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NATURE OF MATHEMATICAL MODELING TASKS FOR SECONDARY 
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This study investigated the nature of written modeling tasks reported by instructors of required 
courses in five secondary mathematics teacher education programs. These tasks were analyzed based 
on a framework addressing potential cognitive orientation (simple procedures, complex procedures, 
and rich tasks) and purpose (epistemological, educational, contextual, and socio-critical modeling) 
of the tasks. Our analysis suggests that most tasks included questions of more than one cognitive 
orientation and more than half of the tasks were coded as contextual modeling. We also found that 
tasks that were coded as contextual modeling offered opportunities for future teachers to engage with 
questions at all levels of cognitive orientation. The nature of several modeling tasks, along with the 
ideas for refining the current frameworks, are presented for future implications of analyzing and 
developing modeling tasks.  

Keywords: Modeling, Teacher Education-Preservice, Algebra and Algebraic Thinking 

Connecting educational theory to practice is critical in supporting future secondary mathematics 
teachers to develop the skills and understanding necessary to enact effective mathematical modeling 
tasks. The Common Core State Standards for Mathematics included modeling as a mathematical 
practice and content standard; modeling is described as a full iterative process used to solve rich 
mathematical tasks (NGO & CCSSO, 2010). However, the meaning and purpose of mathematical 
modeling has been found to vary widely in both theory and practice (e.g., Anhalt & Cortez, 2015; 
Kaiser & Sriraman, 2006). To connect current theories to practice, we applied two frameworks with 
distinct perspectives to analyze the nature of modeling tasks. We collected tasks as part of a larger 
research project Preparing to Teach Algebra (PTA), which investigated opportunities secondary 
teacher education programs provide for future secondary teachers to learn about mathematical 
modeling. As we focus on the nature of these tasks, we answer the question, “What is the nature (i.e., 
potential modeling purpose and cognitive orientation) of modeling tasks reported by secondary 
teacher preparation programs?”  

Theoretical Framework 
In this secondary analysis of the larger PTA study, we use two frameworks proposed to 

characterize intended modeling purposes (Kaiser & Sriraman, 2006) and cognitive orientations 
(White & Mesa, 2014) of mathematical tasks. Kaiser and Sriraman (2006) conducted a historical 
analysis of research papers focused on mathematical modeling and, based on their findings, proposed 
five categories of purposes of mathematical modeling. Of their five categories, we focus on four we 
found relevant to our analysis: epistemological, educational, contextual, and socio-critical modeling. 
Kaiser and Sriraman described epistemological modeling as mathematical modeling with the purpose 
of developing mathematical theory. Educational modeling occurs when “real-world examples and 
their interrelations with mathematics become a central element for the structuring of teaching and 
learning mathematics” (p. 306). In this type, modeling is used explicitly as a tool for teaching and 
learning other mathematical content. Contextual modeling occurs when the purpose of modeling is to 
develop further understanding of modeling itself by engaging in the modeling process to solve a task 
embedded in a real-world context. Socio-critical modeling supports “critical thinking about the role 
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of mathematics in society” (p. 306); with this purpose, mathematical modeling is used as a tool to 
critically investigate and potentially change real-world situations that are relevant to students.  

White and Mesa (2014) proposed a framework for differentiating potential cognitive orientations 
of mathematical tasks. The framework includes three main categories: simple procedures, complex 
procedures, and rich tasks. Simple procedures are defined as those tasks requiring students to draw 
on factual or procedural knowledge; they must “remember factual information” or “recall and apply 
procedures” (p. 14). Students are told which fact or procedures to use, and they must remember them 
and apply them in the task. Complex procedures include tasks requiring students to draw on 
procedural and conceptual knowledge: to “recognize and apply procedures” (p. 14). In these tasks, 
students are not told explicitly which procedures to use, but instead are expected to draw on their 
understanding to choose an appropriate procedure and apply it in the task. Finally, rich tasks include 
any tasks that prompt students to write explanations of procedures, to interpret, compare, or make 
inferences, or to analyze, evaluate, or create situations or structures. Rich tasks involve high-level 
mathematical thinking and offer students more opportunities to make their own decisions when 
solving tasks.  

Method  
As a part of the larger PTA study, we focused on the potential cognitive orientations and purposes 

of modeling for nine written tasks involving mathematical modeling in instructional materials 
collected from five universities. Because almost all tasks included multiple subquestions in which 
each of them varied in terms of richness, we defined our coding unit as a subquestion rather than a 
task. We coded subquestions in terms of potential cognitive orientation (i.e., simple, complex, rich) 
and purpose of modeling (i.e., epistemological, educational, contextual, socio-critical). Two 
researchers each coded the questions independently, and resolved all discrepancies. When we coded 
a question, we also considered questions prior to the one we were coding. For instance, a question 
was coded as rich the first time it appeared because it prompted students to analyze. But if similar 
questions follow in later sections, those later questions might not present new challenges to students. 
Answering similar questions lowers the cognitive orientation by becoming a routine procedure, thus, 
we coded such a question as either simple or complex rather than rich.  

Results 

Cognitive Orientation of Mathematical Tasks 
Table 1 presents an analysis of task purposes (first column) and cognitive orientations (remaining 

columns). If a task is designated in one of the seven categories (e.g., R, SC) in Table 1, it means that 
its subquestions were coded by the cognitive orientation(s) in that category. For example, the Traffic 
Flow task is under the category of “Simple & Rich (SR)”. This means that all questions in this task 
were coded as either simple or rich, with at least one in each category. 

Overall, three out of nine tasks included subquestions that fell into only one cognitive orientation. 
For example, all questions from the task Bezier’s Curve were coded as simple. One question asks to 
find x(0) in terms of the constants a0, a1 and a2 if x(t) = a0 + a1t + a2t2. Even though the overall task 
presented an interesting mathematical problem, each smaller question required using simple 
procedures (e.g., substituting 0 for t). Only one task (i.e., Traffic Flow) included questions that fell 
into exactly two cognitive orientations. Most tasks included a variety of questions, with at least one 
in each of the three cognitive orientations. For instance, the Wooody’s Film Frame task focused on 
using computer animators to tell stories about changes in Wooody’s position using linear 
transformations. One question that was coded as simple asked to compute the product of two 
matrices. Another question stated, “Wooody discovered a pensieve at (1, -2). What is the linear 
transformation here?” Though this question required students to analyze, students were asked similar 
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questions immediately before, but because the question does not specify a particular procedure, we 
coded it as complex. At the end of the task, a question asked students to write an ending to the story 
of Wooody’s moving and to describe how to illustrate it. This question involved creating and 
analyzing a new situation and was coded as rich. We found that most tasks included questions from 
more than one cognitive orientation and thus provided students with multiple cognitive orientations 
in modeling tasks.  

Table 1: Task Richness According to Questions: Simple (S), Rich (R), Complex (C) 
 S C R SC SR CR SCR 
Educational Modeling        

Traffic Flow      X  
Heat Transfer  X      
Bezier’s Curve X       

Contextual Modeling        
Wooody’s Film Frames       X 
Google Page Rank Algorithm       X 
Movie Money Making       X 
Ferris Wheel Problem       X 
Egg Launch Problem       X 

Epistemological Modeling        
Quadratic and Its Secondary Difference   X     

Socio-critical Modeling        
(none)        

Modeling Purpose of Mathematical Tasks 
Overall, we coded three tasks as educational modeling, five as contextual modeling, and one as 

epistemological modeling. We saw no socio-critical modeling tasks. Although we were open to 
coding individual questions within a task with multiple purposes (similar to our cognitive orientation 
analysis), we did not find any with multiple purposes. Subquestions presented in the Traffic Flow 
task, which we coded as educational modeling, provided detailed guideline for preservice teachers 
(PSTs) to solve the problem that embedded specific concepts in linear algebra (e.g., write the 
augmented matrix). The instructor’s main purpose seemed to be for PSTs to practice linear algebra 
skills rather than building their own models. The Google Page Rank Algorithm task, on the other 
hand, involved a realistic context and provided PSTs an opportunity to explore different structures of 
web networks; thus we coded it as contextual modeling. Specifically, this task provided opportunities 
for PSTs to investigate how Google uses a stochastic matrix along with a Markov chain and its 
steady-state vector to determine the PageRank of each page on the website. The Quadratic and Its 
Secondary Difference task was coded as epistemological modeling because of the potential for PSTs 
to generate relationships between quadratics and second differences through modeling. We found 
that more than half of the tasks addressed realistic problems and sometimes instructors used 
modeling mainly to practice the newly learned concepts. Another intriguing point was that tasks 
coded as Contextual Modeling included subquestions of all types of cognitive orientations.  

Discussion and Conclusion 
In this study, we described the use of two theoretical frameworks addressing purposes and 

cognitive orientations of tasks to support the analysis and potential construction of effective 
modeling tasks. We noticed that tasks’ subquestions coded as “rich” can entail varying degrees of 
richness. We saw three ways to structure a potential rich task in our data. One way was to give an 
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open question (e.g., in the Egg Launch task, one question asks students which of the three teams will 
win the contest and to explain why) without providing subquestions for scaffolding. The second way 
is to give a series of questions with each question building on the previous ones. The open question 
appeared at the end of the task. We argue that even though both tasks included open questions, the 
first type was richer than the second because the first type required PSTs to create their own process 
to reach the final goal. The third way is a combination of the first two cases: starting with an open 
question, providing a series of questions, and restating the same open question at the end of the task. 
The benefit of the last type is to provide students with differentiated instruction because the instructor 
can provide the opportunity for students to either explore the task or follow the scaffolding questions 
depending on students’ academic needs. 

White and Mesa (2014) argued that the “rich task” category included the subcategories: 
Understanding, Applying Understanding, Analyzing, Evaluating, and Creating. They mapped these 
five categories across four types of knowledge: factual, procedural, conceptual, and meta-cognitive. 
In our analysis, we found that tasks in which students were asked to create a mathematical object or 
process were much richer than tasks where students were asked to simply explain a result or process. 
As we see different levels of cognitive demand within the “rich task” category, we suggest that 
instructors pay attention to these differences and present various opportunities for students to 
experience different types of rich tasks.  

In terms of our analysis on purposes of modeling, we found no tasks to be socio-critical in nature 
and would recommend that PSTs are given opportunities to design and modify such tasks. PSTs need 
to encounter thinking processes, such as those described by Cirillo, Bartell, and Wager (2016) when 
they converted a modeling task “Dairy Queen” into a task involving social justice. PSTs can also be 
benefited by posing modeling problems as they lean about characteristics of modeling problems that 
address social justice issues (I, Jung, & Son, 2017). Opportunities for PSTs to learn about modeling 
can be enhanced when instructors consider different modeling purposes and cognitive orientation of 
tasks described in our study. 
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