
Marquette University
e-Publications@Marquette
Mathematics, Statistics and Computer Science
Faculty Research and Publications

Mathematics, Statistics and Computer Science,
Department of

11-1-2016

A Browser-based IDE for the MUzECS Platform
Omokolade Hunpatin
Marquette University

Casey O'Hare
Marquette University

Ryan Thomas
Marquette University

Dennis Brylow
Marquette University, dennis.brylow@marquette.edu

Published version. Published as part of the Proceedings of the International Conference on Distributed
Multimedia Systems, 2016. DOI and Publisher link. © 2016 Knowledge Systems Institute. Used with
permission.

https://epublications.marquette.edu
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
http://dx.doi.org/10.18293/DMS2016-043
http://ksiresearchorg.ipage.com/seke/dms16.html

A Browser-based IDE for the MUzECS Platform

Omokolade Hunpatin Casey O’Hare Ryan Thomas Dennis Brylow
Marquette University

MSCS Department – Cudahy Hall
1313 W. Wisconsin Ave.
Milwaukee, WI 53233

firstname.lastname@marquette.edu

Abstract—We report on a scalable, portable, and secure visual
development environment for programming embedded Ar-
duino platforms with Chromebooks in a successful secondary
school computer science curriculum. Our web-based environ-
ment is part of the larger MUzECS project, an inexpensive re-
placement module for the Exploring Computer Science (ECS)
course being widely deployed in United States high schools.
Students use MUzECS to gain a deeper understanding of
computing, through a set of blocks which provide appropriate
abstractions for working with low-level hardware.

MUzECS improves upon the existing curriculum module
by reducing the hardware cost by an order of magnitude,
while still preserving the key ECS pillars of computer science
content, student inquiry and classroom equity. Programming
with visual blocks provides a more attractive tool for intro-
ductory courses than traditional approaches, and yet enables
high-impact exploration activities such as building a series of
embedded musical instruments.

The current work combines and modifies several existing
tools to eliminate technical barriers on low-cost platforms like
Chromebooks, such as the reliance on special block-based
toolchains, remote compilation servers, or multi-stage transfers
for student code.

1. Introduction

According to the US Bureau of Labor Statistics, nearly
500,000 new jobs will be created in computing over the
course of the next 10 years [14]. Computer Science drives
innovation throughout much of the world economy, but it
remains marginalized throughout primary and secondary
school in many countries. Exploring Computer Science
(ECS) [5] is a secondary school course which is currently
being adopted in many parts of the United States. ECS
was designed from the outset to address persistent gaps
in representation by women and minority ethnic groups
observed in the computing field [10]. It is targeted to early
high school students (ages 14-16), and is designed to work
well in traditionally under-resourced schools. However, the
Achilles’ Heel of ECS has proven to be its sixth and final
curriculum module, which has, until the latest revision,
relied on engaging, but costly and proprietary, robotics kits.

The MUzECS Project [2] was launched to provide a
low-cost alternative to the ECS robotics module, and has
been field-tested by hundreds of students in a dozen dif-
ferent school classrooms since its deployment. The physical
platform which MUzECS operates on is a combination of an
Arduino Leonardo or an Arduino Uno - inexpensive, com-
mercially available credit-card sized embedded computers -
and a “shield” - a circuit board extension that plugs into the
top of the Arduino board to provide additional peripheral
hardware. The Arduino is commercially available, but we
produce the MUzECS shields in-house and provide them
at cost. In contrast with current offerings for ECS module
6, our platform is open-source and can be easily extended
to work with a variety of specializations within secondary
school computer science, all at a very low price.

Recent trends in educational technology have led to a
growing number of schools investing in Chromebooks [8],
thin client laptops that run a Linux variant and the Chrome
internet browser. For schools, Chromebooks represent in-
expensive machines with lower maintenance costs and few
of the device driver, application compatibility and software
virus problems inherent in other types of personal computer.
For computer science educators, Chromebooks encourage
reliance on cloud-based services, but present new technical
barriers to installing traditional software development tools,
such as integrated development environments (IDEs), com-
pilers, and debuggers.

The first release of the MUzECS programming dialect
leveraged the prior Ardublock system, which could oper-
ate on any platform capable of running Java applications.
Chromebooks, due to their very nature, do not allow such
applications to run.

In this work, we present a powerful, web-based graph-
ical programming environment for Arduinos and MUzECS
shields, capable of running on stock Chromebooks as well
as virtually any platform compatible with the Chrome web
browser. Our solution consists of a browser-based IDE for
Google Chrome, and a Chrome extension which allows for
client-side execution of users programs. This is portable to
more platforms than prior work, scales to a larger number
of students with reduced load on webservers, and closes
several usability and security issues with prior work.

DOI reference number: 10.18293/DMS2016-043
112

1.1. Initial Solution

In designing a block-based IDE for wide deployment in
high schools, it is necessary to ensure that many students can
use the tool simultaneously (scalability), and that they do
not access other students’ programs (uniqueness/security.)
Finally, we must ensure that our system can be used on the
wide variety of platforms used in high schools (portability).

MUzECS’s first software platform was based on Ar-
dublock, a Java-implemented graphical development envi-
ronment which translates blocks directly to Arduino code.
Ardublock is a stable add-on to the widely used Ar-
duino IDE, and it handles the uniqueness and scalabil-
ity problems effectively, as all code is executed on the
user’s own machine. Furthermore, since Java is a platform-
independent programming language, this solution was quite
versatile, capable of running on traditional Windows, Mac,
and Linux OSes. Schools in the Milwaukee area, however,
have been gradually adopting Chromebooks, a low-cost and
lightweight laptop. Unfortunately, Chromebooks are only
able to run the Chrome browser and Chrome Applications,
and cannot install general purpose software like the Ar-
dublock toolchain.

1.2. Arduino

The Arduino is a small microcontroller board with a
universal serial bus (USB) plug to connect to your computer
and a number of connection sockets that can be wired to
external electionics such as motors, relays, light sensors,
laser diodes, loud speakers, microphones, and more. They
can either be powered through the USB connection from the
computer, from a 9V battery, or from a power supply [12].

Our MUzECS shield attaches to the GPIO pins on the
Arduino Uno or Leonardo. Our MUzECS shield consists of
four LEDS, four buttons, a piezo speaker, and a distance
ping sensor (Figure 1). We made blocks to manipulate all
of the peripherals on our MUzECS shield.

Figure 1. Peripherals for the MUzECS shield board

For a detailed breakdown of the capabilities of our differ-
ent hardware platforms, see section 4.3: Hardware Support.

2. Related Work

Several platforms share the overall goals of the MUzECS
project. Earlier versions of the ECS curriculum used LEGO
Mindstorms robotics kits, which while highly versatile,
were prohibitively expensive for many schools implement-
ing ECS. Version 7 of the ECS curriculum will use more
cost effective Edison Robots[3]. Like MUzECS, the Edison
Robotics platform has a visual language designer, EdWare,
where users assemble and connect blocks in a graphical
environment to program. The Edison Robots themselves are
LEGO robotics kits which are designed to move around.
Like MUzECS’ software, EdWare is free, and the Edison
Robotics hardware is substantially cheaper than the LEGO
mindstorms, ranging from $33-$50 per kit[3].

Code.org’s CS Discoveries course is expected to make
use of the Adafruit Circuit Playground[1], an all-in-one
Arduino platform with similar peripherals to the MUzECS
hardware, plus several attractive improvements, for an aston-
ishing price below $20 per kit. At this writing, the Circuit
Playground hardware is not yet widely available, (and the
proprietary design cannot be replicated by third parties,) the
full accompanying curriculum has not yet been released, the
block-based tools for programming are progressing through
beta versions, and pilot teachers have not yet received
training for deploying the curriculum next spring.

Both the Edison and Circuit Playground alternatives
were made available late enough in 2016 to miss the teacher
training and deployment windows in the spring. The earliest
opportunity for head-to-head comparison of these curricula
in real ECS classrooms will thus be in spring 2017. In
contrast, our work has been publically available for ECS
teacher use since spring of 2015, and now will also be
available on Chromebooks for the coming school year.

With MUzECS, Edison, and Circuit Playground all
available for less than $60 per kit, the primary criteria for
teachers to differentiate upon is the power and flexibility
of the platforms. To that end, while MUzECS is the most
expensive of the three, it is also the most open-ended with
the clearest path forward for subsequent high school courses
that would teach more advanced concepts, transition to text-
based programming langauges, or be extendible with new
shield hardware peripherals.

OzoBlockly [4] is another web IDE based upon Blockly.
The OzoBlockly IDE pairs with the proprietary “Ozobot
Bit,” a small robot, which can move atop a surface using
autonomous LEDs, sounds and infrared proximity sensing.
OzoBlockly has a unique and creative way to load a program
to the OzoBot Bit. Instead of using the serial port on a
computer, the OzoBot Bit can simply be placed on the
screen of the computer and identify a sequence of flashing
lights as a program. This allows for a very simple upload
process to a device for the user and expands functionality
to mobile devices that otherwise could not program external
hardware. OzoBlockly focuses on small games to entice

113

younger users, while MUzECS approaches the user from
a musical perspective. Additionally, the Ozobot Bit does
not allow for direct human interaction, unlike our MUzECS
shield.

3. MUzECS Blocks

Our MUzECS block dialect was made to be translated
to code that would run on our Arduino with peripherals.
Designing the blocks has proven to be a key challenge in
crafting MUzECS. We wanted our blocks to be easy to use,
visually appealing, and we wanted each to manipulate a sin-
gle peripheral on the MUzECS shield. The MUzECS blocks
were made not only with the goal of teaching core computer
science concepts, but also with the goal of facilitating the
natural transition from block to text-based programming.

3.1. Our blocks

We based our visual programming dialect on Google’s
open-source, visual-block based programming environment
called Blockly [9]. Our block-based interface works as
follows: users attach blocks together in an online interface,
in the Google Chrome browser. All blocks which the users
assemble must be placed inside a main control block which
reads “program” and has two slots: “setup” and “loop”. The
“setup” slot is a place for the user to initialize different
hardware components on their board. The “program” slot is
where the user assembles the blocks for logic and instruc-
tions.

Figure 2. Example program which uses both the setup and loop slots of
the program block

When approaching this problem, we had the option of
doing all setup in the background, silently, or making it
explicit. We made the decision to make setups explicit to
help facilitate the transition to text-based languages, where
initialization is a key concept. We should note that, when
taking this approach, we chose to include simple error
messages if the initialization is not performed. This stands in
contrast to a programming language like Scratch, which does

not include error messages. We go even further with the idea
of initialization with the keyboard blocks, where “Set up
Keyboard”, “Update Keyboard”, and “Key pressed” are all
individual blocks. We chose to separate these actions each
into their own functions rather than shadowing the behavior
of the computer. We believe that these three separate blocks
better help students understand the nuances of initialization
and different objects. Another design decision that we made
was to create drop-down menus for most of our operators,
so that after a block has already been placed in the interface,
it can be easily changed to a different operator without
reconstructing the entire section.

Figure 3. Clicking on the drop-down menu on the arithmetic operator lets
the user select another operator

We have also designed our block-based interface to run
in sequence, from top to bottom, and not to make our
language event-driven. For more on this, see section 3.3 -
Transition to Text-Based Languages.

We re-implemented the MUzECS dialect of Ardublock
and some original Ardublock blocks to make the platform
browser-based. Blockly’s JavaScript API was used to cre-
ate blocks, which already provided mechanisms for snap-
ping blocks into place and generating code from blocks.
Each drawer of blocks has a distinctive organizing color;
the blocks that we implemented fall into several drawers:
Control, ECS, Variables/Constants, Math operators, Logic
operators, Communications, Advanced Pins and Advanced
Code.

The “Control” drawer contains blocks which represent
control structures commonly found in text-based program-
ming languages: loops, if-then statements, and functions.
Our goal with each of these blocks was to introduce students
to control structures that they may use if they continue
with programming. The “ECS” drawer contains the blocks
for manipulating components of our Arduino hardware. We
have blocks for: turning LEDs on and off, playing musical
notes, playing notes for specific durations, reading the dis-
tance sensor, detecting button presses, reading host computer
keyboard input, and reading the accelerometer values.

Blocks from the Control drawer and the ECS drawer are
used in virtually every program that a student creates, so we
paid extra attention to making these blocks carefully, and
abstracting appropriately. The variables/constants drawer
contain blocks that are used to create constants and variables
to be used throughout the program. The math and logic
operators drawers contain blocks to perform mathematical
operations, get random numbers, and compare quantities. As

114

students progress and become more advanced programmers,
they often use these blocks more frequently. Finally, the
communications and advanced drawers contain blocks that
can be used for debugging and more advanced operations -
few students use these blocks, but we included them in case
the instructors or especially advanced students would like
to explore the interface on a lower level.

In the world of programming, there are always mul-
tiple ways to approach a problem. We wanted to assure
that students using our block-based interface have multiple
approaches available to them, so we built a diverse set of
blocks into our interface. For instance, we have a “Play
note” and a “Play note for a given time” block, and a “Play
frequency” and “Play frequency for a given time” block -
four different approaches to the same task. This kind of
block diversity can be found throughout our interface. We
aim for our interface to give students a minimal number
of blocks, with a maximal amount of expressive power. We
seek to strike a balance where students can express complex
actions with simple blocks, and they don’t have to labor
over a complex block-based interface to perform relatively
complex tasks. A prime example of this principle in action
is the “Get Distance” block, which abstracts a substantial
amount of JavaScript code into a single block.

3.2. Visualization of Functionality

Figure 4. MUzECS blocks with pictures that are associated with the
function of the block.

Our top design criteria for the language is that it be
simple to use for introductory high school students. Many
blocks in MUzECS have pictures associated with them that
are related to functionality. For example, “turn LED 1 on”
block has a bright red LED picture on it, and “turn LED 4
on” block has a bright green LED picture on it. Likewise,
“Button Pressed button #” has a picture of a hand pressing
a button and “No Tone” block has a picture of a speaker
with no sound waves coming out of it.

Blocks are generally colored according to functional
category, such as green for I/O operations, and black for
the Advanced Code block that allows users to inject raw
text-based code into their program.

3.3. Transition To Text-Based Languages

Designing a system such that it facilitates a transfer of
knowledge is an important, but not an easy task. Many
MUzECS blocks were created not only because they are
necessary to make our visual language complete, but also
because they are similar to necessary control structures
found in popular text-based languages (TBLs). For example,
we have opted to make our programming language primarily
structured around a single thread of control, despite the fact
that JavaScript, our underlying language, lends itself more
to an event-driven paradigm. This deliberate design decision
was made because the dominant Arduino toolchains do not
include support for multi-threading runtimes.

This decision was a crucial part of our design. It is
noteworthy to contrast our model with another popular
block-based language, Scratch, which aims to be an easier
alternative in teaching people how to program. Scratch is
developed at the Massachusetts Institute of Technology and
is primarily event-driven. Scratch has been noted to fall
short in facilitating the knowledge transfer to text-based
languages, and its design as an event-driven language has
been cited as a key reason why this is the case [2][7].
Another concept in TBLs which Scratch has struggled to
establish is that of initialization [7]. We believe that using
a single thread of control will help students to understand
initialization, but we have also made an additional effort
to teach initialization by creating setup blocks for certain
hardware components, as mentioned earlier.

4. Chrome-based Arduino

4.1. Curriculum

Our curriculum is built on the existing secondary school
Exploring Computer Science (ECS) curriculum. The ECS
curriculum has proven to be a successful way to teach com-
puter science to underrepresented groups in the past [11],
and we specifically designed our curriculum in line with
the goals and methods of ECS. The ECS curriculum abides
by three guiding values: equity, inquiry, and CS content.
ECS strives to be equitable by verifying that students from
all backgrounds have a fair shot at learning about com-
puter science. In practice, this means ECS teachers must
choose assignments which all students have an (approxi-
mately) equal chance at understanding - and not choosing
assignments that require students to understand the rules of
chess, or giving extra credit on a test for a question about
a sci-fi movie, for example. ECS also holds inquiry as a
guiding value, meaning that, in classrooms, students and
teachers should always be focused on discovering and asking
questions, instead of constantly making assertions. Finally,
ECS holds Computer Science content as an important tenant
of the course. This may seem obvious, since the course is,
after all, a computer science course. But its emphasis as
only one of three guiding values is perhaps the most telling
aspect of how ECS is meant to be taught. ECS is meant to be
as much equitable and full of inquiry as it is about computer

115

science. This plays into the design of our system as well. We
strive for our system not to just to teach computer science
to students, but to be equally accessible for all students,
and for it to instill a yearning for more computer science
education.

We are confident that MUzECS fits the bill that ECS
provides, which is exciting, given the past success of ECS.
Simply put, we know our curriculum works, because we
build it on the shoulders of a proven course.

4.2. A Scalable Platform

Our foremost concern when approaching this problem
was developing a software system which was scalable. The
central issue that we needed to solve was that of compiling
the Arduino code; previously, we hosted the server which
compiled the programs and sent the compiled code back to
the users. We were then faced with a choice: on one hand,
we could stick with the same model and throw more re-
sources behind the compilation server. If we created a decent
distributed system, we might have been able to outsource
our compilation servers to a cloud-services-provider such
as Microsoft or Amazon. In retrospect, this probably would
have been a viable option. We reasoned, however, that we
would be doing better if we could completely reinvent the
model; it would be best if there was no server-side com-
pilation at all. We know that networks and communication
are inherently prone to eventual failure, so we think it best
to remove them from the process, or minimize their role, if
possible.

Our research revealed that it is, in fact, possible to
program an Arduino without compiling Arduino code. If
the Arduino is flashed with Standard Firmata [6] firmware,
any client-side programming language which has an imple-
mentation of Firmata can be used to program an Arduino.
Programming languages like Python, Perl, Ruby, JavaScript,
Java, and more all have libraries for Firmata. We chose
to use JavaScript, and more specifically, the Johnny-Five
robotics framework, to program our Arduino.

Johnny-Five works by executing the JavaScript code
directly on the host machine - the code doesn’t compile
down to Arduino code. The JavaScript code is executed
using Node.js - a JS runtime which is specifically designed
to build scalable network applications. As the program is
being executed on the host machine, basic I/O instructions
are transmitted to the Arduino board. With the Arduino
Leonardo, the board is required to be connected to the
computer while the program is running, and the instructions
are sent to the Arduino via USB Serial. One should note
that when we take this approach, the Arduino must be
connected to a computer to run programs - we are unable
to upload programs and run them from a battery. We have
found, however, that, in the classroom, this point is more or
less negligible - students almost always have their Arduino
plugged in to their computer anyways. Finally, requiring the
Arduino to be physically tethered does not hinder student
development because the MUzECS shield does not have any
moving parts.

Figure 5. Design of our new system with Johnny-Five

Combining the different parts of this system was a
relatively simple process. We used our existing block-based
interface (Figure 4), which runs in the Chrome Application,
and wrote the block definitions such that they translated
directly to JavaScript code which satisfies the Johnny-Five
framework. Our new architecture also works completely
offline, once the application is downloaded.

Altogether, we believe our current software platform sat-
isfies our original three considerations. It ensures uniqueness
and security - we know that a student is only capable of
running programs that they wrote on their own computer, on
their own Arduino, because it must be physically connected.

Our platform is considerably more scalable than it ever
has been. The burden of compiling programs has been
shifted from the server to each user’s computer. If a substan-
tial influx of schools begin using our platform, we believe
that our newly designed system will be able to manage the
load with great efficiency. Finally, we believe our software
platform is highly portable - perhaps as portable as is even
possible for a modern software system. It is capable of
running on any computing system that can download Google
Chrome - meaning that our IDE can run on Chromebooks,
Windows systems, Macs, and even the majority of Unix
systems - again, virtually every computing system that is
in use by modern high schools. By creating this software
system, we believe we have combined the positive aspects
of the previous versions of MUzECS and introduced new
ones to make a secure, scalable, and portable platform.

4.3. Hardware Support

When the MUzECS platform was first launched, the only
hardware that we supported was our own MUzECS shield
(Figure 6) for the Arduino Leonardo.

Our shield was designed with a few considerations in
mind; the foremost was to be cost-efficient. This is because
we sought to design a cheap alternative to the most common

116

Figure 6. MUzECS shield

sixth module of ECS, which is incredibly expensive. Our
design, uses a small set of peripherals - a speaker, four
LEDs, four buttons, and a distance sensor. In order to avoid
driving our cost up, we elected to build a third-party distance
sensor into our design, which, consequently, does not have
wide hardware or software support.

All of the hardware on our original MUzECS shield
is still functional, even in our new model. We did, how-
ever, have to extend the firmata protocol in order to write
JavaScript code for our distance sensor (refer to section
3.4 - Extension to Firmata Protocol for more). Still, the
scope of what our shield hardware can do is somewhat
limited. It should be noted that while the MUzECS package
isn’t the cheapest on the market, it has a wider range of
hardware compatibility than other, similarly priced, options.
The Edison Robot - a new installment in ECS curriculum
v7 - is ten dollars cheaper than MUzECS, but it lacks the
versatility of the Arduino Leonardo. Additionally, since the
Edison Robot is a new addition to ECS, we have been
unable to observe its effectiveness within the curriculum. We
will be unable to present any sort of comparison between
MUzECS’ effectiveness and the Edison’s effectiveness until
Spring 2017, when teacher’s use the platforms side-by-side
in the classroom.

The Adafruit Circuit Playground (CP) is another op-
tion which has unique peripherals and is cheaper than our
MUzECS package. Unlike the Arduino Leonardo, the CP
(which is based on the Arduino Flora) has all of the
necessary peripherals built-in. On the Circuit Playground,
a circular board less than 2 inches in diameter, there are 10
RGB LEDs (all capable of emitting any RGB color), a piezo
speaker, a triple-axis accelerometer, a light sensor, a sound
sensor, a thermometer, and 8 capacitive touch pads which
also act as general purpose input/output (GPIO) pins. The
CP provides another low-cost alternative to more expensive
robotics kits, and we plan to fully support the board with a
set of blocks and curriculum in the near future.

4.4. Extension to Firmata Protocol

The open-source Firmata project provides a flexible
protocol for remotely controlling a variety of embedded
platforms from a tethered personal computer [13]. When
an Arduino is imaged with the Standard Firmata sketch,
a variety of programming language libraries can be used
to issue platform-dependent instructions to the embedded
hardware via a serial connections such as USB. The existing
Firmata infrastructure was already suitable to manage most
of the peripherals of the MUzECS hardware.

In this work, we have extended the Firmata protocol
to support the MUzECS hardware ultrasonic distance sen-
sors, a low-cost analog circuit not generally found on other
platforms. Leveraging Firmata in our design has a number
of advantages. The protocol is lightweight, requiring only
3 data payload bytes to set one or all the digital pins on
the board [13]. Additionally, the Standard Firmata is the
default firmware installed on every Arduino board, so it
is readily available to students for upload to the Arduino.
Our extended version of the Standard Firmata firmware,
which we call MUzECS Standard Firmata, is similarly open-
sourced, and included upload instructions for instructors and
students.

Use of the Firmata protocol allows us to remove server-
side compilation of the Arduino code, using the client local
machine to run MUzECS block programs on the Arduino.
The Standard Firmata is C++ Arduino code that runs on the
Arduino and follows the client-server model, in which the
Firmata sketch is the server running on the Arduino, and a
client running on the user’s computer issues commands to
the embedded board.

Under the hood, the client sends SysEx messages to the
Firmata server, which then executes actions on the Arduino.
The standard command SysEx messages begin with a start
byte (0xF0) and end with an end byte (0xF7). In between
the start and end byte are 7-bit bytes which contain the
commands one wants to send to the Firmata server. (See
revelant segment of Firmata Protocol grammar in Figure 7.)

The Johnny-Five middleware doesn’t directly support the
MUzECS hardware ultrasonic distance sensor, but can pass
extension commands through the existing Standard Firmata
interface.

Our extension to the Firmata code base and protocol
adds direct support for the MUzECS ultrasonic range finder.
A new command type, GetDistance, was added to the ex-
isting SysEx command with byte 0x02. The client sends a
GetDistance SysEx command to the MUzECS Standard Fir-
mata firmware. After the firmware recieves the GetDistance
command, it runs the code that activates the distance sensor.
When the distance code completes, it sends the GetDistance
SysEx command back to the client with the distance integer
split in three 7-bit bytes. Among other low-level details,
the Firmata code for handling the ultrasonic distance sensor
performs smoothing of the data using a moving average,
an important noise-cancelling step that allows block-based
programs to produce useable musical input data.

117

<SysExMessage> ! <StartSysEx> <SysExCommand> <Data>* <EndSysEx>
<StartSysEx> ! 0xF0

<SysExCommand> ! 0x00 - 0x7F
<Data> ! 0x00 - 0x7F
<EndSysEx> ! 0xF7

Figure 7. A BNF grammar of the format of SysEx messages

5. Future Work

One of our biggest concerns that we sought to address
throughout this entire project was making MUzECS modular
and reusable. First, we created our software to be modular by
being able to support multiple hardware platforms. With new
boards come new opportunities to modify our curriculum
and deliver it in new and exciting ways. Furthermore, our
open-source collaborators on this project have developed
ways to communicate with Arduino via bluetooth, wi-fi,
and even raw TCP sockets. These are all exciting possible
extensions that we could make to MUzECS in the future.

Beginning in the spring of 2016, we deployed MUzECS
into several pilot high schools in the Milwaukee area. We
have been collecting survey data regarding students’ usage
of blocks. In the future, we will need to analyze this survey
data and make appropriate improvements to our platform, on
both the hardware and software side. It may also be a good
idea to build into the system a mechanism for collecting
block usage data automatically as we scale it out even
further.

6. Conclusion

MUzECS’s original goal was to create a cost-effective,
block-based platform for the sixth module of the Exploring
Computer Science curriculum. This paper presents technical
solutions that extend this work to an increasingly common
device in school classrooms, the Chromebook. The resulting
system retains the carefully tuned block-based programming
environment that has been specially adapted to hardware
and curriculum widely used to broaden participation in
introductory computer science courses. The contributions of
this new version include improved scalability and security
over previous browser-based solutions, with the advantage
of greater flexibility for expansion to more advanced course-
work than several alternative systems that will be piloted in
ECS classrooms in spring of 2017.

Prior work studying the effectiveness of student learners
transitioning from block-based languages to text-based lan-
guages has identified shortcomings related to understanding
of initialization. Our current system includes decisions in
the block language deliberately designed to address these
problems, smoothing the transition to text-based.

The next steps in this work are to complete data collec-
tion from actual ECS classrooms that are using MUzECS on
Chromebook, and to compare usability and student learning
with alternative platforms.

Acknowledgements

The MUzECS project is supported in part by the Na-
tional Science Foundation, grants CNS-1339392 and ACI
1461264. Our thanks to Rick Waldron and the Johnny-Five
contributors, and Luis Montes for his contributions to the
Chrome implementation. The anonymous VLC reviewers
provided extensive feedback that improved the final version
of this paper.

References

[1] Adafruit. Circuit playground, 2016.
https://www.adafruit.com/product/3000.

[2] M. Bajzek, H. Bort, O. Hunpatin, L. Mivshek, T. Much, C. O’Hare,
and D. Brylow. Muzecs: Embedded blocks for exploring computer
science. In Blocks and Beyond Workshop (Blocks and Beyond), 2015
IEEE, pages 127–132, Oct 2015.

[3] Edison Robotic.
https://meetedison.com.

[4] Evollve, Inc. Ozobot and OzoBlockly, 2016.
http://ozoblockly.com/.

[5] Exploring Computer Science. ECS v7.0, 2016.
http://www.exploringcs.org/curriculum.

[6] Firmata Project. Firmata firmware for arduino, v2.5.3.
https://github.com/firmata/arduino.

[7] D. Franklin, C. Hill, H. A. Dwyer, A. K. Hansen, A. Iveland, and
D. B. Harlow. Initialization in scratch: Seeking knowledge transfer.
In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education, SIGCSE ’16, pages 217–222, New York, NY,
USA, 2016. ACM.

[8] Google. Chromebook.
http://www.google.com/chromebook/.

[9] Google Blockly.
http://developers.google.com/blockly.

[10] J. Margolis. Stuck in the Shallow End: Education, Race, and Com-
puting. The MIT Press, 2008.

[11] J. Margolis, J. Goode, and G. Chapman. An equity lens for scaling:
A critical juncture for exploring computer science. ACM Inroads,
6(3):58–66, Aug. 2015.

[12] M. Simon. Programming arduino. In Programming Arduino, pages
7–8, Oct 2012.

[13] H.-C. Steiner. Firmata: Towards making microcontrollers act like
extensions of the computer. In NIME, pages 125–130, 2009.

[14] United States Bureau of Labor Statistics.
http://www.bls.gov/ooh/computer-and-information-technology/home.
htm.

118

	Marquette University
	e-Publications@Marquette
	11-1-2016

	A Browser-based IDE for the MUzECS Platform
	Omokolade Hunpatin
	Casey O'Hare
	Ryan Thomas
	Dennis Brylow

	tmp.1517504472.pdf.ZoY5s

