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Abstract

Background: Transfer RNAs are synthesized as a primary transcript that is processed to produce a mature tRNA. As part of
the maturation process, a subset of the nucleosides are modified. Modifications in the anticodon region often modulate the
decoding ability of the tRNA. At position 34, the majority of yeast cytosolic tRNA species that have a uridine are modified to
5-carbamoylmethyluridine (ncm5U), 5-carbamoylmethyl-29-O-methyluridine (ncm5Um), 5-methoxycarbonylmethyl-uridine
(mcm5U) or 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U). The formation of mcm5 and ncm5 side chains involves a
complex pathway, where the last step in formation of mcm5 is a methyl esterification of cm5 dependent on the Trm9 and
Trm112 proteins.

Methodology and Principal Findings: Both Trm9 and Trm112 are required for the last step in formation of mcm5 side
chains at wobble uridines. By co-expressing a histidine-tagged Trm9p together with a native Trm112p in E. coli, these two
proteins purified as a complex. The presence of Trm112p dramatically improves the methyltransferase activity of Trm9p in
vitro. Single tRNA species that normally contain mcm5U or mcm5s2U nucleosides were isolated from trm9D or trm112D
mutants and the presence of modified nucleosides was analyzed by HPLC. In both mutants, mcm5U and mcm5s2U
nucleosides are absent in tRNAs and the major intermediates accumulating were ncm5U and ncm5s2U, not the expected
cm5U and cm5s2U.

Conclusions: Trm9p and Trm112p function together at the final step in formation of mcm5U in tRNA by using the
intermediate cm5U as a substrate. In tRNA isolated from trm9D and trm112D strains, ncm5U and ncm5s2U nucleosides
accumulate, questioning the order of nucleoside intermediate formation of the mcm5 side chain. We propose two
alternative explanations for this observation. One is that the intermediate cm5U is generated from ncm5U by a yet unknown
mechanism and the other is that cm5U is formed before ncm5U and mcm5U.
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Introduction

Transfer RNAs are adapter molecules, which decode mRNA

into protein and thereby play a central role in gene expression.

The primary tRNA transcript is processed by different endo and

exonucleases, and tRNA modifying enzymes to produce a mature

tRNA [1,2,3]. In this maturation process, a subset of the four

normal nucleosides adenosine (A), guanosine (G), cytidine (C) and

uridine (U) are modified [2,3]. The modifications are introduced

post-transcriptionally, and the formation of a modified nucleoside

may require one or several enzymatic steps [2,3]. Of the 50

modified nucleosides so far identified in eukaryotic tRNAs, 25 are

present in cytoplasmic tRNAs from S. cerevisiae [2,4,5]. In the

anticodon region, especially in positions 34 (wobble position) and

37, nucleosides are frequently modified. Modified nucleosides in

these positions are important for reading frame maintenance and

efficient decoding during translation [2,3]. In yeast, there are in

total 42 cytosolic tRNA species, of which 11 have a uridine at

position 34 modified to 5-carbamoylmethyluridine (ncm5U), 5-

carbamoylmethyl-29-O-methyluridine (ncm5Um), 5-methoxycar-

bonylmethyl-uridine (mcm5U) or 5-methoxycarbonylmethyl-2-

thiouridine (mcm5s2U) [6]. The formation of these nucleosides

requires addition of mcm or ncm side chains at the 5-position of

the uracil moity and a subset of these tRNAs also have a thio (s2)

group at the 2-position of U34 or a methylation at the 29 position of

the ribose.

The common step in synthesis of ncm5 and mcm5 side chains

at U34 in tRNAs requires at least 11 gene products (Figure 1).

Deletion strains missing one of ELP1-ELP6, KTI11, KTI12, KTI14

or SIT4 genes, or both SAP185and SAP190 genes completely

lack the mcm5U, mcm5s2U and ncm5U nucleosides, whereas a

kti13 deletion mutant show dramatically reduced levels of these
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nucleosides [7,8]. In strains with these genes mutated, no

intermediates of mcm5U or ncm5U have been detected, whereas

s2U is detected in tRNAs normally containing mcm5s2U [7,8,9,

10,11,12]. Thus, these gene products are required for an early step

in synthesis of mcm5 and ncm5 groups (Figure 1). The earliest

intermediate in the synthesis of mcm5U and ncm5U that has been

detected is cm5U, and there is evidence that it originates from a

metabolite related to acetyl-CoA [13] (Figure 1).

The ELP1-ELP6 gene products form the Elongator complex

that consists of a core complex Elp1-Elp3 and a sub complex

Elp4-Elp6 [14,15,16]. In the C-terminal part of Elp3p there is

a potential acetyl-CoA binding domain [17], and the central

region shares homology to the Radical SAM superfamily [18].

Members of this family contain an iron-sulphur (FeS) cluster

and use S-adenosylmethionine (SAM) to catalyze a variety of

radical reactions. The presence of a FeS cluster and ability

to bind SAM has been verified for the M. jannaschii Elp3p

homologue [18], whereas no binding of SAM to S. cerevisiae

Elongator complex was observed [19]. At least Elp1 and

Elp3 of Elongator core complex are in intimate contact with

tRNA that is modified with a mcm side chain at U34 [7]. The

KTI11-KTI14, SIT4 or SAP185 SAP190 gene products seem to

regulate the activity of Elongator complex [20,21,22,23,24,25,

26,27,28,29,30].

The last step in formation of mcm5 side chain of U34 is a

methyl esterification of cm5 [13], and requires Trm9p/Trm112p

in yeast and ALKBH8/TRM112 in mammalians [31,32,33]. We

confirm that Trm112p is also required for the last step of mcm5

side chain formation at position 34 in a subset of tRNAs. In vivo,

Trm112p is essential for the methyl esterification to mcm5U34,

and in vitro Trm112p improves the methyltransferase activity of

Trm9p. The observation that the major intermediates accumu-

lating in trm9 and trm112 mutants are ncm5U and ncm5s2U and

not the expected cm5U and cm5s2U raises the question; what is

the order of intermediates formed in biosynthesis of the mcm5

side chain of U34?

Materials and Methods

Yeast strains, media and genetic procedures
Strains used in this report, except those from the yeast deletion

collection (Open Biosystems), are listed in Table S1A. Yeast

media, genetic procedures and yeast transformation have been

described previously [34]. To construct mtq2::KanMX6 and

trm112::KanMX6 deletions, oligonucleotides (2104 and 2015,

1391 and 1392) in Table S1B containing 45nt sequence

homology flanking the MTQ2 and TRM112 genes were used to

amplify the KanMX6 cassette [35]. To delete TRM9, TRM11 and

LYS9 in W303 strains, chromosomal DNA from the correspond-

ing null mutants in the yeast deletion collection (Open

Biosystems) were used as templates. The KanMX6 cassette

together with 300–500 base pair flanking sequences to each

gene were amplified with specific primers (1035 and 1036 for

TRM9, 1950 and 1951 for TRM11, and 2059 and 2060 for LYS9)

listed in Table S1B. The PCR products were introduced into

diploid yeast strain UMY3104 and transformants were selected

on YEPD plates containing 200 mg/ml Geneticin (G418).

Transformants were sporulated and tetrad analysis verified a

2:2 segregation of mating type and G418 resistance. Deletions

were confirmed by PCR. The double mutants trm9D trm11D,

trm9D lys9D, trm9D mtq2D, trm11D lys9D, trm11D mtq2D and lys9D
mtq2D were generated by crossing the single mutants. The

quadruple mutant was generated in a cross between trm9D lys9D
and trm11D mtq2D.

Plasmid constructions
To generate the expression vector for the Trm9 protein, TRM9

gene was amplified by PCR using oligos 2015 and 2016 (Table

S1B) and W303-1A genomic DNA as template. The PCR product

was digested with BamH1 and HindIII, and subcloned to the

corresponding sites of the expression vector pRSF-Duet1 (Nova-

gen), generating an in frame fusion with the histidine tag. To

construct the Trm9p-Trm112p co-expression vector, the TRM112

gene was amplified from W303-1A genomic DNA using oligos

2013 and 2014 (Table S1B) and cloned into the pRSF-Duet1-

TRM9 vector using NdeI and XhoI.

Protein purification
The expression vectors were introduced into BL21(DE3)pLysS

competent cells. Overnight cultures of transformed cells were

grown in LB media containing 50 mg/ml Kanamycin at 37uC.

Cultures were diluted to OD600 0.05 and grown to OD600 0.5 at

37uC. Cultures were placed on ice for 10 minutes. IPTG was

added to a final concentration of 120 mg/ml and protein

expression was induced at 15uC overnight. Harvested cell pellets

Figure 1. Model for formation of mcm5 side chain at wobble
uridines. The Elongator complex (Elp1-Elp6) and its potential
regulators are required for the formation of cm5U. A methyl group is
added to cm5U by Trm9p/Trm112p complex in tRNA species that in
their mature form should have a mcm5 side chain. The cm5U in other
tRNA species are converted to ncm5U by an unknown enzyme. For
tRNAs that should contain a s2 group, presence of a mcm5 or ncm5 side
chain is a prerequisite for efficient thiolation.
doi:10.1371/journal.pone.0020783.g001

Synthesis of mcm5 Side Chain in tRNA
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were washed once by 0.9% NaCl and resuspended in breaking

buffer (20 mM Tris pH 8.0, 10 mM imidazole, 150 mM NaCl,

0.2% NP-40, 2 mM b-mercaptoethanol) in the presence of

proteinase inhibitor cocktail (Roche). Cells were broken by

sonication and the cell extract was clarified by centrifugation at

16,000 g for 1 hour. The supernatant was mixed with TALON

resin, equilibrated with breaking buffer and incubated at 4uC for

2 hours. The protein bound TALON resin was first washed with

buffer 1 (20 mM Tris pH 8.0, 10 mM imidazole, 150 mM NaCl,

2 mM b-mercaptoethanol) and then with buffer 2 (20 mM Tris

pH 8.0, 10 mM imidazole, 500 mM NaCl, 2 mM b-mercapto-

ethanol). Proteins were eluted with 330 mM imidazole and

dialyzed overnight against storage buffer (25 mM Tris pH 8.0,

150 mM NaCl, 5 mM DTT, 10% glycerol) and kept at 4uC for

future use.

Methyltransferase reaction
In the methyltransferase reaction, 50 ml of 2X reaction buffer

(200 mM Tris 7.5, 0.2 mM EDTA, 20 mM MgCl2, 20 mM

NH4Cl) was mixed with 20 ml [3H]AdoMet (0.55 mCi/ml, Perkin

Elmer) and 20 mg tRNA, incubated at 37uC for 5 minutes. The

methyltransferase reaction was initiated by adding 10 mg Trm9p

or Trm9p-Trm112p. Aliquots of the reaction was withdrawn at

different time points and mixed with 1 ml of 5% ice cold

trichloroacetic acid (TCA). The tubes were incubated on ice for 10

minutes and samples were vacuum filtered through nitrocellulose

filter (Millipore 0.45 mm). The [3H] incorporation was measured

using a Wallac 1409 scintillation counter. To analyze [3H]

incorporation in total tRNA by HPLC, 200 mg of tRNA was used.

After 30 minutes of methyltransferase reaction, 2.5 volume of 99%

ice cold ethanol was added into the reaction and samples were

Figure 2. trm9 and trm112 mutants are lacking the mcm5 side-chain in tRNA
Arg

mcm5UCU
at wobble uridines. HPLC analysis of modified tRNA

nucleosides from wild-type (UMY3169, left panels), trm9::KanMX4 (Open Biosystems, middle panels) and trm112::KanMX4 (UMY3330, right panels).
Arrows in red and black indicate expected retention time of mcm5U and cm5U, respectively. Arrow heads in red and black indicate expected retention
time of m2G and ncm5U, respectively. (A), Part of the chromatogram between retention times 34 and 44 min is shown. (B), Part of the chromatogram
between retention times 7 and 17 min is shown. The small peak in wild-type at 14 min represents an unrelated compound with a spectrum different
from ncm5U. The chromatograms were monitored at 254 nm.
doi:10.1371/journal.pone.0020783.g002

Table 1. Relative amounts of various modified nucleosides in tRNA
Arg
UCU and tRNAGlu

UUC isolated from wild type, trm9D and
trm112D strains.

tRNA
Arg
UCU tRNAGlu

UUC

cm5U/Y ncm5U/Y mcm5U/Y cm5U/Y ncm5U/Y mcm5U/Y cm5s2U/Y ncm5s2U/Y mcm5s2U/Y

WT 0.016 0.044 0.183 ND ND ND 0.029 ND 0.220

trm9D 0.051 0.199 ND 0.065 0.028 ND 0.013 0.191 ND

trm112D 0.046 0.149 ND 0.044 0.044 ND 0.022 0.161 ND

Pseudouridine (Y) was used as the internal control. The numbers displayed are the ratios (modified nucleoside/Y). ND: not detected. The modified nucleosides cm5U,
ncm5U, mcm5U and Y were monitored at 254 nm, and cm5s2U, ncm5s2U and mcm5s2U were monitored at 314 nm as thiolated nucleosides absorb well at this
wavelength, while nonthiolated nucleosides do not.
doi:10.1371/journal.pone.0020783.t001

Synthesis of mcm5 Side Chain in tRNA
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centrifuged for 30 minutes in eppendorf tubes at maximum speed.

The pellet was resuspended in MQ water, digested with nuclease

P1 and analyzed by HPLC [36]. The [3H] incorporation was

monitored by a flow scintillation analyzer (Packard Bioscience).

Single tRNA isolation
Yeast cells were grown in 2L YEPD at 30uC to OD600 = 1.5.

Total tRNA was prepared as described [36]. Single tRNA

species were isolated from total tRNA by hybridizing to

biotinylated complementary oligonucleotides [36] and separated

from total tRNA by attachment to streptavidin coated Dyna-

beads M-280 (Invitrogen). The single tRNAs were digested to

nucleosides with nuclease P1 followed by bacterial alkaline

phosphatase (BAP) treatment [0.2 M (NH4)2SO4 pH 8.3], and

analyzed by HPLC [37].

Results and Discussion

Trm112p is required for the methyl esterification of
mcm5U and mcm5s2U

In a global analysis of protein complexes in yeast, Trm112p

was found to interact with three methyltransferases Trm9p,

Trm11p and Mtq2p [38,39,40,41]. In addition, Trm112p

interacts with the saccharopine dehydrogenase Lys9p, the essential

DEAH-box ATP-dependent RNA helicase Ecm16p and an

essential component of the RSC chromatin remodeling complex

Figure 3. Nucleoside ncm5U is not generated by amidation of cm5U during conversion of tRNA into nucleosides. Synthetic cm5U (A
and B) or a mixture of synthetic cm5U and ncm5U (C and D) were treated with nuclease P1 for 16 hours, followed by a 2 hours incubation with either
water (A and C) or bacterial alkaline phosphatase (BAP) (B and D). Parts of the chromatogram of HPLC analysis between 5 and 20 min are shown. The
chromatograms were monitored at 254 nm.
doi:10.1371/journal.pone.0020783.g003

Figure 4. Growth phenotypes. Wild type (UMY2067), trm112D (UMY3679), trm9D (UMY3267), trm11D (UMY3677), lys9D (UMY3650), mtq2D
(UMY3675), trm9D mtq2D (UMY3673) and trm9D trm11D lys9D mtq2D (UMY3680) strains were cultivated in YEPD at 30uC and 37uC.
doi:10.1371/journal.pone.0020783.g004

Synthesis of mcm5 Side Chain in tRNA
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Sfh1p [38,39,40,41]. The N2-Monomethylguanosine-10 (m2G10)

methyltransferase Trm11p, as well as the eRF1 methyltranferase

Mtq2p, has to be in complex with Trm112p to be active [42,43].

Trm9p is required for the methyl esterification of modified uridine

nucleosides, resulting in the formation of 5-methylcarbonylmethy-

luridine (mcm5U34) and 5-methylcarbonylmethyl-2-thiouridine

(mcm5s2U34) present in a subset of tRNA species in yeast,

including tRNA
Arg

mcm5UCU
and tRNAGlu

mcm5s2UUC [31]. In the methyl

esterification reaction of these tRNAs, cm5U34 and cm5s2U34 were

suggested to be the substrates [13,31,32,].

Both Trm9 and Trm112 are required for methyl esterification to

mcm5U and mcm5s2U [31,32,33]. To analyze the tRNA modifi-

cation status in these two mutants, total tRNA from trm9D, trm112D
and wild type strains were isolated, digested to nucleosides and

analyzed by HPLC. Similar to previous reports [31,32,33], total

tRNA isolated from trm9 and trm112 deletion mutants lacked

mcm5U and mcm5s2U nucleosides (data not shown). In order to

provide a more detailed analysis of all possible nucleoside

intermediates in trm9D and trm112D mutants, single tRNA species,

tRNA
Arg

mcm5UCU
, tRNAGlu

mcm5s2UUC and tRNAPr o
ncm5UGG, were isolat-

ed from wild type, trm9D and trm112D strains and the purified

tRNAs were digested to nucleosides and analyzed by HPLC

(Figure 2, Table 1, data not shown). As expected, the ncm5U

nucleoside was present in tRNAPr o
ncm5UGG independent if the tRNA

was isolated from trm9D, trm112D or wild type strains (data not

shown). The mcm5U and mcm5s2U nucleosides were present in

tRNA
Arg

mcm5UCU
and tRNAGlu

mcm5s2UUC isolated from wild type but

not from trm9D and trm112D cells (Figure 2, Table 1). In

tRNA
Arg

mcm5UCU
isolated from trm9D and trm112D strains, we

observed the appearance of ncm5U and cm5U (Figure 2B,

Table 1). Interestingly, the major intermediate of the mcm5U

nucleoside generated in the trm9D and trm112D mutants is ncm5U

(Figure 2, Table 1). The presence of ncm5U and cm5U has also been

observed in tRNA
Arg

mcm5s2UCU
, tRNAGlu

mcm5s2UUC and tRNASec

isolated from an alkbh82/2 mice [32,44]. In tRNAGlu
mcm5s2UUC

isolated from the trm9D and trm112D strains, there was a complete

lack of mcm5s2U and a concomitant increase of cm5U, ncm5U and

ncm5s2U (Table 1). The presence of cm5U supports the earlier

observation that formation of a completed mcm5 side chain appears

to be a prerequisite for efficient and complete thiolation of position

2 in mcm5s2U containing tRNAs [10,11,12,32]. An unex-

pected observation was that the major species accumulating in

tRNA
Arg

mcm5s2UCU
and tRNAGlu

mcm5s2UUC isolated from trm9D and

trm112D strains were ncm5U and ncm5s2U, respectively (Table 1).

We considered the possibility that the ncm5 side chain was

spontaneously generated from cm5 by amidation during the

bacterial alkaline phosphatase (BAP) treatment in the digestion step

of tRNA to nucleosides for HPLC analysis. To test this hypothesis,

synthetic cm5U nucleoside was treated in the same way as in the

digestion step of tRNA and analyzed by HPLC (Figure 3). We did

not detect any conversion of cm5U to ncm5U (Figure 3) indicating

that formation of ncm5U is enzymatically catalyzed and not an

artifact of the sample preparation procedure.

In addition to Trm9p, Trm112p also interacts with Trm11p,

Lys9p and Mtq2p encoded by non-essential genes, and Ecm16p and

Sph1p encoded by essential genes [38,39,40,41]. Therefore, we also

analyzed single tRNA species tRNA
Arg

mcm5UCU
, tRNAGlu

mcm5s2UUC

and tRNAPr o
ncm5UGG from trm11D, lys9D and mtq2D strains. Trm11p

and Trm112p are essential for formation of the m2G nucleoside

[42]. Consistently, tRNA
Arg

mcm5UCU
isolated from trm11D or trm112D

strains does not have the m2G modified nucleoside, whereas the

same tRNA from wild-type has m2G (Figure 2 and S1). In single

tRNAs from lys9D and mtq2D strains, there was no notable change

in modified nucleosides as assessed by HPLC analysis (Figure S1,

data not shown). A deletion of the TRM112 gene causes a dramatic

reduction in growth and a mtq2D strain also shows a clear reduction

in growth, whereas trm11D, lys9D or trm9D strains show mild growth

defects in YEPD medium at both 30uC and 37uC (Figure 4). We

considered the possibility that strains with multiple null alleles of

genes encoding Trm112p interacting proteins would show additive

growth defects, possibly mimicking a trm112D null allele. Since two

Trm112p associated proteins, Ecm16 and Sfh1, are encoded by

essential genes, we were only able to make strains with combinations

of the trm11D, lys9D, trm9D, and mtq2D alleles. We first made the

double mutants trm11D lys9D, trm11D trm9D, trm11D mtq2D, lys9D
trm9D, lys9D mtq2D and trm9D mtq2D. No additive growth reduction

was observed in any of the constructs at both 30uC and 37uC
(Figure 4, data not shown), in contrast to the previously observed

growth defect of the trm9D mtq2D mutant [33]. Further we made a

trm11D lys9D trm9D, mtq2D quadruple mutant strain that grew like a

mtq2D strain at both 30uC and 37uC (Figure 4). These data show

that the poor growth of trm112D cells is not entirely caused by

defects in tRNA modification, eRF1 methylation and dehydroge-

nase activity in the quadruple mutant. Possibly it is caused by

reduced function of Ecm16p or Sfh1p which might require the

interaction with Trm112p to be fully active.

Trm112p/Trm9p complex efficiently incorporates methyl
groups into trm9 substrate tRNA in vitro

Trm9p has been shown to catalyze the methyl esterification to

mcm5U and mcm5s2U in vitro [31]. We cloned the TRM9 gene into

the expression vector pRSF duet to produce 6xHis-Trm9p

recombinant protein in E. coli. We also made a pRSF duet vector

construct, simultaneously expressing the 6xHis-Trm9p recombi-

nant protein and a non-tagged Trm112p. When Trm9p was

expressed alone, the majority of Trm9p recombinant protein was

insoluble (Figure 5A), and the solubility of Trm9p dramatically

improved when Trm112p was co-expressed with Trm9p.

Purification of Trm9p by virtue of its 6xHis tag resulted in co-

purification of Trm112p (Figure 5A), indicating that Trm9p forms

a stable complex with Trm112p.

Purified Trm9p and Trm9/Trm112p complex was used to

methylate total tRNA isolated from wild type and a trm9 deletion

strains in vitro. Saponification of total tRNA with sodium hydroxide

leads to the production of cm5U and cm5s2U from mcm5U and

mcm5s2U, and this method has previously been used to generate

Figure 5. Trm9p/Trm112p complex efficiently catalyzes the methyl incorporation into trm9 substrate tRNA. (A) SDS-PAGE analysis of
histidine tagged Trm9p expressed alone or co-expressed with Trm112p and purified from E. coli. The gel was stained with Colloidal Blue (Invitrogen). Lane 1:
Molecular weight standard (PageRuler prestained, Fermentas). Lane 2: Soluble fraction of extract from E. coli strains expressing Trm112p and histidine tagged
Trm9p. Lane 3: Soluble fraction of extract from E. coli strains expressing histidine tagged Trm9p. Lane 4: Pellet from crude extract of E. coli strains expressing
Trm112p and histidine tagged Trm9p. Lane 5: Pellet from crude extract of E. coli strains expressing histidine tagged Trm9p. Lane 6: Trm112p co-purified with
histidine tagged Trm9 protein. Lane 7: Purified histidine tagged Trm9 protein. (B) [3H] methyl incorporation into tRNA as a function of time. Substrates were
total tRNA preparations from strain UMY2067 (wild-type) and UMY3267 (trm9D). (&) and (m) are methyl incorporation reactions into wild-type tRNA by using
Trm9p or Trm9p/Trm112p as enzyme. (#) is methyl incorporation reaction into trm9 tRNA by using Trm9p as enzyme. (C). The methyl incorporation into trm9
tRNA using Trm9p/Trm112p as enzyme (e), in addition to the reactions in (B).
doi:10.1371/journal.pone.0020783.g005
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substrates for Trm9p or ALKBH8 [31,32]. However, saponifica-

tion also efficiently degrades tRNA and we found that tRNA

isolated from the trm9 deletion strain was a superior substrate in

the methyl esterification assay (data not shown). To track

methylation of tRNA substrates in vitro, S-adenosylmethionine

containing a tritiated methyl donor group was used together with

tRNA and purified enzyme. When total tRNA from wild type was

used as a substrate, there was a small increase in incorporation of

Figure 6. HPLC analysis of total trm9 tRNA after methyl incorporation by using Trm9p/Trm112p as enzyme. (A–B) Part of the
chromatogram between retention time 10 and 19 min is shown. The arrow in B indicates the expected retention time of cm5U. (C–D). Part of the
chromatogram between retention time 34 and 45 min is shown. The arrow in C indicates the expected retention time of mcm5U. (E–F). Part of the
chromatogram between retention time 47 and 52 min is shown. The arrow in E indicates the expected retention time of mcm5s2U. (G–H). Part of the
chromatogram between retention time 26 and 52 min is shown. Open and closed arrowheads in G and H indicate the expected retention time of
mcm5s2U and cm5U, respectively. Chromatograms in A–F were monitored at 254 nm and at 314 nm in G–H. The dashed line in D, F and H indicates
the migration of isotope labeled nucleoside which overlaps with mcm5U and mcm5s2U, respectively. The Y axis to the left corresponds to absorbance
units and the Y axis to the right shows the [3H] incorporation in cpm.
doi:10.1371/journal.pone.0020783.g006

Synthesis of mcm5 Side Chain in tRNA

PLoS ONE | www.plosone.org 7 June 2011 | Volume 6 | Issue 6 | e20783



radioactive methyl groups with time using either Trm9p or the

Trm9p/Trm112p complex (Figure 5B). In contrast, use of total

tRNA from the trm9D strain and Trm9p leads to a clear but

modest increase in the incorporation of radioactive methyl groups

(Figure 5B). Moreover, the incorporation of radioactive methyl

groups was 20-fold more efficient using Trm9p/Trm112p over

Trm9p alone (Figure 5C). Thus, Trm112p is required for Trm9p

to methylate its substrate tRNA more efficiently in vitro and is a

prerequisite in vivo as no mcm5 nucleosides are formed in a

trm112D mutant (Figure 2, Table 1). In the reaction using tRNA

from the trm9D strain and Trm9p/Trm112p, there was a rapid

incorporation of [3H] methyl groups in the first 5 minutes that

entered to a plateau after 30 minutes (Figure 5C). The reduced

incorporation was not due to enzyme inactivation with time as

adding more enzyme at 30 minutes did not improve incorporation

of radioactivity (data not shown).

Based on HPLC analysis, there is an accumulation of cm5U,

ncm5U, and ncm5s2U in total tRNA from a trm9D strain compared

with a wild-type strain [33] (data not shown). When tRNA isolated

from a trm9D strain was used as substrate in vitro, we observed a

reduction of the cm5U nucleoside and appearance of mcm5U

(Figure 6A-D, Table 2) consistent with cm5U being the substrate of

Trm9 [31,32,33]. Furthermore, the relative amounts of ncm5U

and ncm5s2U did not change after the methylation reaction,

showing that these two nucleosides are not substrates of Trm9p/

Trm112p under these conditions (Table 2) [33]. By using

saponified tRNA, cm5s2U was suggested to be a substrate for

Trm9p or ALKBH8/Trm112 [31,32]. However, cm5s2U was not

detected in total tRNA isolated from trm9 or trm112 mutants [33].

In our analysis of trm9 total tRNA, we observed a very small peak

migrating in the position of cm5s2U, which was absent after the

methylation reaction (Figure 6G-H, Table 2). When [3H]-CH3

was monitored by flow scintillation analyzer coupled to the HPLC,

we found that the incorporated radioactivity migrated with

retention times identical to those known for mcm5U and mcm5s2U

nucleosides (Figure 6D, F and H). As the signal for the tentative

cm5s2U is very weak, we cannot exclude the possibility that

mcm5s2U originated from another species. These observations are

consistent with those shown by Kalhor and Clarke [31,32] and

fully support the assertion that Trm9p is the methyltransferase

catalyzing the formation of mcm5U from cm5U. Why and how

ncm5U and ncm5s2U accumulates in tRNAs from strains lacking

Trm9p or Trm112p, remains to be elucidated.

Alternative mechanisms in formation of the mcm5 side
chain at wobble position

In trm9D or trm112D strains, the major species generated are

ncm5U and ncm5s2U instead of the expected cm5U or cm5s2U.

According to the model proposed in Figure 1, Elongator complex

is required for and might directly catalyze the formation of cm5U.

In the presence of Trm9 and Trm112p, cm5U is rapidly converted

to mcm5U in tRNAs destined to contain a mcm5U nucleoside.

Those tRNAs destined to contain ncm5U are not recognized by

Trm9p/Trm112p and ncm5U is formed by an uncharacterized

enzyme. In order to account for the presence of ncm5U and

Table 2. Relative amounts of various modified nucleosides of total tRNA isolated from the trm9D strain before and after
methylation reaction.

cm5U/Y ncm5U/Y mcm5U/Y cm5s2U/Y ncm5s2U/Y mcm5s2U/Y

Before reaction 0.01752 0.04634 ND 0.00081 0.00571 ND

After reaction 0.00227 0.04707 0.01720 ND 0.00521 0.00132

Pseudouridine (Y) was used as the internal control. The numbers displayed are the ratios (modified nucleoside/Y). ND: not detected. The modified nucleosides cm5U,
ncm5U, mcm5U and Y were monitored at 254 nm, and cm5s2U, ncm5s2U and mcm5s2U were monitored at 314 nm as thiolated nucleosides absorb well at this
wavelength, while nonthiolated nucleosides do not.
doi:10.1371/journal.pone.0020783.t002

Figure 7. An alternative model for formation of mcm5 side
chain at wobble uridines. Elongator complex (Elp1-Elp6) and its
potential regulators catalyzes the formation of ncm5U. The ncm5U is
converted to cm5U by an unknown mechanism in tRNA species that in
their mature form should have a mcm5 side chain. This unknown
mechanism requires Trm9p/Trm112p. In the last step, a methyl group is
added to cm5U by Trm9p/Trm112p complex in these tRNA species. For
tRNAs that should contain a s2 group, presence of a mcm5 or ncm5 side
chain is a prerequisite for efficient thiolation.
doi:10.1371/journal.pone.0020783.g007
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ncm5s2U in tRNAs that normally should contain mcm5U and

mcm5s2U, one has to postulate that in the absence of Trm9p/

Trm112p the uncharacterized enzyme responsible for amidation

also recognizes these tRNA substrates (Figure 2). For tRNAs that

should contain a s2 group, the presence of a mcm5 side chain has

been suggested to be a prerequisite for efficient thiolation [10,12].

We suggest that the presence of ncm5U, but not cm5U, in these

tRNAs also promotes efficient thiolation, resulting in accumulation

of ncm5s2U (Table 1).

The observation that the major U34 intermediates in

tRNA
Arg

mcm5UCU
and tRNAGlu

mcm5s2UUC are ncm5U and ncm5s2U

in trm9 and trm112 mutants also supports an alternative model, i. e.

ncm5U is generated before cm5U (Figure 7). Such a model would

require a conversion of ncm5U to cm5U before the Trm9p/

Trm112p complex finally can form mcm5U. A similar mechanism

has been described in Eubacteria that have mnm5 instead of mcm5

side chains and the first intermediate in its synthesis is cmnm5U

[45]. The bi-functional MnmC demodifies cmnm5U to nm5U and

thereafter methylates nm5U to form mnm5U [45,46,47]. By

analogy, the Trm9p/Trm112p complex may be involved in two

reactions; deamination of ncm5U to cm5U, and then catalyzing

formation of mcm5U. The deaminase activity is not necessarily

part of Trm9p or Trm112p. In the absence of Trm9p or

Trm112p, ncm5U accumulates in tRNAs destined to contain

mcm5s2U, liketRNAGlu
UUC. As postulated in model 1, the presence

of an ncm5 side chain in these tRNAs promotes thiolation,

generating ncm5s2U. MnmC requires flavin adenine dinucleotide

(FAD) as co-factor in the de-modification reaction and SAM in the

methylation reaction. We performed an in vitro reaction with

[3H]AdoMet in the presence or absence of FAD. We assumed if

ncm5U is converted to cm5U in the presence of FAD, more [3H]-

methyl groups would be incorporated into total tRNA isolated

from trm9 deletion strain when FAD is included in the reaction.

Reactions conducted in the presence of FAD did not increase the

incorporation of [3H]-methyl into trm9 deletion tRNA, nor did it

decrease the overall amount of ncm5U as analyzed by HPLC (data

not shown). We also investigated the potential use of other

cofactors in the conversion of ncm5U to cm5U such as NAD+ and

NADP+ without success (data not shown). It remains to be

elucidated which of these two alternative pathways for formation

of mcm5 side chains is used.

Supporting Information

Figure S1 HPLC analysis of modified nucleosides in
tRNA

Arg

mcm5UCU
isolated from wild-type, trm11D, lys9D and

mtq2D strains. Arrows in red and black indicate expected

retention time of mcm5U and cm5U, respectively. Arrow heads in

red and black indicate expected retention time of m2G and

ncm5U, respectively. (A–D), Part of the chromatogram between

retention times 34 and 44 min is shown. (B), Part of the

chromatogram between retention times 7 and 17 min is shown.

The small peak in wild-type at 14 min represents an unrelated

compound with a spectrum different from ncm5U. Absorbance at

254 nm (AU) was used to create the chromatograms.

(EPS)

Table S1 Strains and primers used in this study (see also [48]

and [49]).
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