34 
8 6.90 7.44 0.24 0.41 7.34 7.98 

 

Figure 5 shows the fraction of response analyses that result in a ductility less than a 

specified value for the SDOF structure with R = 8 in the ε = 1 scenario, estimated using 

Methods 1 and 2. This type of plot is referred to as an empirical cumulative distribution 

function, or CDF. The CDFs intersect at a value of approximately 0.5 due to the similarity in 

the median response in both cases. The CDF obtained using Method 2 is flatter with heavier 

tails as a result of the larger dispersion observed in this case. As seen from Figure 5a, the 

upper tails of the CDFs are heavier than the lower tails. Since the mean response is the area 

above the CDF (the mean of a random variable is the area under the complementary CDF, 

which equals 1 - CDF), it can be visually observed that the difference in the heaviness of the 

upper tails results in a larger mean value of the response in case of Method 2 as compared to 

Method 1. This is a graphical evidence of the larger mean values reported earlier in Table 1. 

Analytically, if the responses were to follow a lognormal distribution (a common assumption 

in performance-based earthquake engineering), the properties of the lognormal distribution 

will imply that a larger dispersion results in a larger mean for a fixed median, which also 

explains the larger means observed in Method 2. 

Figure 5. Distribution of the structural response of the SDOF structure corresponding to R = 8 and 
ε(T*) = 1: (a) Linear scale (b) Logarithmic scale. 

Response of MDOF systems 

Table 2 summarizes the maximum interstory drift ratio (MIDR) estimates for the MDOF 

structures considered in this study under various ground-motion scenarios, estimated using 
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Methods 1 and 2. The distributions of responses are summarized using the probability of 

collapse (i.e., counted fraction of responses indicating collapse) and the median and the 

dispersion of the non-collapse responses. 

Table 2. Maximum interstory drift ratio (MIDR) of 20-story and 4-story moment frames.  

Building ε Median MIDR Dispersion of MIDR Collapse Probability 
Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 

20-story 

moment 

frame 

0 0.0044 0.0043 0.18 0.32 0 0 
1 0.0096 0.0086 0.24 0.29 0 0 
2 0.0186 0.0196 0.25 0.43 0 0.05 

4-story 

moment 

frame 

0 0.0072 0.0072 0.09 0.09 0 0 
1 0.0137 0.0139 0.26 0.29 0 0 
2 0.0279 0.0237 0.28 0.46 0.10 0.20 

 

From Table 2, it can be seen that, as observed in the SDOF case, the medians are similar 

across Methods 1 and 2 in all the considered scenarios. The dispersions are larger, however, 

when the ground-motion variance is considered in Method 2. The increase in the dispersion 

also results in an increased probability of observing large values of structural response. This 

can result in an increased probability of structural collapse while using Method 2, as 

evidenced, for example, when ε = 2 in Table 2. 

Figure 6 shows the empirical CDF of the MIDR of the 20-story frame corresponding to 

the ε = 2 ground-motion scenario. As seen in the SDOF case, the CDF obtained using Method 

2 is flatter and has heavier tails on account of larger dispersion. The maximum plotted values 

of the CDFs differ from one, and the difference equals the probability of collapse.  

Figure 6. Distribution of the structural response of the 20 story moment frame building corresponding 
to ε(T*) = 2: (a) Linear scale (b) Logarithmic scale. 

In summary, the response estimates for the SDOF and the MDOF structures across 

several ground-motion scenarios show that the consideration of the response spectrum 

variance while selecting ground motions does not significantly impact the median structural 

response, but tends to increase the mean response and the dispersion in the response. The 

increased dispersion can result in more extreme responses, which can lead to a larger 

probability of structural collapse.  
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These example analysis cases serve to illustrate the potential importance of matching 

response spectrum variance. More detailed investigations regarding the impact are important, 

and will be carried out in the future. 

IMPLICATIONS 

Code-based design is often concerned with the average response of the structure (e.g., 

ASCE, 2005). The average response is typically interpreted as the mean response, although 

sometimes it is interpreted as the median. If median structural response is of interest, the 

consideration of the response spectrum variance while selecting ground motions does not 

have a significant impact in the limited investigation performed here. On the other hand, if 

mean structural response is of interest, the consideration of the response spectrum variance 

appears to increase the mean structural response and may thus impact code-based design 

calculations. 

Performance-based earthquake engineering (PBEE), in contrast, often requires knowledge 

about the full distribution of structural response (ATC-58, 2009). Matching target response 

spectrum variance increases the dispersion of structural response, thereby affecting the 

distribution of structural response and consequently the damage state and loss estimation 

computations in PBEE. The increase in the dispersion leads to higher and lower extremes of 

structural response and the associated damage states and losses. The increased dispersion can 

also lead to a larger probability of structural collapse. PBEE calculations will thus almost 

certainly be affected by this issue. 

In summary, the example analyses presented above and engineering intuition suggest that 

the target response spectrum variance used when selecting ground motions has an impact on 

the distribution of structural responses obtained from resulting dynamic analysis. It appears 

that this is true for both code-based design checks and performance-based earthquake 

engineering analysis. Further study is needed to quantify the magnitude of these impacts, and 

this new algorithm will facilitate such studies. 

CONCLUSIONS 

A computationally efficient, theoretically consistent ground-motion selection algorithm 

was proposed to enable selection of a suite of ground motions whose response spectra have a 

target mean and a target variance. The algorithm first uses Monte Carlo simulation to 
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probabilistically generate multiple realizations of response spectra from a target distribution, 

and then selects recorded ground motions whose response spectra individually match the 

simulated response spectra. A greedy optimization technique then further improves the match 

between the target and the sample means and variances by replacing one previously selected 

ground motion at a time with a record from the ground-motion database that causes the best 

improvement in the match. It was shown empirically that this selection algorithm selects 

ground motions whose response spectra have the target mean and variance.  

The proposed algorithm was then used to select ground motions for estimating the seismic 

response of sample single-degree-of-freedom (SDOF) and multiple-degree-of-freedom 

(MDOF) structures, in order to assess the impact of considering response spectrum variance 

on the structural response estimates. SDOF structures with different levels of non-linearity (as 

indicated by their R factors) were analyzed using the selected ground motions. It was seen 

that considering the response spectrum variance does not significantly affect the resulting 

median response, but slightly increases the mean response and considerably increases the 

dispersion (logarithmic standard deviation) of the response. The increase in the mean and the 

dispersion is larger for more non-linear SDOF structures. Two code-compliant MDOF 

structures with heights of 4 and 20 stories were also analyzed using the selected ground 

motions. As with the SDOF structures, it was seen that considering the response spectrum 

variance does not significantly affect the median response but increases the dispersion of the 

response and the probability of observing collapse. These observations have implications for 

applications where the dispersion of the response is an important consideration, such as in 

many performance-based engineering evaluations. A MATLAB implementation of the 

proposed ground-motion selection algorithm can be downloaded from 

http://www.stanford.edu/~bakerjw/gm_selection.html 
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APPENDIX A A GREEDY GROUND-MOTION SELECTION TECHNIQUE 

The ground-motion selection algorithm described in the body of this manuscript selects an 

initial set of ground motions whose response spectra match a set of simulated response 

spectra. These simulations are obtained from a multivariate normal distribution parameterized 

by the target mean and covariance matrices. A greedy optimization technique then further 

improves the match between the target and the sample means and variances and obtains the 

final set of ground motions.  

Sometimes, it may not be possible to completely parameterize the distribution of the 

response spectra using the mean and covariance information. This includes situations where 

ground motions are selected to match the UHS (where only the mean spectrum needs to be 

considered) or where the mean and the variance information, but not the correlation 

information, are available. There may also be situations where the response spectrum does not 

follow a multivariate normal distribution. For such situations, the authors propose the 

following technique for selecting the initial ground-motion set that can be subsequently 

improved by the greedy optimization technique. The steps involved in the technique are 

summarized below. 

• Step 1: Initialize the algorithm with an empty ground-motion set. 

• Step 2: Set i = 1. 

• Step 3: If the ith database ground motion (Gi) is not already present in the ground-motion 

set, include it in the set and compute ,s iSSE  (i.e, the sSSE  of the set after Gi is included, 

where SSEs is defined in Equation 2).  

• Step 4: Delete Gi from the set, if included in Step 3. Increment i by 1. 

• Step 5: If i is less than or equal to the size of the ground-motion database, go to Step 3. 

Otherwise, identify the ground motion i  that results in the minimum value of ,s iSSE . Add 

the i th ground motion in the database to the ground-motion set. 

• Step 5: If the size of the set equals the desired number of ground motions, terminate the 

algorithm. Otherwise, go to Step 2. 
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This selection technique will provide a reasonable starting set of ground motions that can 

be subsequently improved using the greedy optimization technique described earlier in the 

manuscript. This selection technique does not take advantage of the knowledge of the 

response spectrum distribution or the correlation structure, but is therefore more general in its 

application. It is also empirically seen to produce sets of ground motions with response 

spectrum mean and variance closely matching the corresponding target values. 

To test the effectiveness of the technique, it is used to select a set of 40 ground motions 

for the scenario described earlier (magnitude = 7, distance to rupture = 10km, T* = 2.63s and 

ε(T*) = 2). The response spectra of the selected records are shown in Figure 7a. The ground-

motion set means and standard deviations are compared to the target means and standard 

deviations in Figure 7b-c. It can be seen that the matches are good, illustrating the 

effectiveness of the technique. Incidentally, despite the fact that the technique does not use 

the correlation information, it is seen that the mean absolute error between the sample and the 

target correlations (Equation 7) is only 0.15. 

Figure 7. (a) Response spectra of 40 ground motions selected using the greedy selection and 
optimization techniques (b) Response spectrum mean (c) Response spectrum standard deviation.  
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