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1084 Part III: Articles

Spinal Cord of Lamprey:

Generation of Locomotor Patterns

James T. Buchanan

Introduction

The successes in revealing the structure and function of rhythm-
generating networks in invertebrates led to the insight that although
there are recurring “building blocks™ in the evolution of neuronal
networks. there is also a great deal of variation in the details of
network construction between different classes of organisms (Get-
ting, 1989). Thus, to understand vertebrate neuronal networks, one
must study vertebrate nervous systems, and this realization has led
to a proliferation of vertebrate models for investigating the cellular
and synaptic hani of 1 rhythm g ion (Pearson
and Gordon, 2000) (see LOCOMOTION, VERTEBRATE). One of the
most favorable adult vertebrate preparations is the lamprey, a jaw-
less fish with close ties to the earliest vertebrates of the fossil rec-
ord. Significant progress has been made toward revealing features
of the lamprey locomotor network, and this preparation has been
the focus of numerous modeling studies.

The Lamprey Spinal Cord

The adult lamprey spinal cord has numerous advantages for neu-
rophysiological studies aimed at understanding the cellular and
synaptic isms of rhythmic | activity. In overall
structure and organization, the lamprey spinal cord resembles the
spinal cords of higher vertebrates. For example. the spinal cord
consists of a core of nerve cell bodies surrounded by axon tracts,
and there are dorsal and ventral roots of sensory and motor func-
tions, respectively. However, when compared with other adult ver-
tebrates, the lamprey spinal cord contains relatively few nerve cells
(ca. 1,000 per segment), and the cell bodies of many of these neu-
rons are clearly visible in the thin (ca. 0.3 mm), transparent spinal
cord. In addition, the lamprey spinal cord survives and functions
well when isolated and can be readily manipulated by adding phar-
macological agents to the bathing fluid. This is particularly impor-
tant in the study of locomotor activity because one can activate the

spikes are recorded as rhythmic bursts (ca. 0.5-4 bursts/s) that al-
ternate with ventral roots on the opposite side of the spinal cord
(Figure 1B). Ventral roots located more distant from the head show
a progressive delay in burst onset. Again, this delay is scaled to the
swim frequency, so that there is a constant phase lag in the head-
to-tail propagation of the ventral root bursts. This phase lag is about
1% of a cycle period per segment (ca. 100 spinal segments total).
Thus, there is a close match between the pattern of muscle electrical
activity in the swimming lamprey and the pattern of ventral root
bursting in the isolated spinal cord, indicating that the lutter rep-
resents the neuronal correlate of swimming and is therefore referred
to as fictive swimming.

The Lamprey Locomotor Network

The presence of swimming activity in the isolated spinal cord dem-
onstrates that, like other vertebrate and invertebrate preparations,
the lamprey spinal cord contains a central pattern generator for
locomotion. That is, the neuronal machinery required to produce
the detailed locomotor pattern is an emergent property of spinal
nerve cells and their synaptic interactions.

One goal of locomotor studies is to understand the structure and
function of the locomotor central pattern generator. What do we
know about the cells comprising this network and their synaptic
interactions? Although uniquely identifiable neurons have not been
found in the lamprey spinal cord, several classes of spinal neurons
have been characterized on the basis of physiological and anatom-
ical criteria (Figure 1C) (Buchanan, 2001). The altemnating pattern
of rhythmic activity between the two sides of the spinal cord and
the disruption of rhythmic activity by midline cuts suggest that cells
with midline-crossing axons (commissural interneurons) are im-
portant for locomotor activity (Buchanan, 1999). Theretore, com-
missural interneurons (CCINs) have been a focus of intracellular
studies. One class of CCINs has been shown to make inhibitory
glycinergic synapses on motor neurons and interneurons on the

spinal swimming network by adding the y
ter, glutamate, to the bathing fluid. One disadvantage to using the
lamprey nervous system is the lack of uniquely identifiable cells in

Pp: side of the spinal cord. These inhibitory CCINs are
thought to provide a mechanism for alternation between the two
sides and for basic rhythm generation via their reciprocal inhibitory

the spinal cord, a feature that made inv preparations, such
as the crustacean stomatogastric ganglion, so successful in the
study of network structure and function (see CRUSTACEAN STO-
MATOGASTRIC SYSTEM). In the lamprey spinal cord we must char-
acterize classes of nerve cells rather than unique individuals, and
thus we face the uncertainties associated with defining cell classes.

Fictive Swimming

Like most fish, lampreys swim with lateral body undulations that
propagate from head to tail (Figure 1A4). These body waves are
created by contractions of muscles that alternate between the two
sides and propagate down the body. The speed of wave propagation
is scaled to the swim frequency so that as the animal swims faster,
the propagation speed of the waves increases. In this way, the lam-
prey maintains about one full wave of body curvature over the
length of its body for a wide range of swimming speeds. When the
spinal cord is isolated and exposed to glutamate, similar rhythmic
activity can be recorded from the ventral roots, the nerves that
contain the axons of the motor neurons innervating the body mus-
cles (Figure 1B). As the motor neurons fire action potentials, their

(see HALF-CENTER OSCILLATORS UNDERLYING
RHYTHMIC MOVEMENTS). In addition to the inhibitory CCINs,
there is a class of small excitatory interneurons (EINs) with short
axons confined to the same side of the spinal cord. The EINs pro-
vide rhythmic excitation of nearby motor neurons and interneurons
via glutamatergic excitatory synapses. Finally. there is a third class
of interneurons that are active during fictive swimming. the lateral
interneurons (LINs). The LINs inhibit CCINs on the same side of
the spinal cord via glycinergic synapses. The LINs have been pro-
posed to provide the early inhibition that is observed in the CCINs
and thus to terminate the firing of the CCINs on one side of t}]e
cord, allowing the inhibitory CCINs on the opposite side to begin
firing.

Modeli

Lamprey I

The lamprey locomotor network has been simulated with a Vﬂriﬂy
of models, from connectionist-style to more detailed biophysical
models. These simulations have d d the feasibility of the
proposed circuit (Figure 1C), have helped to assess the importance
of various electrophysiological parameters in the function of the
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Figure 1. Lamprey swimming and the locomotor
network. A, Images of a swimming lamprey
showing the lateral undulations of the body that
propagate from head to tail. Images are separated
by 67 msec. B, Fictive swimming in a 32-
segment length of isolated spinal cord exposed
10 0.5 mM of D-glutamate. Ventral roots (VR)
were recorded with extracellular electrodes. C,
The proposed lamprey locomotor network con-
sists of three types of interneurons. Each cell rep-
resents many neurons. Open triangles indicate
excitatory synapses, circles indicate inhibitory
synapses, and the dashed line indicates the mid-
line. MN, motor neuron; CC, commissural inter-
neuron; EIN, excitatory interneuron; LIN, lateral
interneuron.
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network, and have provided insights into various network issues.
Detailed biophysical models typically use Hodgkin-Huxley
(HH)-style kinetic modeling of ion channels that are incorporated
into compartmental models of neuronal electrotonic structure. Such
models of the lamprey locomotor network suffer from the problem
of an overabundance of unspecified and ined parameters
because we do not have good voltage-clamp characterizations of
the HH parameters for lamprey neurons. An alternative to detailed
Voltage-clamp analysis has been to use white noise analysis (Mur-
phey, Moore, and Buchanan, 1995). The magnitude and phase re-
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physical models are essential for a full understanding of any neu-
ronal network. For example, neuromodulators often act by subtly
altering the activity of voltage-gated or ligand-gated channels, and
detailed biophysical models are required to explore the conse-
quences of these ion channel changes on network activity (see NEU-
ROMODULATION IN INVERTEBRATE NERVOUS SYSTEMS). There are
a number of neuromodulators present in the lamprey spinal cord
that alter the output of the locomotor network, with serotonin, do-
pamine, and the tachykinins being among the best studied. These
substances offer good opportunities to test our knowledge of the
1 or system by bining the cellular and synaptic actions

sponses of lamprey neurons to small old white

noise current or voltage signals have been used to fit model neurons
ining voltage-d dent conductances and electrotonic struc-

fure. This approach provides a stronger data-based modeling of the

Bonlinear voltage dependencies and the contributions of dendritic

electrotonic structure, but a systematic characterization of the vari-

ous lamprey spinal neuron classes using this technique has not yet

been done.

Although detailed HH-style currently has li
When applied to lamprey neurons, these or similar detailed bio-

of the modulators into detailed network models.

Interesting new work involving neuromodulators in the lamprey
has come from Parker and Grillner (2000). They have been inves-
tigating the effects of substance P, a tachykinin neuropeptide. The
tachykinins have been well studied in the mammalian spinal cord,
where they are involved in pain processing. In the lamprey, appli-
cation of substance P to the isolated spinal cord has an extremely
powerful effect on fictive swimming, increasing the swim burst
frequency by three to five times. What is most remarkable is that
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after only a 10-minute exposure to substance P, the increase in the
fictive \Wlmmmg frequency persists for at least the next 24 hours.
This i ion in the | network re-
quires protein and RNA synthesis for its maintenance. Tachykinins
are present in the lamprey spinal cord in ventral midline cells lo-
cated below the central canal, where they coexist in neurons with
serotonin and dopamine. At the synaptic level, substance P and
serotonin both hnve s(mng effects on activity-dependent plasticity
at the synap: lved in g the | rhythm. This
type of modulation of activity-dep synaptic plasticity is re-
ferred to as metaplasticity. Not only are serotonin, dopamine, and
substance P colocalized in spinal neurons, but their actions on the
locomotor network are interdependent. Serotonin can block the ef-

prey locomotor network has been conserved to some extent in
higher vertebrates as a core rhythm-generating network, and evo-
lution has provided coupling among these core oscillators to gen-
erate the more complex sequences of muscle activation required in
fins and limbs. In this regard, the salamander offers a promising
preparation for studying the interaction of swimming and walking
networks because this animal performs both. Connectionist-style
modeling has recently been used to explore how a neural circuitry
can produce and dulate the two | of swim-
ming and walking (Ijspeert, 2001), and several laboratorics are be-
ginning to explore these issues experimentally.

Where do we go from here in our attempts to undersiand the
generation and control of vertebrate locomotion? A major limita-

fects of substance P on swim frequency and on synaptic 1
ticity. Detailed biophysical models of the lamprey network have
d; d that plasticity can have significant effects on net-
work behavior that are consistent with those observed experimen-
tally (Kozlov et al., 2001). A major challenge for lamprey neuro-
biology will be to determine when these various neuromodulators
are released. Are they coreleased or differentially released in a con-
text-dependent manner?

Given the lack of detailed biophysical information about lamprey
locomotor neurons, models that do not depend on details of indi-

tion to ding the lamprey locomotor network is the large
numbers of nerve cells and the inability to uniquely identify them
or even to classify them with confidence. Experimentally. we need
to employ techniques that will allow characterization of popula-
tions and the synaptic interactions of many cells. Optica! imaging
of calcium signals or of vuhage sensitive dyes offers some hope in
this d Further of dul of the lo-
comotor network will continue to provide opportunities 1o test our
models as we try to account for the network effects of modulators
on the basis of their demonstrated cellular and synaptic actions,
Modeling of the I network must proceed in paraliel with

the experimental data; and ultimately, large-scale and detailed bio-
physlcal modelmg will be necessary. However, given the current
ions in our knowledge about the lamprey locomotor network,

vidual cells have proved useful in advanung our S of
lamprey I ion. For lified rhythm

have been employed to look at larger-scale issues, such as the con-
trol of turning (McClellan and Hagevik, 1997). Techniques of bi-

furcation analysis have been used to examine the dynamic behavior
of the network (Figure 1C), especially with regard to its interactions
with the brain (Jung, Kiemel, and Cohen, 1996). Efforts have also
been made using simpler locomotor networks to expand the levels
of modeling to take into account the properties of the muscles,
movement through water, and sensory feedback during movement
(Ekeberg and Grillner, 1999).

Another application of models with less neuronal detail has been
in investigations aimed at understanding the nature of the coupling
among the rhythm generators. This is an interesting problem be-
cause the speed of the head-to-tail propagation of the rhythmic
activity down the spinal cord varies with the speed of swimming,
yet conduction delays in axons are fixed. Experimental tests of a
model of coupled oscillators (Cohen et al., 1992) (see CHAINS OF
OSCILLATORS IN MOTOR AND SENSORY SYSTEMS) led to the con-
clusion that ascending intersegmental coupling signals have a
stronger influence over oscillator coupling in the lamprey spinal
cord than do descendmg signals (Sigvardt and Wlllmms 1996).

modeling that relies less on the details of individual cells will con-
tinue to be useful in understanding how locomotion is organized
within the lamprey nervous system. Finally, comparisons with
other vertebrates will be important for determining what «spects of
the locomotor network have been conservcd and how the core
hyth ing network of swi g was modified for walking
with limbs.

Road Maps: Motor Pattern Generators: Neuroethology and Evolution
Background: Motor Pattern Generation
Relnted Rendmg. Chains of Osclll.llurs in Mulor and Sensory Systems;

Vertebrate; and Ceni «l Pattem
Gmemwn
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Statistical Mechanics of Generalization

Manfred Opper
Introduction

The theory of learning in artificial neural networks has benefited
from various different fields of research. Among these, statistical
has become an important tool for understanding a neural
network’s ability to generalize from examples. This article explains
some of the basic principles and ideas of this appro:
In the fnllowmg, we assume a feedforward network o( N input
nodes, receiving real-valued inputs, summarized by the vector x =
@&(1), . . . , x(N)). The configuration of the network is described
by its weights and will be abbreviated by a vector of parameters
w. Using w, the network computes a function £ of the inputs x
and returns ¢ = F (X) as its output.

In the simplest case, a neural network should learn a binary clas-
sification task. That is, it should decide whether a given input x
belongs to a certain class of objects and respond with the output:
Fo(x) = +1, or, if the input does not belong, it should answer
withg = — 1 (the choice ¢ = = I, rather than, for example, 0, 1,
is arbitrary and has no consequence for the learning curves). To
learn the underlymg classification rule, the network is trained ona
nofmmpulsx = (X, ....X, ) together with the class
labels 6™ = (o, ..., o,,). which are provided by a trainer or
teacher. Using a learning algorithm, the network is adapted to this
training set D,, = ("™, x™) by adjusting its parameters w such that
itresponds correctly on the m examples.

How well will the trained network be able to classify an input
that it has not seen before? In order to give a quantitative answer
10 this question, a common model assumes that all inputs, those
from the training set and the new one, are produced independently
a random with the same probability density from the network’s
environment. Fixing the training set for a moment, the probability
lhlhe network will make a mistake on the new input defines the
tion error &(D,,). Its average, £. over many realizations

the training set, as a function of the number of examples gives
the so-called learning curve. This will be the main quantity of
interest in the following.

Clearly, 2 also depends on the specific algorithm that was used
during the training. Thus, the calculation of z requires knowledge
of the network weights generated by lhe lenrnlng process. In gen-

mating the complete mic rmcuph state of the system, which is de-
scribed by the rapidly fi iti and velocities of all
particles. On the other hand, the de ription of the macroscopic
state of a gas requires only a few parameters, like density, tem-
perature, and pressure. Such quantities can be calculated by suit-
ably averaging over a whole ensemhle of microscopic states that
are ible with

Applylng similar ideas to neurul network learning, the problems
that arise from specifying the details of a concrete learning algo-
rithm can be avoided. In the statistical mechanics approach, one
studies the of all rks that imp the same set
of input/output examples to a given accuracy. In this way the typ-
ical generalization behavior of a neural network (in contrast to the
worst or optimal behavior) can be described.

The Perceptron

In this section I will explain this approach for one of the simplest
types of networks, the single-layer perceptron (see PERCEPTRONS,
ADALINES, AND BACKPROPAGATION). A study of this network is
not of purely academic interest, because the single-layer architec-
ture is a substructure of multilayer networks, and many of the steps
in the subsequent calculations also appear in the analysis of more
complex networks. Furthermore, by replacing the input vector x
with a suitable vector of nonlinear features, the perceptron
(equipped with a specific learning algorithm) becomes a support
vector machine, an extremely powerful learning device introduced
by V. Vapnik and his collaborators (see SUPPORT VECTOR
MACHINES).
The adjustable parameters of the perceptron are the N weights
w = (w(l),...,w(N)). The output is a weighted sum
N
G = Fo(x) = sign( > Mi).m')) = sign(w - X) n
i=1 /

of the inputvalues. Since the length of w can be m)mmhzcd without
changing the performance, we choose || w|*

The input/output relation in Equation 1 has a Glmple geometric
interpretation. Consider the hyperplane w - x = 0 in the N-
dimensional space of inputs. All inputs that are on the same side

enal, these weights will be li of the p as w are mapped onto + 1, those on lhe other side onto — 1. Per-
ﬂmexphcn form w:II no( be. J\Jllahle in most cases. ceptrons realize linearly separabl, . In the
~ The methods of statis hanics provide an approach to this ing. we assume that the classificati labels o, are

Nhn. which often enables an exact calculation of learning by some other perceptron with wclghls w,, the * leacher percep-
auryes in the limit of a very large network, i.e., for N = 2. It may tron. (A simple case of a h is

Seem Surpnsmg that a problem will simplify when the number of
illl'll'neters is increased. However, this phenomenon is well
h”’ll for physical systems like gases or liquids which consist of
number of molecules. Clearly, there is no chance of esti-

later.)

The geomemc picture lmmedlately gives us an expression for
the error. A of a new input X by a
“student” perceptron w, occurs only if X is between the separating
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