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Introduction and Motivation: Micromechanical resona-
tors have a wide variety of applications, including 
biological and chemical sensing, which often require the 
device to operate in a viscous liquid environment in which 
energy dissipation and fluid inertia play a key role in the 
device’s performance. Therefore, many investigations of 
MEMS resonators in liquids have focused on how to 
improve the quality factor (Q) by reducing energy losses 
to the surroundings through the use of new device 
geometries or unconventional modes. In the present study 
we explore potential advantages of an “all-shear 
interaction device” (ASID), consisting of a microdisk 
supported by two tangentially oriented microcantilevers, 
or “legs” (Fig. 1a). When the device is excited by 
imparting a harmonic axial strain ε to the legs (e.g., via 
electrothermal actuation), an in-plane rotational oscillation 
of the disk will ensue. This mode of vibration will engage 
the fluid only through shear-type interaction, as the 
motions of all surfaces of the ASID will have no normal 
component – hence, our use of the term “all-shear 
interaction device.” This type of interaction is expected to 
minimize fluid motion and, thus, viscous dissipation and 
fluid inertial forces, thereby yielding higher values of 
resonant frequency and Q in liquids. Another advantage of 
the ASID in sensors applications is the potentially large 
functionalized surface area afforded by the disk. To inves-
tigate the potential advantages of such a device and the 
effects of system parameters on the resonant behavior, a 
simple theoretical model is developed herein to quantify 
the damped “eigenproperties” of the system. More specif- 

            
        (a)    (b) 

Fig. 1. (a) Schematic of ASID Concept; (b) Silicon disk 
resonator with tangential support beams [3] (© 2010 IEEE).   

ically, the primary objective is to derive simple analytical 
expressions relating the (in-fluid) natural frequency and 
corresponding quality factor to the geometric and material 
parameters of the device/fluid system for the case of a free 
vibration in the mode indicated in Fig. 1a. Such 
information is also extremely relevant when the device is 
driven as a resonator, as the forced-vibration resonant 
response will reflect the underlying eigenproperties of the 
system. 
     The primary motivation for the present study is that 
previous theoretical and experimental studies of in-plane 
flexural vibrations of microcantilevers in water [1,2] 
showed that Q values approaching 100 are possible for 
such devices, but further improvements are limited by the 
fluid resistance on the microcantilever’s smaller faces 
(those moving in their normal directions). The proposed 
design of Fig. 1a virtually eliminates this problem. A 
second motivation is of the ex post facto variety: the ASID 
modeling described herein was undertaken without 
knowledge of two very relevant recent papers [3,4] in 
which designs similar to that of Fig. 1a, shown in Fig. 1b, 
were fabricated and tested, and proof-of-concept was 
demonstrated through Q measurements in excess of 300 in 
heptane. Because those studies were experimental and 
included limited modeling (in-vacuum modal analysis 
using COMSOL was performed in [4]), the present study 
may provide some theoretical basis for the encouraging 
experimental results and shed some light on how one 
might achieve optimal designs of ASID-type resonators. 

Equation of Motion, Natural Frequency, Q Factor:  
The major assumptions employed in the present model are 
(a) the disk is rigid and the legs are elastic; (b) the legs are 
much smaller than the disk so that their mass and fluid 
resistance are negligible relative to their counterparts for 
the disk; (c) the legs provide only axial force to the disk; 
(d) the local fluid resistance on all surfaces of the disk is 
given by the classical solution of Stokes’s second problem 
for a rigid plane oscillating harmonically in a viscous 
fluid; and (e) the vibration amplitude is small (nonlinear 
effects are negligible). These assumptions enable one to 
derive the equation of motion for the free vibration of the 
idealized model of Fig. 1a in terms of the disk rotation

( )tθ θ= , 0t tω≡  being a dimensionless time: 
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ω and  are the in-fluid natural frequency and its normal-
ized counterpart, the latter rendered dimensionless by 

0 ( / 2 ) /L Eω π ρ≡  (i.e., by the in-vacuum fundamental 
axial frequency of a single leg of density ); a and  are 
the radius and density of the disk; , , and  are the 
length, width, and Young’s modulus of the legs;  is the 
device thickness; and  and  are the density and 
viscosity of the fluid (Fig. 1a). The system is described 
completely by two parameters:  ζ  (fluid resistance) and α  
(normalized disk area). Assuming that  is insensitive to 
the damping term in (1), the stiffness and ( -dependent) 
mass in (1) dictate that  must satisfy  

       ( ) ( )4 3

3

2 16 0ζω ω
π απ

+ − =   ,            (3) 

which may easily be solved numerically for general values 
of α  and ζ . In practice, however, ζ  is often so small that 
the truncated Taylor’s series solution to (3) may be used: 
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Placing (4) into (1) permits one to calculate the damping 
ratio, ξ, of the system, and thus the quality factor, Q:  
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where 2 2 3 1/ 2
0 ( / )fL Eη ρ ρ≡ is a characteristic length that in-

corporates all of the model’s material properties. From (4) 
and (5) the relative drop in ω (with respect to vacuum) is  
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Equations (4)-(6) are explicit analytical results for the in- 

 
Fig. 2. Comparison between Q predictions using Eq. (5) of 

current model and experimental data [4].  

fluid values of natural frequency, Q, and the relative 
decrease in frequency of the ASID in the free-vibration 
mode considered. Thus, they also furnish corresponding 
estimates for the forced-vibration case when the ASID is 
resonating in the same mode. (Simply interpret “natural 
frequency” as “resonant frequency,” i.e., the exciting 
frequency causing peak response.)  
Discussion: Equations (5) and (6) indicate that higher Q 
and smaller |Δω/ω| may be achieved by (a) decreasing L0, 
i.e., decreasing  or  or increasing the modulus or 
density of the ASID material, or (b) increasing the leg 
stiffness by increasing b or h or decreasing L. Of 
particular note are (a) the small influence of the liquid on 
the natural frequency as given by (4) or (6), and (b) the 
fact that (5) implies the existence of a relative maximum 
for Q with respect to disk size (and (6) a relative minimum 
for |Δω/ω|) at the theoretically optimal value of a/h=2: 

  
1/ 2 1/ 4

max 1/ 4/ 2
min0 max

2 1,
24a h

h bQ Q
L L Q

ω
ωπ=

⎛ ⎞ Δ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

.  (7a,b) 

The optimality of a/h=2 to yield maximum Q is somewhat 
supported by experimental results [4] showing that, of 23 
specimens tested of similar design as in Fig. 1b and 
spanning the range a/h=[2.5, 20], the highest Q 
corresponded to a/h=2.5. (Smaller a/h values were not 
considered.) Moreover, when the results of formula (5) are 
compared with limited Q data for a/h=2.5 [4], Fig. 2 
shows that (5) not only captures the qualitative trend with 
respect to b/L but also yields excellent quantitative 
estimates for Q, provided that the third point is deemed an 
“outlier.” Thus, the simple model proposed here may be 
useful in helping one to understand the behavior of ASID 
resonators of the type considered and in achieving optimal 
designs for such devices. This may be especially valuable 
given that these devices have recently been shown to yield 
Q values that are unprecedented in liquids [4].  
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Analytical Formula (Present Study)
Experiment (Rahafrooz and Pourkamali, 2011)

a/h=2.5 (a=50 μm, h=20 μm); b=2 μm ; 
L=11, 17, 24, 42 μm ; 
Si: E=130 GPa, ρ=2330 kg/m3

 ; 
Heptane: ρf=679.5 kg/m3,η=0.000386 Pa-s 
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