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This paper presents an advanced method to acoustically assess animal abundance. The framework
combines supervised classification (song-type and individual identity recognition), unsupervised
classification (individual identity clustering), and the mark-recapture model of abundance
estimation. The underlying algorithm is based on clustering using hidden Markov models (HMMs)
and Gaussian mixture models (GMMs) similar to methods used in the speech recognition
community for tasks such as speaker identification and clustering. Initial experiments using a
Norwegian ortolan bunting (Emberiza hortulana) data set show the feasibility and effectiveness of
the approach. Individually distinct acoustic features have been observed in a wide range of animal
species, and this combined with the widespread success of speaker identification and verification
methods for human speech suggests that robust automatic identification of individuals from their
vocalizations is attainable. Only a few studies, however, have yet attempted to use individual
acoustic distinctiveness to directly assess population density and structure. The approach introduced
here offers a direct mechanism for using individual vocal variability to create simpler and more
accurate population assessment tools in vocally active species.

© 2010 Acoustical Society of America. [DOI: 10.1121/1.3273887]

PACS number(s): 43.60.Bf, 43.80.Ka [WWA]

I. INTRODUCTION

Individually distinct acoustic features have been ob-
served in a wide range of vocally active animal species, for
example, cetaceans (Janik, 2000), bats (Masters et al., 1995),
and primates (Butynski er al., 1992). There is strong evi-
dence to suggest that individual identification from vocaliza-
tions is possible in many species, just as it is in humans, and
that many of the state-of-the-art techniques for robust human
speaker identification and clustering (Reynolds and Rose,
1995; Tranter and Reynolds, 2006) can be applied equally
well to animal vocalizations.

Within birds, the presence of vocal individuality has
been shown in the European bitterns (Botaurus stellaris) and
Black-throated divers (Gavia arctica) (Gilbert et al., 1994),
American woodcock (Scolopax minor) (Beightol and Sam-
uel, 1973), Australian kingfishers (Dacelo novaeguineae)
(Saunders and Wooler, 1978), and Tawny owls (Strix aluco)
(Galeotti and Pavan, 1991). Birds use vocal differences to
identify other members of their species nearby and to iden-
tify individual birds in their immediate vicinity. They have
been shown to use vocalizations in recognizing their mates,
their parents, and in differentiating between neighbors and
strangers (Holschuh, 2004). While a wide variety of ap-
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proaches has been used to count and monitor bird popula-
tions within a species (Peake and McGregor, 2001), most of
those approaches do not use individual vocal variability or
require the identification of individual birds.

For rare or elusive species that are hard to monitor or to
mark visually, the possibility of recognizing individuals by
their vocalizations may provide a useful census tool, e.g.,
Saunders and Wooler, 1978 and Gilbert et al., 1994, but only
a few researchers have used individual variation to assess
population structure, abundance and density, seasonal distri-
bution and trends, or impact of human-made noise on ani-
mals (Mellinger and Barlow, 2003). Peake and McGregor
(2001) employed a statistical Pearson-correlation approach
to identify corncrake (Crex crex) vocal individuality and to
estimate numbers of individuals in species. Holschuh (2004)
used discriminant function analysis (DFA) to explore vocal
individuality of the saw-whet owl (Aegolius acadicus) to
monitor its habitat quality. Terry and McGregor (2002) sug-
gested neural network models to monitor and census male
corncrake species, using a backpropagation and probabilistic
network to re-identify the members of the known population
(monitoring task) and a Kohonen network to count a popu-
lation of unknown size. In cetaceans, there are several ex-
amples of the use of vocalizations in assessment, including
sperm whales (Physeter macrocephalus), humpback whales
(Megaptera novaeangliae), Cuvier’s beaked whales (Ziphius
cavirostris), and harbor porpoises (Phocoena phocoena)
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(Barlow and Taylor, 1998; Mellinger and Barlow, 2003;
Marques et al., 2009), where combined visual and acoustic
methods have significantly improved the population esti-
mate.

Numerous quantitative approaches for analyzing vocal
individuality exist. Otter (1996) was able to differentiate in-
dividual birds through a series of nested Analysis of Variance
(ANOVA) Holschuh (2004) did the same using DFA. In ma-
rine mammals, Buck and Tyack (1993) utilized Dynamic
Time Warping (DTW) to classify 15 bottlenose dolphin (7ur-
siops truncatus) signature whistles into five groups. The re-
search presented here adapts a well established automatic
human speech recognition framework to the task of acoustic
censusing, i.e., estimating the abundance of animals in a
specified survey area. Previous and current studies show the
feasibility of a hidden Markov model (HMM) method to
automatically classify ortolan bunting song-types, to identify
individual birds (Trawicki et al., 2005; Adi, 2008; Adi et al.,
2008), to identify individual African elephants (Africana
Loxodonta) (Clemins et al., 2005), and to cluster beluga
whale (Delphinapterus leucas) repertoires (Adi, 2008). The
proposed framework is based on HMMs and Gaussian mix-
ture models (GMMs), both commonly used in the speech
processing community to perform speech recognition and
speaker identification and verification. This approach has ad-
vantages in its flexibility and robustness to duration and tem-
poral alignment differences between training and testing ex-
amples. An integration of several techniques for supervised
and unsupervised classification is proposed and combined
with the mark-recapture approach to estimate animal abun-
dance.

Following this introduction, Sec. II gives an overview of
the study population, introduces two protocols for estimating
the number of animals in a population, and discusses the
methods behind the key individual subtasks. Section III pre-
sents the experimental results, and Sec. IV finishes with
overall conclusions.

Il. METHODS

A. Study population: Ortolan bunting
(Emberiza hortulana)

The ortolan bunting is a migratory passerine bird distrib-
uted from Western Europe to Mongolia (Cramp and Perrins,
1994). They winter in Africa. The species inhabits open ag-
ricultural areas, raised peat bogs, clear-cut forest on poor
sand, and cleared farmland and forest burn (Dale and Hagen,
1997).

Ortolan buntings are classified as an endangered species
(Steinberg, 1983; Dale, 2001a) and have shown a major
population decline both in individual numbers and in their
distribution. In Finland, Vepsalainen et al. (2005) studied
their population density changes and environment associa-
tions in years 1984-2002. They observed a population crash
between 1990 and 1993, resulting in a 54% reduction in
population density, with a total density reduction of 72%
between years of 1984-2002. The Norwegian ortolan
bunting, meanwhile, currently numbers approximately 150
singing males and has shown decline over the past 50 years
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as well. In years 1996-2000 the decline rate was 8% per year
(Dale, 2001a). The decline is most likely related to female-
biased dispersal away from the population which results in
many unpaired males and low population productivity (Dale,
2001b; Steifetten and Dale, 2006). Recently, it was revealed
that ortolan bunting males are able to discriminate vocally
between neighbors and strangers based on single song de-
rived from the repertoire of a particular male (Skierczynski
et al., 2007).

The ortolan bunting vocalizations being examined for
this study were collected from County Hedmark, Norway in
May of 2001 and 2002 (Osiejuk er al., 2003). The male
vocalizations were recorded on 11 out of 25 sites within an
area of about 500 km?. The total number of males in the
covered area of the years 2001 and 2002 was about 150.
Individual identity was determined for a high percentage of
the vocalizations, based on visual observation of individuals
using wing markings. For the purposes of this study the 2001
data are used as training data (“marking” data in the mark-
recapture protocol) for building song-type and individual
identity classification models and for determining repertoire
statistics, while the 2002 data are used as test data (“recap-
ture” data) for classification and overall censusing evalua-
tion. It is also used to demonstrate the method of overall
abundance estimation using an acoustic mark-recapture
model, although because the data were not collected origi-
nally for that purpose and does not meet the time and locality
guidelines for a mark-recapture study, the mark-recapture
model estimates given here are only illustrative.

The ortolan bunting has a relatively simple song and
small repertoire size of typically 2-3 song-types for each
individual. Individual repertoires are relatively stable but do
change some over time. However, in the Norwegian popula-
tion males use on average 4.2 song-types and have a reper-
toire size of between 1 and 24 (Losak, 2007). Song frequen-
cies are in a range between 1.9 and 6.7 kHz. As described by
Osiejuk et al. (2003), these ortolan vocalizations were re-
corded between 04:00 and 11:00 am by using an HHB PDR
1000 professional Digital Audio Tape (DAT) recorder. All
recordings were transferred to a PC using 48 kHz/16 bit
sampling.

The ortolan bunting has a relatively simple repertoire,
with songs described by syllable, song-type, and song-
variant. A syllable, the minimal unit of song production, is
described using letter notation, as illustrated in Fig. 1. Syl-
lables are grouped together into patterns, with each general
pattern called a song-type and each unique song called a
song-variant. For example, b and ¢ are examples of syllables,
cb is an example of a song-type pattern consisting of one or
more instances of a ¢ syllable followed by one or more in-
stances of a b syllable, and cccccb is an example of a spe-
cific song-variant within the cb song-type, consisting of ex-
actly five repetitions of a ¢ syllable followed by exactly one
repetition of a b syllable. Although syllables of the same type
differ in length and frequency between individuals, they have
the same basic spectrogram shape. Figure 2 illustrates an
example of this song-variant for two different individuals in
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FIG. 1. Ortolan bunting syllables (after Osiejuk er al., 2003).

this data set. In total, the data sets used here include 63
different song-types and 234 different song-variants com-
posed of 20 different syllables.

B. Overview of population assessment protocols

This research proposes two separate population assess-
ment protocols. Both protocols assume single species data,
which may require the preprocessing step of species classi-
fication (in most cases a somewhat simpler task than song-
type and identity classification). In the simpler single-pass
protocol illustrated in Fig. 3, a single acoustic data set is used
for analysis, with training data limited to enough song-type
labeled repertoire examples that classification models can be
built, typically five to ten examples of each song-type. In this
case song-type classification and individual clustering meth-
ods can be used to estimate the total number of individuals
within each song-type, and repertoire statistics can then be
used to give an overall population estimate within that data
set, with confidence intervals.

In the more complex mark-recapture protocol illustrated
in Fig. 4, two acoustic data sets are collected in accordance
with a closed population mark-recapture survey design. The
first set is labeled with song-type and individual identity and
used to build song-type and identity classification models.
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FIG. 3. Single pass protocol, resulting in an estimate of the number of
individuals present in the acoustic data set under analysis. Required sub-
tasks include song-type classification (Sec. II C 1), individual clustering
(Sec. 1 C2), and abundance estimation weighted by repertoire statistics
(Sec. II C 3).

The second data set then uses those models to automatically
split vocalizations into song-types using song-type classifi-
cation, cluster individuals within each song type using iden-
tity classification, and then match up the individuals in each
set to obtain the number of “marked” and “recaptured” ani-
mals for total population estimation.

There are four distinct tasks needed to implement these
protocols: song-type classification, identity clustering, iden-
tity cluster matching, and abundance estimation. Song-type
classification trains repertoire models using labeled data and
then classifies unknown data. Identity clustering groups data,
within one specific song-type, to find the number of clusters
representing unique individuals. Identity matching then
matches those identity clusters in the unlabeled data to a
specific known individual in the labeled training set, using a
speaker verification model. The final task is the population
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FIG. 2. Examples of song-type cb, song-variant cccceb, from two different individuals. Note the similarity in basic pattern but difference in timing and mean

frequency level.
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FIG. 4. Mark-recapture protocol, resulting in a net population estimate. The
data set on the left represents the “mark” data set used for building both
song-type models and individual identity models. The data set on the right
represents the “recapture” data set, which is separated into songs using
song-type classification (Sec. I C 1), separated by individual using indi-
vidual clustering (Sec. IT C 2), matched across data sets to identify “recap-
tures” using cluster matching (Sec. II C 3), after which a mark-recapture
abundance estimation model (Sec. II C 4) is used to estimate total popula-
tion.

assessment itself, which is accomplished in the single-pass
protocol using a weighted averaging of sub-population esti-
mates within each song-type and is accomplished in the
mark-recapture protocol using established maximum-
likelihood methods for abundance estimation, based on the
estimate of individuals in the two data sets plus how many
were present in both.

Section II C discusses in more detail the separate tasks
involved in the above scenarios, including song-type classi-
fication, individual identity clustering, individual cluster
matching, and population size estimation.

C. Individual sub-task methodology
1. Song-type classification using HMMs

Song-type classification is implemented using HMMs
(Clemins and Johnson, 2003; Trawicki et al., 2005). Classi-
fication features are based on Greenwood function cepstral
coefficients (GFCCs) (Clemins, 2005; Clemins and Johnson,
2006), normalized to minimize individual vocal variability.
Specifically, a 39-element feature vector is calculated con-
sisting of the 12 GFCCs plus energy, appended with first and
second derivatives. The waveforms are first Hamming win-
dowed with frame-size of 3 ms and overlap of 1.5 ms. The
Greenwood frequency warping constants are calculated using
26 filter banks spaced across the ortolan bunting hearing
range of fi, 400 Hz to f,,., 7400 Hz (Edwards, 1943) for
each frame.

Song-type classification is implemented using syllables
as the base unit. Each syllable is represented by a 15-state
HMM to capture the temporal pattern of that syllable. The
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corresponding HMMs are connected together for training
and recognition using a song-type language model which
constrains the output to a valid song-type. Figures 5 and 6
illustrate the language model and waveform-to-HMM match-
ing process.

The HMMs are trained using the Baum—Welch algo-
rithm (Baum et al., 1970), a maximum likelihood estimation
(MLE) method based on expectation maximization. Classifi-
cation on new data is accomplished using the Viterbi algo-
rithm (Forney, 1973) to identify the most likely syllable se-
quence given the waveform. All HMM tasks for these
experiments were implemented using the Cambridge Univer-
sity HMM Toolkit (HTK) version 3.2 (Cambridge University
Engineering Department, 2002).

2. Individual identity clustering using GMMs
and deltaBIC analysis

The clustering of vocalizations according to individual
identity focuses on accurately estimating the number of
unique individuals, each of which is represented by a cluster.
Because the number of individuals is completely unknown
and some individuals may vocalize very few times, this task
is much more difficult than that of song-type clustering. The
approach used here is based on a method called deltaBIC
(BIC denotes Bayesian information criterion) analysis, com-
monly used in human speech recognition systems for speaker
diarization, the task of associating dialog segments in a con-
versation with specific individuals (Trantor and Reynolds,
2006). DeltaBIC analysis (Ajmera and Wooters, 2003) uses
GMMs rather than HMMs as a model for each individual.

The deltaBIC method is based on differential values of
the BIC as the number of clusters is increased. The BIC
value itself is a similarity measure between two probability

Time

FIG. 6. Illustration of HMM to waveform matching for classification.
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density functions, here GMMs. The process starts with over-
clustering of the data sets and iteratively merges clusters and
retrains a new cluster until no pair of clusters is left with a
positive deltaBIC distance measure. The deltaBIC measure is
given by

deltaBIC= >, log p(X|6) = >, log p(X|6;)

XeD XeD,
- 2 log p(x16,), (1
XeDy

where x represents the feature vectors for each frame and
Dy, 6, and D,, 6, represent the two clusters and cluster pa-
rameters being considered for merging. When the clustering
process is complete, the remaining number of clusters is used
as an estimate of the number of individuals.

Features for individual bird clustering consist of a 39-
element GFCC feature vector similar to that used for song-
type classification, except implemented without mean and
variance normalization in order to preserve individually spe-
cific vocal characteristics. The individual bird models are 15
mixture GMMs, implemented in HTK using a single-state
HMM with a GMM observation model. The modeling and
clustering process is always done on data that consist of a
single song-type, i.e., individual identity clustering is always
performed after song-type classification or clustering, so that
differences in feature characteristics can be reliably associ-
ated with individual differences rather than vocalization dif-
ferences.

3. Identity cluster matching using speaker verification
models

To implement an acoustic mark-recapture protocol, it is
necessary to match the identity clusters from the recapture
data set to known individuals in the marking data set in order
to find the overlap, or “recaptures,” between the sets. The
process is similar to the HMM-based classification as done
for song-types, but is implemented using un-normalized
GFCC features as with the individual clustering, and also
adds a verification step to allow for classifying a vocalization
or group of vocalizations as unknown. This is accomplished
using a basic likelihood-ratio speaker verification approach,
as used in the field of human speaker recognition. The pro-
cess is implemented separately for each song-type, and then
individual results are globally combined. Figure 7 gives an
overview of this task.

To implement this, 15-state HMMs (one for each spe-
cific song-type) are created for each known individual in the
training set. In addition, a verification model called a univer-
sal background model is created for each song-type across all
individuals in the data set. A likelihood-ratio test is then
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implemented using all vocalizations in a cluster to discrimi-
nate whether the vocalizations in that cluster come from a
specific known individual or represent a new unseen indi-
vidual. The threshold of this accept/reject decision can be
varied to control the degree of confidence required to verify
that the cluster vocalizations match a known individual.

4. Abundance estimation

a. Single-pass protocol: Data set population estimation
using song distribution statistics. The single-pass protocol
is able to estimate the number of individuals in the data set
under analysis based on a known repertoire distribution for
each song-type. Within each song-type, an overall local
population estimate is obtained from the estimated number
of individuals within that song-type, found through identity
clustering, combined with knowledge of how many individu-
als within the population make that particular song. The final
estimated population is then the estimated number of birds
within a song type group divided by the percentage of birds
that typically use that song type.

These population estimates are then combined using an
average or a weighted average according to overall song-type
occurrence, leading to a final data set estimate as well as a
variance that represents margin of estimation error due to
dissimilarity in individual estimates.

If repertoire information regarding the percentage of indi-
viduals who make specific song-types is unknown, it is not
possible to directly combine the population estimates for
each song-type into an overall local population estimate.
However, in this case upper and lower bounds on the popu-
lation can still be established, with a lower bound equal to
the maximum number of individuals in any one category (an
implicit assumption that all individuals make that song-type)
and an upper bound equal to the sum of individuals in each
category (an implicit assumption that no individuals make
more than one type of song).

b. Abundance estimation using a mark-recapture
model. The mark-recapture protocol addresses the bird
abundance estimation problem using the MLE framework of
a standard mark-recapture model. A two sample mark-
recapture involves one session of catching and marking, and
another session of recapturing. In the context of this study,
catching refers to recording bird vocalizations in an initial
session, marking refers to labeling the vocalizations with
specific identities, and recapturing refers to recording a sec-
ond set of vocalizations and acoustically comparing identi-
ties.

The process of labeling and recapture or re-labeling in-
volves the tasks of supervised recognition, unsupervised
clustering, and identity cluster matching discussed in sec-
tions IT C I, IT C 2, and II C3. The previous steps, therefore,
provide the number of individuals (#;) in one data set, the
estimated number of individuals («,) in the second data set,
and the estimated number of individuals present in both data
sets (m,).

Given the variables u,, m,, and u,, the likelihood of popu-
lation estimate is computed using the Jolly-Seber (Seber,
1982) equation

Adi et al.: Acoustic censusing



TABLE I. Song-type recognition confusion matrix. Rows represent correct song-type categories, and columns represent the classifications made by the
algorithm so that entries along the diagonal represent correct classifications (accuracy of 89.6%).

ab c cb cd eb ef gb guf h hb hd huf jd kb
ab 1561 3 24 1 0 0 1 0 0 5 0 0 0 9
c 0 53 1 11 0 0 1 0 2 0 0 7 0 0
cb 1 2 706 11 0 0 85 1 0 2 0 2 1 1
cd 0 0 9 434 0 0 0 0 0 0 0 0 5 0
eb 1 1 4 0 384 11 1 0 0 0 0 0 0 0
ef 0 0 0 0 0 57 0 0 0 0 0 0 0 1
gb 3 1 19 1 0 0 320 5 0 3 0 0 0 37
guf 0 0 2 0 0 0 1 130 0 0 0 6 0 0
h 0 32 44 0 0 0 3 0 138 27 0 0 0 17
hb 0 0 0 0 0 0 0 0 0 32 0 0 0 1
hd 0 0 0 0 0 0 0 0 0 5 8 3 0 0
huf 0 2 7 41 0 0 0 1 0 2 22 285 0 1
jd 0 0 1 2 0 0 0 2 0 0 0 0 47 0
kb 0 1 0 0 0 0 0 0 0 0 0 0 0 87

2
LiNp) =11 (U‘Y
s=1 \U

M
)p”s(l - p)U‘V‘”f(ms )pmS(l —p)Mss
(2)

as a function of the unknown variables N (population) and p
(the probability of recapture). The N and p where the likeli-
hood function achieves its maximum value is the maximum
likelihood estimate of the population N.

s

lll. EXPERIMENTAL RESULTS

Before system integration, the individual task compo-
nents are evaluated separately, including song-type classifi-
cation, individual identity clustering, and identity cluster
matching. Following this each of the two protocols is evalu-
ated separately.

A. Evaluation of separate sub-tasks
1. Song-type classification

Speaker independent song-type classification experi-
ments are performed across 14 of the most common song-
types. Each song-type contains multiple song-variants. As
described previously, the experiment uses the 2001 data set
for training and the 2002 data set for evaluation (experiments
with those designations reversed yielded similar results).

Results are summarized in the classification confusion
matrix in Table I. Individual song-type classification accu-
racy ranges from a low of 50% (song-type hd, which had
only 16 examples, 5 of which were confused for type hb) to
a high of 98.8% (song-type kb), with an average overall ac-
curacy of 89.6%. Nearly all errors were made between two-
syllable song-types where one syllable was the same and the
other was closely related (often syllables b and d). Full con-
fusion matrices and more detailed analysis of these results
are available in Adi (2008). It is worth noting that perfect
song-type separation is not necessary to do the larger task of
counting individuals. Error in song-type classification tends
to lead to an upward bias in the ensuing step of individual
identity recognition and clustering. This can be compensated

J. Acoust. Soc. Am., Vol. 127, No. 2, February 2010

for by downward calibration of the final population estima-
tion methods, although no such adjustment has been made in
these experiments.

2. Individual identity clustering

The number of individuals in the test set was estimated
using identity clustering via the deltaBIC analysis discussed
in Sec. III A 1. Results of the deltaBIC clustering are shown
in Fig. 8 (only a subset of the calls are shown for readabil-
ity), with final estimated number of clusters, true number of
individuals, and error shown in Table II. Error ranges from
2.9% to 50% and is notably lower for the more common
song-types.

3. Identity cluster matching

An example of identity cluster matching is given in
Table III for the cb song-type. Identity clusters from the tar-
get data are shown in each row, with known individuals from
the training data in each column. The number in each cell
represents the “acceptance value” from the likelihood-ratio

700

600

5001

400

deltaBIC

300

200+

100 F

Number of birds

FIG. 8. DeltaBIC analysis curves for selected song-types. The peak value in
each curve is used as the estimated number of individuals for that song-type.
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TABLE II. Comparison of deltaBIC cluster estimates to known populations.

Estimated Known
number of number of
Song- individuals individuals Percent
type for song for song error
ab 35 34 29
cb 22 20 10.0
cd 12 9 333
eb 15 12 25.0
ef 3 2 50.0
gb 15 13 15.4
guf 6 4 50.0
huf 17 20 15.0
kb 9 7 28.6

test, with a positive value indicating that the cluster matched
more closely to a specific individual than the background
model. Here we have arbitrarily chosen a threshold of 1.0 as
a cutoff point, which results in a match to two different in-
dividuals in the original set, noted b3 and bll. The actual
number of individuals present in both the training and test
data sets is 3 for a matching error of 33%.

B. Population estimation evaluation
1. Single-pass protocol results

In the single-pass protocol, the goal is to estimate the
number of individuals within each song-type, and then use
those estimates to arrive at an overall estimate of the popu-
lation present within the data set. To do this, the calls are first
separated by song-type and clustered for individual identity

TABLE IV. Single pass protocol estimates of number of individuals in data
set.

Proportion of Estimated
individuals number of Estimated number of
for each individuals total individuals
Song song (%) for each song (true value=81)
ab 51.8 35 67.6
ch 26.8 22 82.1
cd 21.4 12 56.1
eb 12.5 15 120.0
ef 53 3 56.6
gb 26.8 15 56.0
guf 8.9 6 67.4
huf 10.7 17 158.9
kb 53 9 169.8

92.7+45 (14.4%)
79.0 %31 (2.4%)

Average = stdev (error)
Weighted average

using the deltaBIC approach, and then the number of clusters
is used to arrive at a local population estimate.

The song type-specific estimates for the test data were
shown previously in Table II. These can be used to project
overall local population estimates by dividing the song-type
estimate by the percentage of individuals in the population
that make each song. These separate estimates can then be
combined through an average or weighted average (to em-
phasize the more frequent song-types which give more accu-
rate estimates), as shown in Table IV.

The results indicate that the projected population esti-
mates tend to be biased on the high side, likely due to addi-

TABLE III. Song-type cb identity matching results (overlap=2 individuals, b3 and b11).

Known individuals from training set

bl b2 b3 b4 b5 b6 b7 b8 b9 b10 bll b12 bl3
Test set ¢l —6.1911 -4.8384  0.2598 -4.8071 -4.8664 —1.7287 -1.4306 -2.2258 -7.4660 —6.6986 —2.0243 -3.5749 —-4.4040
cluster  ¢2 -3.1360 -2.2224  1.0759 -3.5349 -3.7813 -2.4249 -1.1016 -29164 -5.1645 -3.5034 0.0294 -4.0007 -4.9570
c3  -1.2931 -4.0089 -0.9428 -7.4533  0.5253 -5.3972 -5.5260 -2.3992 -7.3673 -6.3985 0.7298 -2.5238 -7.1605
c4  -1.7191 -45681 0.1981 -7.0703  0.3497 -5.6525 -5.4115 -3.0178 -6.9223 -5.9974 1.1603 -3.5598 -7.2065
¢S =3.7740 -3.0045 -0.9646 -3.2053 -2.8519  0.1312 -1.1781 -1.4876 -4.4815 -4.4405 -2.4751 -3.5888 -1.6194
c6 -4.1879 -3.8325 -2.2324 -2.5864 -1.4738 -2.3203 -1.7527 -1.4110 -4.8890 -5.3197 -1.9983 -2.9655 -2.9405
c¢7  -4.0524 -3.7983 -0.1179 -1.9972 -3.6972 -3.7014  0.0847 -1.5080 -5.6273 -6.7853 —1.0934 -3.2686 -4.7191
c8 -1.6285 -1.0683 -2.5166 -3.7007 -1.7817 -2.0835 -2.3154 -1.9211 -4.3459 -4.5966 —0.9438 -3.1081 -2.8231
c9 0.4203 -3.9631 -3.2250 -6.2160 -0.4092 -4.9076 -3.0624 -3.7383 -5.5757 -4.7141 0.8304 -4.6439 -6.6938
cl0 -6.1358 -4.7771  0.5048 -2.9390 -5.8793 -0.0643 -0.9827 -2.1916 -7.4385 -6.1976 -2.9593 -52991 —4.8353
cll -6.0416 -5.6546 -4.8061 -1.5755 -1.3735 -3.8146 -1.4443 -1.3929 -6.0052 -7.2179 -4.3271 -1.7333 -4.4404
cl2 -3.1280 -3.3624 -0.9467 -3.5546 -3.8155 -2.6841 -1.1312 -3.4759 -1.5937 —-4.5810 -1.0143 -4.8189 -4.4083
cl3 -55911 -4.8649 02842 -6.4990 -4.7271 -4.2375 -2.6389 -1.0592 -7.7188 -6.7524 -0.0592 -3.8018 -6.1107
cld 64177 -4.8428 0.1138 54141 -4.8679 -3.0886 -2.9369 -2.7645 -6.2715 -7.2595 -0.6921 -4.7532 -5.7999
cl5 -5.5897 -6.7359  0.1789 -3.8895 -4.4871 -1.3617 -2.4674 -4.0671 -6.9669 -1.7588 -3.1082 -6.2582 -5.5221
cl6 -3.1855 -5.3260  0.6257 -4.6915 -3.3572 -2.0442 -1.1992 -3.6259 -5.3410 -1.8490 -2.0575 -5.4783 -5.9606
cl7 -5.0415 -6.5233 -2.2900 -1.9306 -4.1976 -4.9813 -1.2144 -3.6470 -4.0607 -7.0770 -2.6779 -6.1275 -5.9435
cl8 -5.8263 -6.6272 -4.4404 -2.7344 -0.0812 -2.7804 -2.1755 -0.2400 -7.9769 -7.7126 —-4.6130 0.1282 —4.1389
cl9 -1.8148 -1.8384 —1.4369 -3.8289 -1.8039 -3.3647 -1.9384 -3.0285 -4.5124 -3.7390 1.1541 -3.6040 -4.5305
c20 -0.9310 -3.3875 —4.1278 -3.6522 04725 -4.5987 -1.8132 -1.5103 -4.6590 -5.4152 —-1.8644 -3.8411 -4.7288
c21 -3.6516 -4.8461 -0.7648 -2.9481 -3.1399 -3.7093 -0.2985 -1.6854 -4.7744 -6.5691 —1.6969 —3.7253 —4.4330
c22 —-4.6355 -4.2748 04865 -2.9744 -3.8810 -3.0470 -0.1036 -1.6721 -6.2508 -7.0564 —1.7838 -3.6584 —5.1683
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tional non-individual variability present in the separate song-
type clusters due to the song-type classification error (which
as seen previously is typically in the 5%—15% range). There
is also significant variance in the projected estimates, which
occurs due to the original error in the per-song estimates
combined with errors in the song distribution statistics. The
song distribution statistics can have significant impact, espe-
cially for infrequently occurring song-types whose popula-
tion estimates are amplified by a large factor when projecting
to an overall estimate. For the data given here, there were, in
fact, substantial differences between the training set call dis-
tribution used for statistics and the test set used for popula-
tion estimates. For example, song-type huf had a distribution
of just over 10% in the first data set, but that increased to
nearly 25% in the second set. This resulted in a larger num-
ber of individuals in the test set for that song-type, but the
results were projected using the original statistics, so that
even though the per-call population estimate error was only
15%, the projected population error was over 90%. However,
since changes in repertoire statistics by necessity go both
ways, with some increasing and others decreasing, this
source of error tends to balance itself out.

Weighting the individual population estimates toward
the more frequent song-types not only significantly decreases
the error, but also tends to lower the variance. It is also
possible to compensate for the upward bias with a global
adjustment factor (which would likely be species dependent
but not data set dependent), but that has not been done here.

2. Mark-recapture protocol illustrative results

In the mark-recapture protocol, illustrated in Fig. 4,
song-type classification and speaker identification are per-
formed on the recapture data set to separate the calls by type
and remove vocalizations from known individuals in the
training set. Following this, identity clustering is performed
on the remaining vocalizations and used to determine the
total number of new individuals, and the mark-recapture
method is used to estimate overall population abundance.
Each song may be used to determine an abundance estimate,
and the results combined to get a single final estimate.

As discussed previously, the two ortolan data sets used
here were not collected in a specific mark-recapture protocol,
but instead are representative data sets over two successive
breeding seasons across multiple locations, too separated in
time and location to be used for a mark-recapture abundance
survey. Thus the results given here for this scenario should
be considered illustrative of the method rather than true es-
timates, and for this reason cannot be compared to overall
abundance numbers obtained through other survey methods
on this population.

The individual per-call population estimates and accura-
cies, and the overlap determination using the identity match-
ing technique, were presented previously in Tables I and III.
From these tables, we can see that for the cb song-type, the
number of individuals in the training set was 13 and the
number of identity clusters over the test set was 22, with two
individuals matched between the data sets. Given these num-
bers, the likelihood of the population estimate is computed
using the mark-recapture formula in Eq. (2). The likelihood
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FIG. 9. Likelihood contour plot for song cb (ML estimate=146, p=0.12).

function, shown in Fig. 9, reaches a maximum value when
p=0.12 and N=146, yielding a total abundance estimate of
146 individuals that use the cb song-type. A likelihood con-
fidence interval (95% probability level) is then constructed
using the variance of Chapman’s modified estimator (Seber,

1982), with a resulting estimate of N= 146 + 44.

Given a properly implemented mark-recapture survey,
this approach can be used to give an overall abundance esti-
mate for individuals that make a specific song-type. Reper-
toire information can then be used to combine these esti-
mates into an overall abundance estimate for the population,
as described previously and illustrated in Sec. III B 3.

3. Discussion

The results presented here are intended to illustrate the
feasibility of applying advanced methods for vocalization
and individual classification to the task of population estima-
tion. It is important to note that the two specific protocols
addressed in this work are by no means the only possible
approaches to incorporating models of individual vocal vari-
ability within an acoustic population assessment design. The
concept of “acoustic mark-recapture” can, in fact, be ex-
tended to essentially any type of mark-recapture survey, and
there are a wide variety of ways in which call-type or iden-
tity classification and/or clustering methods can be incorpo-
rated into these designs.

For example, within the single-pass protocol of Fig. 3, it
was assumed that initial training data were available for the
purposes of building the necessary song-type classification
models. However, it is possible to implement this step of the
process even if substantial training data are not available,
using song-type clustering rather than classification as a
front-end step. [This has, in fact, been implemented, for de-
tails see (Adi, 2008)]. Additionally, within the mark-
recapture protocol presented in Fig. 4, it was assumed that
individual identity was expertly labeled in the “marking”
data set in order to build individual identity models, which
negates some of the value of the automated methods, since
half of the data still require manual identity analysis. By
using identity clustering within both data sets, however, it is
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possible to extend the mark-recapture protocol and make it
more fully automated. This requires a different mechanism
for matching the individuals across the two data sets, which
is a focus of continuing work. A third example lies with the
way in which repertoire data were used for the purpose of
combining abundance estimates within individual song-types
into an overall population estimate, using repertoire statis-
tics. While the existence and knowledge of a stable repertoire
allow for higher estimation accuracy as well as providing a
much more accurate idea of confidence intervals for the es-
timate, it is not a necessary part of the protocol. In the case
of most terrestrial or marine species, the vast majority of
which have less sophisticated vocalization repertoires than
those of song-birds, it would be sufficient and much simpler
to identify one or two basic vocalization types which exist
across all or nearly all of the population and to use the re-
sulting population estimates directly.

There are number of key factors that must be considered
in generalizing this kind of approach to other species, popu-
lations, and habitat regions. Because the technique relies on
separation of vocalizations into call-type categories before
identity analysis, it is important to have some prior knowl-
edge of the underlying vocalization repertoire of a species as
well as the repertoire’s consistency across subpopulations
and geographic regions. The larger and more complex the
repertoire, the more difficult it is to separate call-type differ-
ences from individual differences. Species where individuals
have relatively large repertoires, with a corresponding fewer
number of vocalizations of each type, will thus be more dif-
ficult to accurately census. Clearly, in order for acoustic cen-
susing techniques to be feasible, it is necessary that a signifi-
cant majority of individuals within the species under study
vocalize relatively often and loudly enough to allow design
of a complete acoustic survey. An equally important but less
problematic requirement is that individuals within the spe-
cies possess sufficient individual vocal variability that they
can be separated and identified, which although generally
present in a very wide range of species, is certainly not guar-
anteed, and has not yet been carefully studied outside of
terrestrial and marine mammals and songbirds (for example,
in insects). This individual distinctiveness must be measur-
able and methods must be robust to the presence of environ-
mental and microphone channel noise, an area which is also
the focus of much research for human speaker identification
and verification tasks.

There are a number of parameter settings within the
classification and particularly clustering methods that may
have impact on the accuracy of results. The most substantial
of these currently is the threshold for matching the individu-
als within the marking data set to those within the recapture
data set, because the number of overlapping individuals is
the single biggest factor in resulting population estimate.

Overall, though, the promising initial results presented
here suggest that there is great potential for the inclusion of
individual vocal variability analysis into population assess-
ment designs. This work has significant potential for further
extension as well, including, in particular, application to dis-
tance sampling by using a point or line transect protocol for
recording the vocalizations combined with source localiza-
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tion methods for determining distances to the survey line,
which could yield accurate estimates of population density.
In general, the underlying approach introduced here creates a
means for integrating acoustics and individual vocal variabil-
ity into many different tools for population assessment.

IV. CONCLUSIONS

The results from this work strongly indicate that the in-
dividual distinctiveness of vocalizations can be used to accu-
rately estimate abundance within a data set as well as to
match individuals across data sets, and furthermore that this
methodology can be incorporated into a larger mark-
recapture survey design for overall population assessment.
We have illustrated this idea here for the ortolan bunting.

It is likely that nearly all vocally active animals have
individually distinct vocalization characteristics, as has al-
ready been observed across many different species. The
framework for abundance estimation presented in this paper
is thus applicable to any vocally active species with a distinct
vocal repertoire. This approach addresses the problem of
population assessment in a new way, employing algorithms
for automatic human speech and speaker recognition to esti-
mate animal abundance. The method has advantages over
physical marking techniques, as it is less invasive and is
more cost and labor effective. It also has the potential to be
more autonomous than current approaches to acoustic or vi-
sual surveying, since once basic repertoire models have been
built local population can be estimated from any continuous
recording. In general, if obtained under the larger umbrella
of a well-designed mark-recapture or distance sampling sur-
vey protocol, this mechanism may allow for a substantially
more accurate understanding of overall population structure
and abundance on a larger scale.
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