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  Few electromagnetic articulography (EMA) datasets are publicly available, and none have focused systematically on non-native accented
speech. We introduce a kinematic-acoustic database of speech from 40 (gender and dialect balanced) participants producing upper-Midwestern
American English (AE) L1 or Mandarin Accented English (MAE) L2 (Beijing or Shanghai dialect base). The Marquette University EMA-
MAE corpus will be released publicly to help advance research in areas such as pronunciation modeling, acoustic-articulatory inversion, L1-L2
comparisons, pronunciation error detection, and accent modification training. EMA data were collected at a 400 Hz sampling rate with
synchronous audio using the NDI Wave System. Articulatory sensors were placed on the midsagittal lips, lower incisors, and tongue blade and
dorsum, as well as on the lip corner and lateral tongue body. Sensors provide five degree-of-freedom measurements including three-
dimensional sensor position and two-dimensional orientation (pitch and roll). In the current work we analyze kinematic and acoustic variability
between L1 and L2 vowels. We address the hypothesis that MAE is characterized by larger differences in the articulation of back vowels than
front vowels and smaller vowel spaces compared to AE. The current results provide a seminal comparison of the kinematics and acoustics of
vowel production between MAE and AE speakers.
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INTRODUCTION 

Methods of pronunciation assessment and strategies for the modification of the pronunciation differences of 
second-language (L2) learners are limited by the paucity of object descriptions of accented speech. Increases in 
perceived accent are known to negatively impact judgments of employability (Carlson & McHenry, 2006) and 
adequacy (Gluszek & Dovidio, 2010). Medical environments, in particular, present a context within which non-
native pronunciation may lead to serious communication breakdowns, especially when listeners are elderly (Burda et 
al., 2009; Cameron & Williams, 1997). Improved outcomes in pronunciation assessment and modification strategies 
will bolster the achievement of non-native English speakers’ social and professional goals in the United States and 
facilitate communicative effectiveness with Americans who serve as students, colleagues, and patrons to non-native 
speakers of English. Pronunciation, while intuitively a simple function of one’s ability to perceive and produce 
native (L1) speech sounds with native-like quality, results from a complex interaction among multiple linguistic 
levels that reflects structural and functional differences between the L1 and L2 (J. E. Flege, 1981; Chen, 1999). The 
structural and functional differences between Mandarin and American English (AE) have predicted some of the 
known characteristics of Mandarin Accented English (MAE) and provide a basis for generating hypotheses 
regarding other factors that influence the extent of perceived accent and the optimal foci for pronunciation 
modification.  

While there is some controversy over the exact size and constituency of the Mandarin vowel system Chen, 
1999), the AE vowel system contains as many as twice the number of vowels resulting in a more densely populated 
vowel space. At least five Mandarin vowels appear to be phonetically similar to ones found in AE (the vowels in 
beat, bait, boot, boat, and bot). Yet other vowels in AE have no equivalents in Mandarin (e.g., the vowels in the 
words bit, bet, bat, bought, and hood).  Normative values for vowel formant frequencies and segment durations in 
upper-midwestern AE are well established (J. Hillenbrand, Getty, Clark, & Wheeler, 1995; Peterson & Barney, 
1952). Individual vowel durations in AE are either long or short, reflecting the linguistic contrast of tense/lax that 
does not exist in Mandarin. Vowel production in MAE appears to reflect the confluence of these L1-L2 differences 
with speakers showing particular difficulties producing accurate distinctions for closely-spaced, tense-lax 
contrasting vowels (e.g., vowels in the words “beat” versus “bit”) (J. E. Flege, Bohn, & Jang, 1997). Additionally, 
MAE may be characterized by a smaller vowel space than AE with shorter, and less variable vowel durations (Chen, 
1999; Chen, Robb, Gilbert, & Lerman, 2001). Across speakers, the amount of similarity to native speakers in the 
magnitude of the vowel duration contrast effects correlates with perceived foreign accent (J. E. Flege, 1993). While 
one might predict that MAE vowels common to both L1 and L2 may be most native-like, even for common vowels, 
MAE vowels appear to differ acoustically from AE vowels (Chen, 1999; Chen et al., 2001). Additionally, there is 
evidence that front vowels in MAE are acoustically more native-like than back vowels (Olagbaju, Barkana, & 
Gupta, 2010).  

The goal of this study is to provide preliminary comparisons of the perceptual, acoustic, and kinematic 
characteristics of vowel production in AE and MAE. Perceptual analyses of MAE vowel production are derived 
from phonetic transcripts. The consistency and equivalence of comparable vowels between MAE and AE is 
analyzed and the acoustic and kinematic characteristics associated with MAE are determined. While these L1-L2 
analyses are largely descriptive in nature, it is hypothesized that acoustic and kinematic measures will reveal some 
correspondence with the form and degree of perceived vowel pronunciation errors. Morever, two specific 
hypotheses will be addressed: 1) that MAE vowels are characterized by relatively smaller working space than AE 
vowels; and 2) that MAE back vowels are particularly distinct from native AE back vowels.   

 

METHODS 

Database 

Data for the current work were derived from a new database of matched acoustic and electromagnetic 
articulography (EMA) data. The Marquette University EMA-MAE Corpus will be released publicly to help advance 
research in areas such as pronunciation modeling, acoustic-articulatory inversion, L1-L2 comparisons, pronunciation 
error detection, and accent modification training. The corpus includes an L1 group of 10 male and 10 female native 
English (upper-midwestern American English) language speakers and an L2 group of 10 male and 10 female native 
Mandarin (two dialect regions, including Beijing accent and Shanghai accent Modern Standard Mandarin) Chinese 
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speakers. Articulatory data were collected on a Northern Digital, Inc. Wave Speech Research System with five 
degree of freedom (5 DOF) sensors (three dimensional position plus two dimensional sensor plane orientation-pitch 
and roll) at a 400 Hz sampling rate with synchronous acoustic records.  

Articulatory sensors in the database include the jaw, lower lip, upper lip, tongue body, and tongue tip placed in 
the midsagittal plane. In addition, there are two lateral sensors, one at the right corner of the mouth and one in the 
right central midpoint of the tongue body.  A bite plate reference plane calibration allows for the articulatory space 
to be defined relative to the individual speaker’s midsagittal and maxillary occlusal planes, and provides jaw and 
dental reference information. In addition, a palatal calibration for each speaker provides information about the shape 
of the hard palate. 

The data set includes approximately 45 minutes of data for each speaker, including word, sentence, and 
paragraph level speech samples. Text-prompted materials include Rogers (1997) list of minimally contrasting words 
with emphasis on the likely acoustic-phonetic confusions characteristic of MAE, a set of words and pseudo words 
covering the phonetic space of English vowels (J. Hillenbrand et al., 1995; Peterson & Barney, 1952), sentences 
from the TIMIT database (Garofolo et al., 1993) and Harvard Intelligibility Sentences (IEEE Subcommittee, 1969), 
sentences containing words with contrastive stress, and several paragraphs emphasizing aspects of speech such as 
intelligibility, breath group utilization, accented-English intelligibility, speaking rate, and segmental timing (T. H. 
Crystal & House, 1982; T. H. Crystal & House, 1990; T. H. Crystal & House, 1988; Green, Beukelman, & Ball, 
2004; Honorof, McCullough, & Somerville, 2000; Patel et al., 2012). 

Current Data 

Participants 

The current data were derived from a subset of ten male speakers from the Marquette University EMA-MAE 
Corpus.  L1 (AE) and L2 (MAE) groups were each comprised of five participants. All participants met the 
inclusionary criteria of being between the ages of 18-40, being native L1 or L2 speakers, and having no history of 
speech, language, or hearing pathology, no history of orofacial surgery (other than typical dental extractions), and no 
history of use of anticonvulsant, antipsychotic, or anti-anxiety medications (as these factors may affect motor 
performance).  Participants read and signed informed consent documents. All procedures and documentation were 
approved by the Institutional Review Board of Marquette University.  Each participant received a $50 cash incentive 
for participating in the approximately two hour data acquisition for the complete corpus. 

Procedures 

EMA sensors were adhered to the articulators using Periacryl™ adhesive (Glustich Inc., Delta, BC, Canada). To 
improve the duration and reliability of sensor adhesion, lingual sensors were bonded with small squares of silk 
between the sensor and lingual surfaces. Similarly, labial sensors had 2 mm diameter circles of Super Poligrip 
Strips® denture wax (GlaxoSmithKline Consumer Healthcare L.P.) and the dental sensor had a 3 x 5 mm strip of 
Stomahesive® periostomal barrier (ConvaTec, Skillman, NJ, USA) used as intermediaries to support adhesion.  

Participants were seated in a non-metallic chair (constructed primarily of polyvinyl chloride) with the field 
generator for the NDI Wave EMA system positioned approximately 5 cm from the head in left profile to assure that 
all sensors fell within the 300mm3 field setting of the EMA system. Berry (2011) has demonstrated that this setup 
tends to limit sensor position tracking errors to less than 0.5 mm during dynamic articulator movements. Participants 
wore a pair of plastic glasses frames with a 6DOF reference sensor attached at midline to allow for use of the EMA 
system’s automated head movement correction algorithm. A computer screen was positioned approximately 1 m 
away to display all stimuli. Data were collected in a sound-attenuating acoustic booth, with time-synced acoustic 
records obtained using a cardioid pattern directional condenser microphone (AKG® CS-1000; AKG Acoustics 
GmbH, Vienna, Austria) positioned approximately 1 m from the center of the electromagnetic field.  This 
microphone positioning was useful in minimizing microphone and EMA system interference. 

Data for the current work were obtained following a period of accommodation to the EMA sensors, during which 
participants spoke casually with the experimenter and lab staff and read a paragraph of text to become accustomed 
to the size and location of the text-prompted stimuli. Participants read 330 text-prompted words in single-word 
citation (Rogers, 1997; J. Hillenbrand et al., 1995). Words were blocked into approximately 25 words per data 
record. This blocking presentation allowed the experimenter to monitor EMA sensor adhesion intermittently and 
allowed participants to reposition themselves for comfort without making extraneous noise during recordings. The 
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first set of words took the /hVd/ form (J. Hillenbrand et al., 1995) and were produced twice by each participant 
(once spontaneously and once in imitation of the experimenter). This procedure was used because these were the 
only stimuli in the corpus that were not necessarily “real” words and pilot data suggested that both L1 and L2 
participants demonstrated some difficultly achieving the targeted vowels when reading these words.  

Vowel Data 

Vowels were analyzed in 166 words spoken by each participant. The vowels /i, ɪ, e, æ, u, ʊ, o, ɑ/ were analyzed 
in all CV and CVC form words in the database. Citation words with consonant clusters and multisyllabic forms were 
not included in the current analysis because these linguistic forms do not occur in Mandarin and were assumed to 
have a non-negligible impact on the measures of interest. Data presented in the current work are derived from three 
levels of analysis: 1) phonetic transcription; 2) first (F1) and second (F2) formant frequency measures and; 3) spatial 
positions (x,y) values of the tongue blade (TB) sensor (positioned midsagittally approximately 1 cm posterior to the 
tongue tip) and the tongue dorsum (TD) sensor (position midsagittally approximately 2 cm posterior to TB). 

Primarily broad phonetic transcriptions (diacritic markers were used sparingly) were completed by a graduate 
student in Speech-Language Pathology who had reasonable prior experience transcribing MAE and had the same 
dialect base as the AE controls. Transcriptions were analyzed for the occurrence of both vowel and consonant errors 
to gain estimates of L2 error patterns and intelligibility. While L1 participant productions were not phonetically 
transcribed, these recordings were assessed perceptually to assure an absence of spoken errors. 

Acoustic analysis and vowel boundary indexing were completed using the TF32 software (Milenkovic, 2005). 
Formant tracks were obtained using pitch-synchronous LPC (26 coefficients). All spectrograms were analyzed with 
a 300 Hz bandwidth, with a very low noise floor setting, and a frequency range around 5 kHz. F1 and F2 values 
were manually corrected within visualized windows of approximately 500 ms centered around each spoken word if 
notable tracking errors were identified by the experimenter. Vowel onset and offset boundaries were defined at the 
middle of the first and last glottal striations to extend clearly through F1 and F2 as observed with the aforementioned 
spectrographic settings. The temporal midpoint of the vowel was estimated from the defined vowel boundaries and 
the nearest four glottal pulses immediately flanking this midpoint were averaged to estimate the F1 and F2 values 
for each spoken vowel. Vowel space areas were determined using a “vowel multilateral” approach (Fox & Jacewicz, 
2008). For any given vowel space calculation, pertinent data were circumscribed by a convex hull. The area within 
was then determined using the general formula for the area within an irregular, convex polygon:  

 

 
2

)()...()( 1132322121 xyyxxyyxxyyxA nn �����
�  (1) 

where ),)...(,(),,( 2211 nn yxyxyx are the n vertices of the convex hull. 
Kinematic data were re-expressed for each participant within a local, anatomically-defined coordinate system 

using wax dental biteplate method. Based on a biteplate record, data were transformed to a coordinate space with 
origin defined at the tips of central maxillary incisors and with axes oriented to align with each participant’s 
maxillary occlusal and midsagittal planes. The resulting coordinate space reflects the anterior-posterior and inferior-
superior dimensions of the oral cavity working space within the second quadrant of a Cartesian space (Westbury, 
1994). Relative increases in the anterior and superior position of an EMA sensor are described by positive increases 
in the values of the x and y coordinates, respectively. Vowel-related EMA sensor positions were determined using 
the acoustically-defined temporal midpoints described above. For each vowel, the nearest four sensor position 
samples flanking the midpoint were averaged to estimate the position of the articulatory fleshpoint.  

 

RESULTS 

 Perceptual Analysis 

Figure 1 summarizes the results of a perceptual analysis based on broad phonetic transcription. Percent correct 
“words” (black bar) indicates the proportion of words that were perceived to contain no vowel or consonant errors. 
The values obtained for the five MAE participants were 57%, 57%, 52%, 45%, and 54% (in ascending order by 
participant number), consistent with relatively comparable levels of closed-set, word level intelligibility. All other 
bars in Figure 1 indicate the proportion of vowel replicates transcribed indistinguishably from the AE productions. 
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These data appear somewhat inconsistent across participants, suggesting some idiosyncrasy in vowel-specific 
proficiency.  Table 1 shows perceived vowel accuracy averaged across participants.  Back vowels are perceived to 
be slightly less accurate than front vowels, with vowel accuracy particularly diminished for low-back vowels.  

 
 
 

 
FIGURE 1. Summary of perceptual judgments of production accuracy based on phonetic transcriptions of 166 words spoken by 
MAE participants. Percent correct “words” indicates the proportion of words with broad phonetic transcriptions identical to AE 
participants (no perceived vowel and/or consonant errors). Percent correct values for each vowel indicate the proportion of words 
in which the vowel was perceived to be produced without error.  

 
 
 

TABLE 1. Perceived vowel accuracy averaged across participant. 
 Back Vowels Front Vowels 
High Vowels /u/ 81%  /i/ 90%  
 /ʊ/ 60%  /ɪ/ 78%  
 /o/ 62%  /e/ 74%  
Low Vowels /ɑ/ 54%  /æ/ 73%  

(Average) (64.25%)   (78.75%) 

 

Acoustic Analysis 

Figure 2 shows acoustic (F1-F2) data from all vowel replicates and all participants coded by group. AE vowels 
are indicated by yellow data points and MAE vowels are indicated by green data points. Convex hulls were 
generated for each participant to circumscribe their acoustic working space and are shown in blue (AE) and red 
(MAE). Table 2 shows calculated vowel space areas for all participants. The largest three vowel spaces were 
obtained for participants in the AE group and the smallest two vowel spaces were obtained for participants in the 
MAE group. Group identity is not consistently differentiated by vowel space, though averages across participants 
within group indicate that the vowel space of the MAE group is modestly smaller than the AE group.    
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FIGURE 2. Acoustic (F1-F2) data from all vowel replicates and all participants with convex hulls used to characterize vowel 
space. Data are coded by participant group.   

 
 

 TABLE 2. Vowel space - area within a convex hull circumscribing each participant’s acoustic data (kHz2). 
 AE Participants MAE Participants 
 0.647 (AE32) 0.624 (MAE25) 
 0.556 (AE33) 0.571 (MAE26)  
 0.796 (AE35) 0.529 (MAE27) 
 0.706 (AE38) 0.487 (MAE29) 
 0.569 (AE39) 0.618 (MAE31) 

(Average) (0.655) (0.566) 
 

 
Table 3 shows vowel space calculations completed for individual vowels and averaged across participants within 

group. These measures are intended to characterize group differences in vowel-specific acoustic variability. The 
difference column indicates the group differences within vowel. The consistently positive values in this column 
indicate that for all vowel contexts MAE participants produced vowels (on average) that utilized greater acoustic 
working space. The two largest vowel-specific differences between groups are the back vowels /u/ and /o/. The two 
smallest vowel-specific differences between groups occur for the vowels /æ/ and /ʊ/. These observations may be 
noteworthy since the vowels /u/ and /o/ occur in both Mandarin and English, while the vowels /æ/ and /ʊ/ occur 
only in English. As a consequence, while we might expect greater variability for unfamiliar (L2 only) vowels, 
acoustic variability appears to be greater for two vowels that are common to both languages.   
 
 

TABLE 3. Vowel space calculated within vowel averaged across participants with group differences (kHz2).  
Vowel AE Participants MAE Participants Difference 

/i/  0.027 0.049 0.022 
/ɪ/ 0.043 0.083 0.040 
/e/ 0.071 0.118 0.047 
/æ/  0.046 0.060 0.014 
/u/ 0.061 0.167 0.106 
/ʊ/ 0.033 0.053 0.020 
/o/ 0.106 0.208 0.102 
/ɑ/ 0.025 0.062 0.037 
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Kinematic Analysis 

Figure 3 shows kinematic data from all corner vowel replicates for all participants coded by group. High vowels 
/i/ and /u/ are indicated by yellow squares for AE and green circles for MAE. Low vowels /ɑ/ and /æ/ are 
indicated by blue, upward-pointing triangles for AE and red, downward-pointing triangles for MAE. The two data 
clouds shown reflect data from two different lingual fleshpoints. Positions for front vowels were obtained from the 
TB sensor (approximately 1 cm posterior to the tongue tip). Positions for back vowels were obtained from the TD 
sensor (approximately 2 cm posterior to the TB sensor along the tongue surface). Apparent overlap in contrasting 
colors may be indicative of less distinctive fleshpoint positions between high-low vowel contrasts. In this regard, 
overlap between red and green data points appears more substantial than overlap between blue and yellow data 
points. This observation is consistent with relatively reduced articulatory contrast along the high-low vowel 
dimension and seems particularly apparent for the MAE back vowels. Additionally, fleshpoint positions for all MAE 
vowels appear somewhat higher (larger y) than those for AE vowels and MAE front vowels may be positioned 
somewhat posteriorly (smaller x) to the AE front vowels.       

 

 
FIGURE 3. EMA sensor positions for the corner vowels for all participants. AE participants are shown in yellow (high vowels) 
and blue (low vowels). MAE participants are shown in green (high vowels) and red (low vowels). The two clouds of points were 
obtained from the tongue blade sensor (front vowels) and tongue dorsum sensor (back vowels).   
 

 
TABLE 3. EMA sensor positions for corner vowels averaged (SD) within group (mm). 

Vowel AE-x AE-y MAE-x MAE-y 

/i/  -17.91(3.38) 1.82(2.27) -19.76(1.67) 3.55(4.05) 

/æ/  -21.29(4.43) 0.01(2.51) -24.12(3.18) 2.54(4.33) 

/u/ -48.92(4.01) 10.14(4.41) -47.13(5.75) 10.80(5.30) 

/ɑ/ -49.24(4.35) 0.52(3.05) -49.81(6.31) 4.56(4.56) 
 

 
Table 3 shows average EMA sensor positions and standard deviations for corner vowels within group. These 

data are generally consistent with the qualitative observations made above. The spatial distinctiveness of fleshpoint 
positions for high-low vowel contrasts is reflected in y-value differences. For front vowels, AE participants have an 
average high-low contrast distance of 1.81 mm (/i/y -/æ/y ), while MAE participants have a distance of 1.01 mm. 
For back vowels, AE participants have an average high-low contrast distance of 9.62 mm (/u/y -/ɑ/y ), while MAE 
participants have a distance of 6.24 mm. This relatively smaller distance between the articulatory positions for 
different MAE vowels is coupled with somewhat greater position variability (larger SD), particularly for back 
vowels. Moreover, these data are consistent with the observation made from Figure 3 that all MAE vowels are 
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produced with higher articulatory positions on average and front vowels are produced with more posterior 
articulatory positions. Taken together, these data are consistent with the interpretation that MAE talkers produce 
vowels in a smaller articulatory working space using higher and more posterior tongue positions combined with a 
tendency toward relatively larger vowel-specific variability compared to AE talkers. 
 

DISCUSSION 

 
While the current results are essentially descriptive and reflect preliminary analyses of data from a limited 

number of participants, the findings nonetheless offer a useful extension of the limited existing data on MAE vowel 
production. Chen et al., (2001; Chen, 1999) analyzed F1and F2 measures of 11 vowels from 40 MAE and 40 AE 
talkers and found significant differences in both familiar and unfamiliar vowels as well as relatively reduced overall 
vowel spaces for MAE talkers. Their acoustic data are consistent with the prediction that MAE tongue positions tend 
to assume a more posterior (“backed”) position compared to AE talkers. Our findings are consistent with these 
expectations. Acoustic vowel space tends to be somewhat reduced for MAE talkers compared to AE talkers. Our 
kinematic data are consistent with the expectation that the tongue is positioned more posteriorly in MAE speech than 
in AE speech. Additionally, our data suggest that tongue positions are higher on average for MAE talkers, resulting 
in a compression of the high-low vowel contrasts that is particularly evident for back vowels. Furthermore, this 
compression of the overall vowel space appears to be combined with relatively larger vowel-specific ranges of 
variation, suggesting greater overlap among MAE vowel targets compared to AE.   

Perceptual data from the current work appear to be consistent with acoustic and articulatory findings. 
Specifically, the five MAE talkers produced vowels that decreased somewhat in perceived accuracy from high to 
low and front to back positions. Thus, low vowels were judged to be less consistent than high vowels and back 
vowels were judged to be less consistent than low vowels. MAE participants varied between 45-57% in the number 
of words produced without perceived errors. Vowel errors made a non-negligible contribution, suggesting that the 
characteristics of MAE vowel production contribute to reduced speech intelligibility.  

While the finding of a reduced overall vowel space was expected based on the literature that has previously 
addressed this issue, the finding of increased vowel-specific working spaces for MAE talkers appears to be novel. 
An important consideration in the current work is that vowel measures were taken from CV and CVC words 
containing a variety of consonants, some of which do not occur in Mandarin. Thus, compared to previously existing 
data that are limited to the /hVd/ context, the current work also embraces the impact of diverse phonetic 
environments on MAE vowel production. Effects of phonetic context on vowel formants are significant (J. M. 
Hillenbrand, Clark, & Nearey, 2001) and time-varying patterns of formant change may be critical to speech 
perception (Strange, Jenkins, & Johnson, 1983). The finding of relatively increased vowel-specific working spaces 
may belie differences in coarticulatory behavior that would not be apparent in phonetically neutral environments 
such as /hVd/. Since Mandarin is populated by numerous diphthongs and triphthongs (double and triple vowel 
sequences) while AE has only five, this apparent variability in monophthong production may reflect a MAE 
tendency toward more “dynamic” vowel productions that is motivated by primary learning of Mandarin. Given these 
considerations a critical extension of the current work is to examine the characteristics of the time-varying acoustic 
and kinematic patterns. Such an extension of the current work, when coupled with an analysis of the complete set of 
talkers from the Marquette University EMA-MAE Corpus, will allow for a more in-depth examination that can be 
reasonably subjected to statistical testing to help further differentiate MAE and AE vowels. 

CONCLUSIONS 

Perceptual, acoustic, and kinematic analysis of vowel production for five AE talkers and five MAE talkers are 
consistent with the expectation that the MAE vowel space is reduced relative to AE. This reduction is likely a 
reflection of more posterior and more superior tongue positions for MAE talkers and is coupled with relatively 
increased variability in vowel-specific working space in MAE compared to AE. Perceptual data suggest that vowel 
errors make a non-negligible contribution to reduced speech intelligibility. Important extensions of the current work 
include the examination of more complete acoustic and kinematic event patterns and the examination of a larger 
pool of participants to allow for robust statistical assessment.  
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