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Spinal Cord of Lamprey: 
Generation of Locomotor Patterns 
James T. Buchanan 

Introduction 

The successes in revealing the structure and function of rhythm­
gene rating networks in inve rtebrates led to the insight that although 
there are recurring "building blocks" in the evolution of neuronal 
networks. the re is also a great deal of variation in the details of 
network construction between different classes of organisms (Get­
ting. 1989). Thus. to understand vertebrate neuronal networks, one 
must study vertebrate nervous systems. and this realization has led 
10 a prol iferation of ve rtebrate models for investigating the cellular 
and synaptic mechanisms of locomotor rhythm generati on (Pearson 
and Gordon, 2000) (see LOCOMOTI ON, VERTEBRATE). One of the 
most favorable adult vertebrate preparations is the lamprey, a jaw­
less fish with close ties to the earliest vertebrates of the fossil rec­
ord. Significant progress has been made toward revealing features 
of the lamprey locomotor ne twork. and thi s preparation has been 
the focus of numerous mode ling studies. 

The Lamprey Spinal Cord 

The adu lt lamprey spinal cord has numerous advan tages fo r neu­
rophysiOlogical studies aimed at understand ing the cellular and 
synaptic mechanisms of rhythmic locomotor act i vi ty. In overall 
structure and organ ization. the lamprey spinal cord resembles the 
spinal cords of higher vertebrates. For example, the spinal cord 
consists of a core of nerve ce ll bodies surrounded by axon tracts, 
and there are dorsal and ven tra l roots of sensory and motor func­
tions, respective ly. Howeve r, w hen compared with o ther adult ver­
tebrates. the lam prey spinal cord contains relat ively few nerve cell s 
(ca. 1,000 per segment) , and the cell bodies of many of these neu­
rons arc clearly visible in the thin (ca. 0.3 mm). transparen t spinal 
cord. In addition , the la mprey spi nal cord survives and fu nctions 
we ll when isolated and can be readily manipulated by adding phar­
macological agents to the bath ing flu id. This is particularly impor­
tant in the study of locomotor acti vity because one can acti vate the 
spinal swimming network by adding 'the excitatory neurotransmit­
ter, glutamate, to the bathing fluid. One di sadvantage to using the 
lamprey nervous syste m is the lack of uniquely identifiable cell s in 
the spinal cord. a feature that made invertebrate preparations, such 
as the crustacean stomatogastric ganglion, so successful in the 
s tudy of network structure and function (see CRUSTACEAN STO­
MATOGASTRIC SYSTEM). In the lamprey spinal cord we must char­
acterize classes of nerve ce ll s rather than unique individuals, and 
thus we face the uncertainties assoc iated wi th de fining ce ll classes. 

Fictive Swimming 

Like most fish, lampreys swim with lateral body undulations that 
propagate from head to tail (Figure IA). These body waves are 
created by contractions of muscles that alternate between the two 
sides and propagate down the body. The speed of wave propagation 
is scaled to the swim freq ue ncy so that as the an imal swims faster , 
the propagation speed of the waves increases. In thi s way, the lam­
prey ma intains about one fu ll wave of body curvature over the 
le ngth of its body for a wide range of swimming speeds. When the 
spinal cord is isolated and exposed to glutamate, s imilar rhythmic 
activity can be recorded from the ventral roots, the nerves that 
contain the axons of the motor neurons innervating the body mus­
cles (Figure IB). As the motor neurons fire act ion potential s, their 

sp ikes are recorded as rhythmic bursts (ca. 0. 5-4 bursts/s) that al­
te rnate with ventral roots on the opposite 'side of the ~pina l cord 
(Figure 18). Ventral roots located more distant from the head show 
a progress ive delay in burs t onset. Again, this delay is sca led to the 
swim frequency, so that there is a constant phase lag in the head­
to-tai l propagation of the ventral root bursts. This phase lag is about 
I % of a cyc le period per segment (ca. 100 spi nal segments total). 
Thus, there is a close match between the pattern o f muscle electrical 
activity in the swimming lamprey and the pattern of ven tral rOOI 

bursting in the isolated spinal cord, indicating that the hItter rep­
resents the neurona l correlate of swimming and is lherefor~ referred 
to as ficti ve swimmi ng. 

The Lamprey Locomotor Network 

The presence of swimming act ivity in the isolated spinal lOrd dem­
onstrates that, like other vertebrate and invertebrate preparations, 
the lamprey spinal cord contains a central patte rn generator for 
locomotion. That is, the neuronal machinery requ ired to produce 
the detailed locomotor pattern is an emergent property of spinal 
nerve cells and their synaptic interactions. 

One goal of locomotor studies is to understand the structure and 
function of the locomotor central pattern generator. What do we 
know about the cell s comprising thi s network and their synaptic 
interactions? Although uniquely identifiable neurons have not been 
found in the lamprey spinal cord, several cl asses of spinal neurons 
have been characterized on the basis of physiological and anatom­
ical cri teria (Figure I C) (Buchanan, 200 I). The a lternating pattern 
of rhythm ic acti vity between the two sides of the spinal cord and 
the disruption of rhythmic activity by midline cuts sugge~t that cells 
wi th midline-cross ing axons (commissura l interneuron:-) are im­
portant for locomotor activ it y (Buchanan, 1999). Thereil>re, com­
mi ssural intemeurons (CCINs) have been a focus of intracellular 
s tudies. One class of CCLNs has been shown to make inhibi tory 
g lycinergic synapses on motor neurons a nd intemeuron~ on the 
opposite side of the spinal cord. These inhibitory CCiNs are 
thought to provide a mechanism for altemation between the tWO 
sides and for basic rhythm generat ion via the ir rec iprocal inhibitory 
interactions (see HALF-CENTER OSCtLLATORS UNDERLYING 
RHYTHMIC MOVEMENTS). In addi tion to the inhibitory CClNs. 
the re is a class of small exc itatory interneurons (EJNs) with short 
axons confined to the same side of the spinal cord. The EINs pro­
vide rhythmic exc itation of nearby motor ne urons and intcrneu rons 
via g lutamatergic excitatory synapses. Fina lly, there i ~ a third class 
of intemeurons that are active during fictive swimming. the lateral 
inte rneurons (LlNs). The LlNs inhibit CC1Ns on the same side of 
the spinal cord via glyc inergic synapses. The LlNs have been pro­
posed to provide the early inhibition that is obse rved in the CClNs 
a nd thus to terminate the firing of the CC INs on one side of t~e 
cord, allowing the inhibitory CClNs on the opposite side to begin 
firing. 

Modeling Lamprey Locomotion 

The lamprey locomotor network has been simulated with a va~ety 
of models, from connectionist-style to more detail ed biophYSical 
models. These simulations have demonstrated the feasibility of the 
proposed circuit (Figure I C), have helped to assess the importanCe 
o f various electrophysio logical parameters in the function of the 



flgure J. Lamprey swimming and the locomotor 
network. A, Images of a swi mming lamprey 
showing the latera l undulations of the body that 
propagate from head to tail. Images are separated 
by 67 msec. B, Fictive swimming in a 32-
segment length of isolated spinal cord exposed 
to 0.5 mM of D-glutamate. Ventral roots (VR) 
were recorded wi th extracellular electrodes. C. 
The proposed lamprey locomotor network con­
sists of three types of intemeurons. Each cell rep­
resents many ne urons. Open triangles ind icate 
excitatory synapses, circles indicate in hi bitory 
synapses, and the dashed line indicates the mid­
Line. MN, motor neuron: ce. commissural inter­
neuron; EIN. exci tatory interneuron: LIN. lateral 
intemeuron. 
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twork, and have provided insights into various network issues 
Detai led biophysical models typica ll y use Hodgkin-Huxley 

(HH)-style kine tic modeling of ion channels that are incorporated 
into compartmental models of neuronal electrotonic structu re. Such 

ooels of the lamprey locomotor network suffer from the problem 
~f an overabundance of unspecified and unconstrained parameters 
~ause we do not have good voltage-clamp characteri zations of 

e HH parameters for lamprey neurons. An alternati ve to detailed 
oltage-c1amp analysis has been to use white noise analysis (Mur­

!'hey, Moore, and Buchanan, 1995). The magnilude and phase reo 
sponses of lamprey neurons to small -amplitude, subthreshold white 
noise current or voltage signals have been used to fit model neurons 
containing voltage-dependent conductances and electrotonic struc­
ture. This approach provides a stronger data-based modeling of the 
nonlinear vo ltage dependencies and the contributions of dendritic 
electrotonic structure, but a systematic characterization of the vari ­
OUs lamprey spinal neuron classes using this technique has not yet 

n done. 
Although detailed HH-style modeling currently has limitations 

"'hen applied to lamprey neurons, these or similar deta iled bio-

'1M... I "t'~ 
I see 

physical models are essential for a full understanding of any neu­
ronal ne twork. For example, neuromodulators often act by subtly 
alte ring the activity of voltage-gated or ligand-gated channels. and 
deta iled biophysical models are required to explore the conse­
quences o f these ion channel changes on network ac ti vity (see NEU­

ROMODU LATION tN INVERTEBRATE NERVOUS S YSTEMS). There are 
a number of )1euromodulators present in the lamprey spinal cord 
that a lter the output of the locomotor network, with serotonin , do­
pamine, and the tachyki nins being among the best studied. These 
substances offer good opponuniti es to test our knowledge of the 
locomo tor system by combining the cellular and synaptic actions 
of the modulators into detailed network models. 

Interesting new work invo lving neuromodula tors in the lamprey 
has come from Parker and Grillner (2000). They have been inves­
tigating the effects of substance P, a tachykinin neuropeptide. The 
tachykinins have been we ll studied in the mammalian spinal cord, 
where they are in volved in pain processing. In the lamprey, appli ­
cation o f substance P to the isolated spinal cord has an extremely 
powerful effect on fic tive swimming, increasing the swim burst 
frequency by three to fi ve times. What is most remarkable is that 
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after only a IO-minUle exposure (0 substance P, the increase in the 
fictive swimming frequency persists for al least the next 24 hours. 
This essentially pennanenl alleration in the locomotor network re­
quires protein and RNA synthesis for its mainten;.mce. Tachykinins 
are present in the lamprey spinal cord in ventral midline ce lls lo­
cated below the centra l canal , where they coexist in neurons wi th 
serotonin and dopamine. At the synaptic level. substance P and 
serotonin both have strong effects on act ivity-dependent plastici ty 
at the synapses involved in generating the locomotor rhythm. This 
type of modulation of activity-dependent synapt ic plast ici ty is re­
ferred to as metaplastic ity. Not only are se rotonin , dopamine, and 
substance P colocalized in spinal neurons. but their ac tions on the 
locomotor network are interdependent. Serotonin can block the ef­
fects of substance P on swim frequency and on synaptic metaplas­
ti city. Detailed biophysical models of the lamprey network have 
demonstrated that metaplasti city can have signi ficant effects on net­
work behavior that are consistent with those observed experimen­
tall y (Kozlov et aI. , 200 1). A major challenge for lamprey neuro­
biology will be to determine when these various neuromodulators 
are released. Are they core leased or differentially released in a COIl­

tex t-dependent manner? 
Given the lack of detai led biophysical informat ion about lamprey 

locomotor neurons, models that do not depend on detail s of indi­
vidual ce ll s have proved useful in advancing our unde rstanding of 
lamprey locomotion. For example. simplified rhythm generators 
have been employed 10 look at larger-scale issues, such as the con­
trol of turning (McClellan and Hagevik, 1997). Techniques of bi ­
furcation analysis have been used to exami ne the dynamic behav ior 
of the network (Figure I C), especiall y with regard to its interactions 
wi th the brain (Jung, Kiemel, and Cohen. 1996). Efforts have also 
been made using simpler locomotor networks to expand the levels 
of modeling to take into account the properties of the muscles. 
movement through water, and sensory feed back during movement 
(Ekeberg and Grillner, 1999). 

Another application of models wi th less neuronal detail has been 
in investigations aimed al understanding the nature of the coupling 
among the rhythm generators. This is an interesting problem be­
cause the speed of the head-to-tail propagat ion of the rhythmic 
acti vity down the spinal cord varies with the speed of swimming, 
yet conduction delays in axons are fi xed. Experimental tests of a 
model of coupled oscillators (Cohen et a!.. 1992) (see CHAINS OF 
OSCILLATORS IN MOTOR AN D SENSORY SYSTEMS) led to the con­
clusion that ascending intersegmental coup ling signals have a 
stronger influence over osci llator coupling in the lamprey spinal 
cord than do descending signals (Sigvardt and Williams, 1996). 
Wi ll iams ( 1992) explored coupling using connectionist-style mod­
eling to link chains of unit locomotor networks using the same 
neurons that generate the rhythmic activi ty. By adjusting the syn­
aptic strengths of the coupling signals, it was poss ible to ac hieve 
constant phase lags with va lues simi lar 10 that of ficti ve swi mming. 
While these studies demonstrated the feasibility of this mechanism, 
we ~o not yet know sufficient detai ls of the intersegmental con­
nectivity to verify the mechanism experimentall y. 

Discussion 

An underlying motivation for studying the lamprey locomotor net­
work is to learn about vertebrate locomotor networks in general. 
Does the lamprey tell us anything about higher vertebrates? There 
is certainly reason for hope that the lamprey network shares some 
fundamental propert ies with the locomotor networks of higher ver­
tebrates because of the striking simi larities between the lamprey 
network and that of the frog tadpole spinal cord (Roberts et aI. , 
1998). These two an imals swim with similar patterns, so it may not 
be unexpected that the networks are similar, yet the organisms are 
evolut ionari ly qu ite distant. We would like to believe that the lam-

prey locomotor network has been conserved to some e,.; tent in 
higher vertebrates as a core rhythm-generating network , and ev(). 
lution has provided coupling among these core oscillators to gen. 
erate the more complex sequences of muscle acti vation requi red in 
fins and limbs. In th~ s regar~. the salamander offers a promising 
preparation for stlldytng the IIlterac tion of swimming and walking 
networks because this animal perfonns both. Connec tionist-style 
modeling has recently been used to explore how a neura l circuitry 
can produce and modulate the two locomotor programs t' f swim. 
ming and walking (ljspeert, 200 1), and several laboratories are be. 
ginning to explore these issues experimentally. 

Where do we go from here in our anempts to understand the 
generation and control of vertebrate locomotion? A major limita. 
tion to understanding the lamprey locomotor network is the large 
numbers of nerve ce ll s and the inabi lity to uniquely identify the~ 
or even to classify them with confidence. Experimentally. we need 
to employ techniques that will allow characterization of popula. 
tions and the synapti c interactions of many ce ll s. Optical imaging 
of calcium signals or of vo ltage-sensiti ve dyes offers some hope in 
this direction. Further exploration of neuromodulators of the lo­
comotor network will continue to provide opportunities 10 test our 
models as we try to account for the network effec ts of modulators 
on the bas is of their demonstrated cellular and synaptic actions. 
Modeling of the locomotor network must proceed in parallel with 
the experimental data; and ult imately. large-scale and detailed bio­
physical modeling will be necessary. However, given th::: current 
limitations in our knowledge about Ihe lamprey locomotOinctwork. 
modeling that relies less 011 the details of individual ce l1 :-. will con· 
tinue to be useful ill understanding how locomotion is organized 
within the lamprey nervous system. Finally, compar i~()ns with 
olher vertebrates will be important for determining what ;l~pectsof 

the locomotor network have been conserved and how the core 
rhythm-generating network of swimming was modifi ed for wa lking 
wi th limbs. 

Road Maps: Motor Pattern Generators: Neuroethology and Evolution 
Background: Motor Pattern Generation 
Related Reading: Chains of Oscillators in Motor and Sensory Systems: 

Locomotion. Vertebrate: Sensorimotor Interactions and Ceru tal Pattern 
Generators 
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Statistical Mechanics of Generalization 
Manfred Opper 

Introduction 

The theory of learning in anific iul neural networks has benefited 
from various different fie lds of research. Among these. stal istic.1I 
physics has become un impon ant tool for understanding a neural 
network' s ability to generali ze from example~. This article explains 
some of the basic principles and ideas of this approach. 

In the following. we assume a feed forward network of N inpllt 
nodes, receiving rea l-va lued inpu ts. summarized by the vec tor x = 
(1'(1), . . . ,x(N». The configurat ion of the network is desc ri bed 
by its weights and wi ll be abbrev iated by a vector of parameters 
w. Using w. the network computes a function F" of the inputs x 
and returns a = F ",(x ) as it s output. 

In the simplest case. a neural ne twork shou ld learn a bi nary clas­
sification task. That is. it should decide whether a given input x 
belongs to a cenain class of objec ts and respond with the output : 
F.(x) = + I , or. if the input does not be long. it should answer 
with u = - I (the choice a = ± I . rather than. for example. 0, I , 
is arbitrary and has no consequence for the learn ing curves). To 
Wn the underlying classification rule. the network is trained on a 
set of m inputs x'" = {x" . .. , xm } together with the classificati on 
labels u m = {u , • .. " ami. which are prov ided by a tra iner or 
teacher. Using a /eaming algorith",. the network is adapted to this 
training set D", = (am. x m) by adjust ing its parameters w such that 
it responds correctl y on the m examples 

How well will the trained network be ab le to class ify an input 
that it has not seen before? In order to give a quantitative answer 
10 this question. a common model assumes that all inpu ts. those 
from the training set and the new one, are produced independe ntly 
at random with the same probabi lity density from the network' s 
environment. Fixing the training set for a moment , the probability 
that the network will make a mistake on the new input defines the 
generalization error t{Dm)' Its lI\lerage. c. over many rea li zat ions 
of the training set. as a function of the number of examples gives 
the so-called /ell ming clIn'e. This will be the main quantit y of 
interest in the fo llowing. 

Clearly, E also depends on the specific a lgorithm that was used 
during the training. Thus. the calcu lation of t requires knowledge 
of the network weights genemted by the learn ing process. In gen· 
erat, these weights wi ll be complicated fu nct ions of the examples, 
and an explicit form will not be availab le in 1110st cases. 

The methods of statistical mechanics provide an upproach to thi s 
problem, which often enables an exact calcu lation of learning 
curves in the limit of a very large network. i. e., for N -+ 00. It may 
~m surpris ing that a problem wi ll simplify when the number of 
Its paramete rs is increased. However. thi s phenomenon is we ll 
known fo r physical systems like gases or liquids which consist of 
a huge number of molecules. Clearl y. the re is no chance of esti -

mat ing the complete microscopic state of the system. which is de­
scribed by the rapid ly fluctuating positions and velocities of all 
panicles. On the othe r hand, the description of the macroscopic 
state of a gas requires onl y a few parameters. like density. tem­
perature. and pressure. Such quantities can be calculated by suit· 
ably al'eragi1lg over a whole ensemble of microscopic states that 
are compatible with mac roscopic constraints. 

Applying similar ideas to neural network learn ing, the problems 
that ari se from specifying the detail s of a concrete learning algo­
rithm can be avoided. In the statistical mechanics approach. one 
studies the ensemble o f all networks that implement the same set 
of input/output examples to a given accuracy. In thi s way the typ· 
ica l genera li zation behavior of a neural network (in contrast to the 
worst or optimal behav ior) can be described. 

T he Percept ron 

In this section I will explai n thi s approac h for one of the simplest 
types of networks. the sing/e-/llyer perceptron (see PERCEPTRONS. 
AOALINES, AND BACK PROPAGATtON). A study of thi s network is 
not of purely academic interest. because the single- layer archi tec· 
ture is a substructure of multi layer networks, and many of the steps 
in the subsequent calculations also appear in the analysi s of more 
complex networks. Furthennore. by replac ing the input vector x 
with a suitable vector of nonlinear features. the perceptron 
(equipped with a spec ific learning a lgorithm) becomes a support 
vector machine, an ex tremely powerful learning device introduced 
by V. Vapnik and his collaborators (see SUPPORT VECTOR 
MAC HINES). 

The adjustab le parameters of the perceptron are the N weights 
W = (IV( I ) ... . , w(N». The ou tput is a weighted sum 

" = Fw(x) = SignC#' .,,(i)"(i») = sign(w . x) ( I ) 

o f the input..va lues. Since the length ofw can be normal ized witho ut 
changing the perfonnance. we choose II W 112 = N. 

The input/ou tput re lation in Equation I has a simple geometric 
interpretation. Consider the hyperplane w . x = 0 in the N· 
dimensional space of inputs. All inputs that are on the same side 
as ware mapped onto + I , those on the othe r side onto - I . Per­
ceptrons rea lize linearly separable class ification problems. In the 
following. we assume that the classification labe ls Uk are generated 
by some other perceptron with we ights WI ' the "teacher" percep­
tron. (A simple case of a student/teacher mismatch is di scussed 
later. ) 

The geometric picture immediate ly gives us an express ion for 
the generalization error. A misclass ifi cation of a new input x by a 
"student" perceptron w.I' occurs only if x is between the separating 
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