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A novel state-dependent control approach for continuous-time nonlinear systems with general performance criteria is pre-
sented in this paper. This controller is optimally robust for model uncertainties and resilient against control feedback gain
perturbations in achieving general performance criteria to secure quadratic optimality with inherent asymptotic stability
property together with quadratic dissipative type of disturbance reduction. For the system model, unstructured uncertainty
description is assumed, which incorporates commonly used types of uncertainties, such as norm-bounded and positive real
uncertainties as special cases. By solving a state-dependent linear matrix inequality at each time, sufficient condition for the
control solution can be found which satisfies the general performance criteria. The results of this paper unify existing results
on nonlinear quadratic regulator, H∞ and positive real control. The efficacy of the proposed technique is demonstrated by
numerical simulations of the nonlinear control of the inverted pendulum on a cart system.
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1. Introduction
Optimal control of nonlinear systems is traditionally char-
acterized in terms of Hamilton Jacobi Equations (HJEs).
The solution of the HJEs provides the necessary and suf-
ficient optimal control condition for nonlinear systems.
Furthermore, when the controlled system is linear time-
invariant and the performance index is linear quadratic
regulator (LQR), the HJEs reduced to Algebraic Riccati
Equations (AREs). As for H∞ nonlinear control problem,
the optimal control solution is equivalent to solving the cor-
responding Hamilton Jacobi Inequalities (HJIs) Basar and
Bernhard (1995). However, HJEs and HJIs, which are first-
order partial differential equations and inequalities, cannot
be solved for more than a few state variables. In the past
few years, it has been shown that the problems of quadratic
regulation and H∞ nonlinear control can be approached by
the state-dependent Riccati equation (SDRE) and nonlin-
ear matrix inequality (NLMI) techniques (Cloutier, 1997;
Cloutier, D’Souza, & Mracek, 1996; Huang & Lu, 1996).
The state-dependent linear matrix inequality (LMI) con-
trol of nonlinear systems, as pointed out in Wang and Yaz
(2009), Wang, Yaz, and Jeong (2010), and Wang, Yaz, and
Yaz (2010, 2011) synthesizes a controller to achieve mixed
nonlinear quadratic regulator (NLQR) and H∞ control
objectives.

∗Corresponding author. Email: xwang@siue.edu

Dissipative control for linear systems has also received
considerable attention over the past two decades. The con-
cept of dissipative systems was first introduced by Willems
(1972a, 1972b), and further generalized by Hill and Moylan
(1975, 1976, 1980), playing an important role in systems,
circuits and controls. The theory of dissipative systems gen-
eralizes the basic tools including the passivity theorem,
bounded real lemma, Kalman–Yakubovich lemma and cir-
cle criterion. Dissipativity performance includes H∞ per-
formance, passivity, positive realness and sector-bounded
constraint as special cases. Research addressing the prob-
lems of H∞ and positive real control systems can be
found in Zhou and Khargonekar (1988) Doyle, Glover,
Khargonekar, and Francis (1989), Haddad and Bernstein
(1991), Sun, Khargonekar, and Shim (1994), Safonov,
Jonckheere, Verma, and Limebeer (1987) and Shim (1996).
Control of uncertain linear systems with L2-bounded struc-
tured uncertainty satisfying H∞ and passivity criteria has
been tackled in Khargonekar, Petersen, and Zhou (1990)
and Petersen (1987). More recent development involving
the quadratic dissipative control for linear systems problem
has been tackled in Tan, Soh, and Xie (2000) and Xie, Xie,
and De Souza (1998).

In this paper, we further consider the problem of opti-
mal, robust and resilient LMI control of continuous-time
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nonlinear systems with general performance criteria. The
controller is robust for model uncertainties and resilient for
control gain perturbations. As for uncertain nonlinear sys-
tems, we consider a general form of L2-bounded uncertainty
description, without any standard structure, incorporating
commonly used types of uncertainty, such as norm-bounded
and positive real uncertainties as special cases. The purpose
behind this novel approach is to convert a nonlinear system
control problem into a convex optimization problem which
is solved by state-dependent LMI. The recent development
in convex optimization provides very efficient means for
solving LMIs. If a solution can be expressed in a LMI
form, then there exist optimization algorithms providing
efficient global numerical solutions (Boyd, Ghaoui, Feron,
& Balakrishnan, 1994). Therefore, if the LMI is feasible,
the LMI control technique provides asymptotically stable
solutions satisfying various general performance criteria.
We further propose to employ general performance criteria
to design the controller guaranteeing the quadratic sub-
optimality with inherent stability property in combination
with dissipativity type of disturbance attenuation. The gen-
eral performance criteria are a generalization of the NLQR,
H∞, positive realness and sector-bounded constraint; there-
fore, the results of the paper unify existing control results
and provide a more general control design framework.

The paper is organized as follows. In Section 2, we
present the general performance criteria including the
performance of NLQR, H∞, positive realness and sector-
bounded constraint. Section 3 presents the state-dependent
LMI-based control for nonlinear systems achieving general
performance criteria. Finally, the inverted pendulum on a
cart is used for applying the algorithm to an under-actuated
robot with nonlinear dynamics to examine the effectiveness
and robustness of the new approach in Section 4.

2. System model and general performance criteria
analysis

The following notation is used in this work: �+ stands
for the set of non-negative real numbers and �n stands
for the n-dimensional Euclidean space. x ∈ �n denotes
n-dimensional real vector with norm ‖x‖ = (xTx)1/2, where
(·)T indicates transpose. �n×m is the set of n × m real
matrices. In is the n × n identity matrix. A ≥ 0 for a sym-
metric matrix denotes a positive semi-definite matrix. L2 is
the space of finite dimensional vectors with finite energy:∫ ∞

0 |x(t)|2dt < ∞. Let Ln
2e be the extended space of L2

space defined by

Ln
2e = {f : f is a measureable function : �+ → �n, with

× property that FT f ∈ L2 for all finite T ∈ �+}

where FT f (t) =
{

f (t), 0 ≤ t ≤ T
0, T < t

is called the truncation

function on �+ with values in �n. The inner product in

this space is defined as 〈u(t), v(t)〉T = ∫ T
0 u(t)v(t)dt, for u,

v ∈ Ln
2e.

Consider the following nonlinear dynamical system
equation and performance output equation

ẋ = f (x(t), u(t), w(t)),

= (A(x, t) + �A(x, t))x(t) + (B(x, t) + �B(x, t))u(t)

+ (E(x, t) + �E(x, t))w(t),

= (A + �A)x + (B + �B)u + (E + �E)w, (1)

z(t) = g(x(t), w(t)) = C · x + D · w, (2)

where x(t) ∈ �n is the state variable of the dynamical sys-
tem, u(t) ∈ �m the applied input, w(t) ∈ �p the L2 type of
disturbance, z(t) ∈ �r the performance output function, f , g
the smooth real vector functions, A ∈ �n×n, B ∈ �n×m, E ∈
�n×p, C ∈ �r×n and D ∈ �r×p the state-dependent coeffi-
cient matrices, and �A ∈ �n×n, �B ∈ �n×m and �E ∈ �n×p

the time-varying uncertainty matrices.
It is assumed that the state feedback is available and the

state feedback control input is given by

u(t) = (K(x, t) + �K (x, t))x(t) = (K + �K )x. (3)

Introducing the following quadratic energy supply func-
tion E: Lr

2e × Lp
2e × �+ → � associated with the system

equations, defined in Hill and Moylan (1975, 1976, 1980):

E(z, w, T ) = 〈z, Qz〉T + 2〈z, Sw〉T + 〈w, Rw〉T, (4)

where Q ∈ �r×r , S ∈ �r×p, R ∈ �p×p are the chosen weigh-
ing matrices. Next, from the definition of dissipativity (Hill
& Moylan 1975, 1976, 1980), we have

Definition 1 Given matrices Q ∈ �r×r , S ∈ �r×p, R ∈
�p×p with Q, R symmetric, the system (1) and (2) with
energy function (4) is said to be (Q, S, R) dissipative if for
some real function β(·) with β(0) = 0. The physical mean-
ing for β(·) is the stored energy at the initial time, given by
the initial condition x0.

E(z, w, T ) + β(x0) ≥ 0, ∀w ∈ L2e, ∀T ≥ 0. (5)

Furthermore, if for some scalar α > 0,

E(z, w, T ) + β(x0) ≥ α〈w, w〉T, ∀w ∈ L2e, ∀T ≥ 0. (6)

The system (1) and (2) is said to be strictly (Q, S, R)

dissipative.

Theorem 1 Consider the quadratic function V = xTPx >

0, matrices Q ∈ �r×r , S ∈ �r×p, R ∈ �p×p with Q, R sym-
metric, M ∈ �n×n, M > 0, N ∈ �m×m, N > 0 with M, N
symmetric, the control of nonlinear system (1) and (2) will
achieve mixed NLQR and dissipative performance if the
following condition holds:

V̇ + xTMx + uTNu

− (zTQz + 2zTSw + wTRw) < 0, ∀T ≥ 0. (7)
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Proof By integrating Equation (7) from 0 to T , we have∫ T

0
(zTQz + 2zTSw + wTRw) dt >,

∫ T

0
xTMxdt +

∫ T

0
uTNudt + V (x(T ))

− V (x(0)), ∀T ≥ 0. (8)

Letβ(x0) = V (x(0)), V (x) = xTPx, V (x(T )) ≥ 0, Equation
(8) implies∫ T

0
(zTQz + 2zTSw + wTRw)dt + β(x0) > 0, ∀T ≥ 0,

(9)
which is the condition of (Q, S, R) dissipative. By adding
the terms xTMx + uTNu, we include the NLQR control per-
formance into the original (Q, S, R)-dissipative criteria. �

Remark 1 Notice that both H∞ and passivity are spe-
cial cases of (Q, S, R) dissipativity. The special cases are
summarized as follows:

Case 1 Q = −I , S = 0, R = γ 2I , the strict (Q, S, R) dis-
sipativity reduces to H∞ design (Doyle et al.,
1989). The overall control design satisfies mixed
NLQR–H∞ performance.

Case 2 Q = 0, S = I , R = 0, the strict (Q, S, R) dissipa-
tivity reduces to strict positive realness (Sun et al.,
1994). The overall control design satisfies mixed
NLQR–strict positive realness performance.

Case 3 Q = −θ I , S = (1 − θ)I , R = θγ 2I , the strict (Q,
S, R) dissipativity reduces to mixed H∞ and posi-
tive real performance design, when θ ∈ (0, 1). The
overall control design satisfies mixed NLQR–H∞–
positive real performance.

Case 4 Q = − I , S = 1
2 (K1 + K2)

T, R = − 1
2 (KT

1 K2 + KT
2

K1), where K1 and K2 are constant matrices of
appropriate dimensions, the strict (Q, S, R) dis-
sipativity reduces to a sector-bounded constraint
(Gupta & Joshi, 1994). The overall control design
satisfies mixed NLQR–sector-bounded constraint
performance.

Before introducing the main result of the paper, the
following model of unstructured uncertainties is introduced.

Assumption 1 The following general form of L2-bounded
unstructured uncertainties is considered:

�A�T
A ≤ γAI ,

�B�T
B ≤ γBI ,

�E�T
E ≤ γEI ,

�K�T
K ≤ γK I ,

(10)

for ∀x ∈ �n and t ≥ 0.

3. State-dependent LMI control
Lemma 1

ABT + BAT ≤ αAAT + α−1BBT. (11)

This can be proven easily by considering

(α1/2A − α−1/2B)(α1/2A − α−1/2B)T ≥ 0. (12)

Also, by choosing A and B matrices as A = [
aT

0

]
and B =[ 0

bT

]
, we have[

0 aTb
bTa 0

]
≤

[
ζaTa 0

0 ζ−1bTb

]
. (13)

Lemma 2 Denote X = P−1 for positive definite matrix
P > 0, then the following equality always holds:

X ṖX = −Ẋ . (14)

This can be proven easily by considering

0 = d
dt

(I ) = d
dt

(PP−1) = d
dt

(P) · P−1 + P · d
dt

(P−1).
(15)

Remark 2 Since in the presentation below, P will be used
to describe the energy content, which needs to decrease due
to the asymptotic stability requirement, X = P−1 matrix
will be increasing in time. Therefore, we have X ṖX =
−Ẋ < 0.

The following theorem summarizes the main results of
the paper:

Theorem 2 Given the system Equation (1), performance
output Equation (2) and control Equation (3), if there exist
matrices X = P−1 > 0 and Y for all t > 0, such that the
following state-dependent LMI holds:⎡

⎢⎢⎣
ϒ11 ϒ12 X Y T

∗ ϒ22 0 0
∗ ∗ ϒ33 0
∗ ∗ ∗ ϒ44

⎤
⎥⎥⎦ < 0, (16)

where

ϒ11 = XAT + AX + Y TBT + BY + BBT

+ [γA + 2γB + γE]I ,

ϒ12 = E − XCTQD − XCTS,

ϒ22 = −DTQD − 2DTS − R + I ,

ϒ33 = −{I + [3 + λmax(N )]γK I + M + CTQC}−1,

ϒ44 = −{I + N 2 + N }−1. (17)

Then the inequality (7), which guarantees mixed NLQR
and dissipative performance, is satisfied. The nonlinear
feedback control gain is given by

K = Y · P. (18)
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Proof In the proof below, the time and state argument will
be dropped for notational simplicity. By applying system
and performance output Equations (1) and (2), and state
feedback input Equation (3), the performance index can be
formed as follows:

xT{A + �A + (B + �B)(K + �K )}TPx + wT[E + �E]TPx

+ xTP{A + �A + (B + �B)(K + �K )}x
+ xTP[E + �E]w
+ xTṖx + xTMx + xT[K + �K ]TN [K + �K ]x
− [Cx + Dw]TQ[Cx + Dw] − 2[Cx + Dw]TSw

− wTRw < 0. (19)

Equivalently,

[
xT wT

]



[
x w

]T = [
xT wT

] [

11 
12
∗ 
22

] [
x
w

]
< 0,

(20)
where


11 = Ṗ + [A + �A + (B + �B)(K + �K )]TP

+ P[A + �A + (B + �B)(K + �K )] + M

+ [K + �K ]TN [K + �K ] + CTQC,


12 = P[E + �E] − CTQD − CTS,


22 = −DTQD − 2DTS − R. (21)

Pre-multiplying and post-multiplying the matrix 
 with
the block diag{X , I }, where X = P−1, Y = K · P−1 = KX .
Then the following matrix inequality holds:

[
�11 �12
∗ �22

]
< 0, (22)

where

�11 = X [A + �A + (B + �B)(K + �K )]T

+ [A + �A + (B + �B)(K + �K )]X + X ṖX

+ XMX + X [K + �K ]TN [K + �K ]X + XCTQCX,

�12 = [E + �E] − XCTQD − XCTS,

�22 = −DTQD − 2DTS − R. (23)

Applying Lemma 2 and Remark 2, we have X ṖX < 0.

Denote W = XAT + AX + Y TBT + BY . (24)

The sufficient condition for matrix inequality (22) to be held
is to change term �11 as follows:

�11 = XAT + AX + Y TBT + BY + X {�A + �BK + B�K

+ �B�K }T + {�A + �BK + B�K + �B�K }X
+ XMX + Y TNY + X �T

K NY + Y TN�K X

+ X �T
K N�K X + XCTQCX

= W + {�A + �BK}X + X {�A + �BK}T

+ X {B�K + �B�K }T + {B�K + �B�K }X
+ {X �T

K NY + Y TN�K X } + {XMX + Y TNY

+ X �T
K N�K X + XCTQCX }, (25)

By applying Lemma 1 to Equation (25) and using Assump-
tion 1, we obtain

{�A + �BK}X + X {�A + �BK}T

= X
[
I KT

] [
�T

A

�T
B

]
+ [

�A �B
] [

I
K

]
X

≤ α1
[
�A �B

] [
�T

A

�T
B

]
+ α−1

1 X
[
I KT

] [
I
K

]
X

≤ α1(γA + γB)I + α−1
1 X

[
I KT

] [
I
K

]
X ,

X �T
K BT + B�K X ≤ α2X �T

K�K X

+ α−1
2 BBT ≤ α2γK X 2 + α−1

2 BBT,

X �T
K�T

B + �B�K X ≤ α3X �K�T
K X

+ α−1
3 �B�T

B ≤ α3γK X 2 + α−1
3 γBI ,

X �T
K NY + Y TN�K X ≤ α4X �T

K�K X

+ α−1
4 Y TN 2Y ≤ α4γK X 2 + α−1

4 Y TN 2Y ,

X �T
K N�K X ≤ X �T

K�K X · λmax(N ) ≤ λmax(N )γK X 2.
(26)

Therefore, we have

�11 ≤ W + α1(γA + γB)I + α−1
1 X

[
I KT

] [
I
K

]
X

+ α2γK X 2 + α−1
2 BBT + α3γK X 2 + α−1

3 γBI

+ α4γK X 2 + α−1
4 Y TN 2Y + {XMX + Y TNY

+ λmax(N )γK X 2 + XCTQCX }, (27)

�12 = [E + �E] − XCTQD − XCTS,

�22 = −DTQD − 2DTS − R. (28)

Using Lemma 1 and Assumption 1, we have[
0 �E

�T
E 0

]
≤

[
α5�E�T

E 0

0 α−1
5 I

]
≤

[
α5γEI 0

0 α−1
5 I

]
.

(29)
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Therefore, by applying the results of Equations (24)–(29)
to Equation (22), we find:

[
�11 �12
∗ �22

]
< 0, (30)

where

�11 = W + [
α1γA + α1γB + α5γE + α−1

3 γB
]

I

+ α−1
1 X

[
I KT

] [
I
K

]
X + α−1

4 Y TN 2Y

+ [α2 + α3 + α4 + λmax(N )] γK X 2

+ α−1
2 BBT + {

XMX + Y TNY + XCTQCX
}

= W + [α1γA + α1γB + α5γE + α−1
3 γB]I

+ X {α−1
1 I + [α2 + α3 + α4 + λmax(N )]γK I

+ M + CTQC}X
+ Y T{α−1

1 + α−1
4 N 2 + N }Y + α−1

2 BBT,

�12 = E − XCTQD − XCTS,

�22 = −DTQD − 2DTS − R + α−1
5 I . (31)

By applying the Schur complement, we conclude the final
LMI solution as⎡

⎢⎢⎣
ϒ11 ϒ12 X Y T

∗ ϒ22 0 0
∗ ∗ ϒ33 0
∗ ∗ ∗ ϒ44

⎤
⎥⎥⎦ < 0, (32)

where

ϒ11 = W + [α1γA + α1γB + α5γE + α−1
3 γB]I + α−1

2 BBT

= XAT + AX + Y TBT + BY + α−1
2 BBT

+ [α1γA + α1γB + α5γE + α−1
3 γB]I ,

ϒ12 = E − XCTQD − XCTS,

ϒ22 = −DTQD − 2DTS − R + α−1
5 I ,

ϒ33 = −{α−1
1 I + [α2 + α3 + α4 + λmax(N )]γK I

+ M + CTQC}−1,

ϒ44 = −{α−1
1 + α−1

4 N 2 + N }−1. (33)

Since positive constants α1, . . . , α5 are arbitrary, choos-
ing all of them as 1, we obtain Equation (16). Therefore,
if LMI (16) holds, the inequality (7) is satisfied. This
concludes the proof of the theorem. �

Remark 3 At this point, it is to be noted that other choices
of positive constants α1, . . . , α5 are possible and can be tried
if the value 1 for all these constants does not work.

4. Application to the inverted pendulum on a cart
The inverted pendulum on a cart problem (Wang & Yaz,
2010) is used for testing the novel robust and resilient
state-dependent LMI approach to compare the performance.
Using the Euler–Lagrange equation technique, the complete
equations of motion for the inverted pendulum on a cart can
be reached as

(M + m)ẍ + bẋ + mLθ̈ cos(θ) − mLθ̇ sin(θ) = F ,

(I + mL2)θ̈ + mgL sin(θ) + mLẍ cos(θ) = 0.
(34)

The following system parameters are assumed:

M = 0.5 kg, m = 0.5 kg, b = 0.1N
s
m

,

L = 0.3 m, I = 0.06 kg m2,

Sampling time: T = 0.01 s.

Denote the following state variables:

x1 = x(t), x2 = ẋ(t), x3 = θ(t), x4 = θ̇ (t).

The following initial conditions are assumed:

x1 = 1, x2 = 0, x3 = π/4, x4 = 0.

The following design parameters are chosen to satisfy
different mixed performance criteria:
Mixed NLQR–H∞ design (predominant NLQR)

C = [
0.01 0.01 0.01 0.01

]
, D = [0.01], M = I4,

N = 1, Q = 1, S = 0, R = −1.

Mixed NLQR–H∞ design (predominant H∞)

C = [
1 1 1 1

]
, D = [1], M = 0.01 × I4, N = 0.01,

Q = 1, S = 0, R = −10.

Mixed NLQR–H∞–positive real design (NLQR passivity)

C = [
1 1 1 1

]
, D = [1], M = I4, N = 1,

Q = 0.01, S = 1, R = 0.01.

All of the above mixed criteria control performance results
are shown in Figures 1–5, in comparison with the tradi-
tional LQR technique based on linearization. From these
figures, we find that the novel state-dependent LMI control
has better performance compared with the traditional LQR
technique based on linearization. Especially, Figures 3 and 4
show that the traditional LQR technique loses control of the
angle and angular velocities of the pendulum, respectively.
Figure 5 shows that the highest magnitude of control is
needed by the predominant H∞ control and the lowest con-
trol magnitude is needed by the linearization-based LQR
technique.
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Figure 1. Position trajectory of the inverted pendulum.
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Figure 2. Velocity trajectory of the inverted pendulum.
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Figure 3. Angle “theta” trajectory of the inverted pendulum.
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Figure 4. Angular velocity trajectory of the inverted pendulum.
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Figure 5. Control input.

5. Conclusions
This paper addresses nonlinear system control design
with general NLQR and quadratic dissipative criteria to
achieve asymptotic stability, quadratic optimality and strict
quadratic dissipativeness. For systems with unstructured
but bounded uncertainty, the LMI-based sufficient condi-
tions are derived for the solution of general performance cri-
teria control. Our results unify the existing results on SDRE
control, robust H∞, positive real control and sector-bounded
control. The relative weighting matrices of these criteria
can be achieved by choosing different weighing coefficient
matrices. The optimal control can be obtained by solving
LMI at each time step. The inverted pendulum on a cart con-
trol, which is a benchmark under-actuated nonlinear control
system, is used as an example to demonstrate its effective-
ness and robustness of the proposed method. The simulation
studies show that the proposed method provides a satisfac-
tory alternative to the existing nonlinear control approaches.
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