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Two approaches are commonly used for handling frictional con-
tact within the framework of the discrete element method (DEM).
One relies on the complementarity method (CM) to enforce a non-
penetration condition and the Coulomb dry-friction model at the
interface between two bodies in mutual contact. The second
approach, called the penalty method (PM), invokes an elasticity
argument to produce a frictional contact force that factors in the
local deformation and relative motion of the bodies in contact. We
give a brief presentation of a DEM-PM contact model that
includes multi-time-step tangential contact displacement history.
We show that its implementation in an open-source simulation
capability called Chrono is capable of accurately reproducing
results from physical tests typical of the field of geomechanics,
i.e., direct shear tests on a monodisperse material. Keeping track
of the tangential contact displacement history emerges as a key
element of the model. We show that identical simulations using
contact models that include either no tangential contact displace-
ment history or only single-time-step tangential contact displace-
ment history are unable to accurately model the direct shear test.
[DOI: 10.1115/1.4031197]

1 The Discrete Element Method (DEM)

Two alternative approaches have emerged as viable solutions
for large frictional contact problems in granular flow dynamics

and quasi-static geomechanics applications, both of which can be
broadly classified as discrete element methods (DEM). The so-
called complementarity method (CM) is generally favored within
the multibody dynamics community, see, for instance, Ref. [1]. In
this approach, individual particles in a bulk granular material are
modeled as rigid bodies, and nonpenetration conditions are writ-
ten as complementarity equations which, in conjunction with a
Coulomb friction law, lead to a differential variational inequality
form of the Newton–Euler equations of motion [2]. Not limited by
stability considerations, DEM-CM allows for much larger time
integration steps than the alternative penalty method (PM)-based
solutions, since the latter involve large contact stiffnesses that
impose strict stability conditions on all explicit time integration
algorithms. However, the DEM-CM involves a relatively complex
and computationally costly solution sequence per time step, since
it leads to a mathematical program with complementarity and
equality constraints, which must be relaxed to obtain tractable lin-
ear complementarity or cone complementarity problems [3].

More mature and widely adopted within the geomechanics com-
munity [4], DEM-PM can be viewed either as a regularization (or
smoothing) approach, which relies on a relaxation of the rigid-body
assumption, or as a deformable-body approach localized to the
points of contact between individual particles in a bulk granular
material [5,6]. In this approach, normal and tangential contact
forces are calculated using various laws [7–9], which are based on
the local body deformation at the point of contact. In the
contact–normal direction, this local body deformation is defined as
the penetration (overlap) of the two quasi-rigid bodies. In the tan-
gential direction, the deformation is defined as the total tangential
displacement incurred since the initiation of contact. Once contact
forces are known, the time evolution of each body in the system is
obtained by integrating the Newton–Euler equations of motion.
Since in this approach the contact force–displacement law is
derived from the elastic properties of the materials constituting the
contacting bodies, i.e., Young’s modulus and Poisson’s ratio, the
DEM-PM is capable of resolving statically indeterminate loading
conditions that can exist at the particle level in random granular
packings [10–12]. However, due to large contact stiffnesses and the
use of explicit time integration [13], the DEM-PM approach is lim-
ited to very small time integration step-sizes to ensure stability.

2 The Penalty Method or Soft-Body Approach

A granular or particulate medium problem is modeled in the
DEM using a massive collection of distinct rigid or deformable
elements having simple shapes that in many cases are spheres. In
the DEM-PM or soft-body approach, the elements are “soft”—
they are allowed to “overlap” or experience local deformation
before a corrective contact force is applied at the point of contact.
Once such an overlap dn is detected, by any one of a number of
contact algorithms, contact force vectors Fn and Ft normal and
tangential to the contact plane at the point of contact are calcu-
lated using various constitutive laws [7–9] based on the local
body deformation at the point of contact. In the contact–normal
direction, n, this local body deformation is defined as the penetra-
tion (overlap) of the two quasi-rigid bodies, un¼ dnn. In the
contact–tangential direction, the deformation is defined as a vector
ut that tracks the total tangential displacement of the initial contact
points on the two quasi-rigid bodies, projected onto the current
contact plane.

An example of a DEM-PM contact constitutive law, a slightly
modified form of which is used in the open-source codes, Chrono
[14] and LIGGGHTS [15], is the following viscoelastic model
based on either Hookean or Hertzian contact theory:

Fn ¼ f ð �R; dnÞðknun � cn �mvnÞ
Ft ¼ f ð �R; dnÞð�ktut � ct �mvtÞ

(1)

where u¼ unþut is the overlap or local contact displacement of
two interacting bodies, see Fig. 1. The quantities �m ¼ mimj=
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ðmi þ mjÞ and �R ¼ RiRj=ðRi þ RjÞ represent the effective mass
and effective radius of curvature, respectively, for contacting
bodies with masses mi and mj and contact radii of curvature Ri and
Rj. The relative velocity at the contact point, v¼ vnþ vt, and its
normal and tangential components vn and vt are computed as

v ¼ vj þXj � rj � vi �Xi � ri

vn ¼ ðn � vÞn
vt ¼ v� vn

(2)

where vi and vj are the velocity vectors of the centers of mass of
bodies i and j, Xi and Xj are the angular velocity vectors of bodies
i and j, and ri and rj are the position vectors from the centers of
mass of bodies i and j to the point of contact. For Hookean con-

tact, f ð �R; dnÞ ¼ 1 in Eq. (1); for Hertzian contact, one can let

f ð �R; dnÞ ¼
ffiffiffiffiffiffiffiffi
�Rdn

p
[9,16,17]. The normal and tangential stiffness

and damping coefficients kn, kt, cn, and ct are obtained through
various constitutive laws derived from contact mechanics, from
physically measurable properties for the materials of the contact-
ing bodies, such as Young’s modulus, Poisson’s ratio, and the
coefficient of restitution. Detailed descriptions of the contact mod-
els implemented in Chrono and LIGGGHTS, as well as alternative
contact models, are provided in Ref. [18].

The component of the contact displacement vector u in the
contact–normal direction, un¼ dnn, is obtained directly from the
contact detection algorithm, which provides the magnitude of the
“interpenetration” dn. It follows that un is parallel to the normal
component of the relative velocity vector vn at the point of con-
tact. However, in the plane of contact, the tangential contact dis-
placement ut and the tangential component of the relative velocity
vector vt may or may not be parallel to each other. In particular,
even if there is no relative tangential velocity at the contact point,
a tangential contact force may still be needed to support static
friction (or stiction) between the bodies. In the soft-body
approach, this tangential contact force is generated by a nonzero
tangential contact displacement vector.

Herein, the tangential contact displacement vector ut is formu-
lated as

ut ¼
ðt

t0

vtdt� n �
ðt

t0

vt dt

 !
n (3)

where t is the current time and t0 is the time at the initiation of
contact [19]. For the true tangential contact displacement history

model, the vector ut must be stored and updated at each time step
for each contact point on a given pair of contacting bodies from
the time that contact is initiated until that contact is broken. The
tangential (or shear) contact displacement history vector is then
given at time step i by

u�t;i ¼ ut;i�1 þ vt;i Dti

ut;i ¼ u�t;i � ðni � u�t;iÞni

(4)

where Dti is the integration time step size, ti¼ ti�1þDti, and a
subscript indicates the time step at which each variable is eval-
uated. The projection of u�t onto the contact plane is necessary to
ensure that ut is in the contact plane at each time step. Note that
ut,k�1 is set to zero at the initiation of contact, for some k.

A simpler but less effective tangential contact displacement
model suggested in the literature [20,21] is a single time step
approximation of Eq. (4), given for any time step by

ut ¼ vt Dt (5)

This model, which we will call pseudohistory, essentially assumes
that contact never persists for more than a single time step, and it
is unable to support a static friction force in the absence of relative
tangential velocity.

To enforce the Coulomb friction law, if jFtj > ljFnj at any
given time step, then before the contributions of the contact forces
are added to the resultant force and torque on the body, the
(stored) value of jutj is scaled so that jFtj ¼ ljFnj, where l is the
Coulomb (static and sliding) friction coefficient. For example, if
f(x)¼ 1 in Eq. (1), then

ktjutj > ljFnj ) ut  ut
ljFnj
ktjutj

(6)

Figure 1 illustrates the DEM-PM contact model described in
this section with a Hookean-linear contact force–displacement
law with constant Coulomb sliding friction. Once the contact
forces Fn and Ft are computed for each contact and their contribu-
tions are summed to obtain a resultant force and torque on each
body in the system, the time evolution of each body in the system
is obtained by integrating the Newton–Euler equations of motion,
subject to the Courant–Friedrichs–Lewy stability condition, which
requires [22] that Dt < Dtcrit �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmin=kmax

p
.

3 The Importance of Multistep Tangential Contact

Displacement History

To demonstrate the importance of using tangential displace-
ment history in the DEM-PM contact model, we first perform
direct shear simulations of small randomly packed specimens of
1800 and 5000 identical spheres in Chrono [14] and LIGGGHTS
[15]. The inside dimensions of the shear box are 6 cm in
length� 6 cm in width, and the height of the granular material
specimen is also approximately 6 cm. The spheres have a uniform
diameter of 5 mm. The random packing of 1800 spheres was ini-
tially obtained by a “rainfall” method, after which the spheres
were compacted with friction temporarily turned off to obtain a
dense packing. The resulting void ratio was approximately
e¼ 0.4, which corresponds to a dense packing [23,24]. For this
comparison, the material properties for spheres were taken to be
those corresponding to quartz—the density is 2500 kg/m3, the
interparticle friction coefficient is l¼ 0.5, Poisson’s ratio is
�¼ 0.3, and the elastic modulus is E¼ 8(1010) Pa. However, in
order to ensure a stable simulation with a reasonable time integra-
tion step-size of Dt¼ 10�5 s, the elastic modulus was reduced by
4 orders of magnitude to E¼ 8(106) Pa. The shear speed was
1 mm/s. The simulation geometry in its final position is shown in
Fig. 2 (top). Figure 2 (bottom) shows the shear–displacement
curves obtained by Chrono and LIGGGHTS with the same normal
and tangential contact force–displacement models. The labels

Fig. 1 DEM-PM contact model described in this section, with
normal overlap distance dn, contact–normal unit vector n, and
tangential displacement vector ut in the plane of contact (top),
and with a Hookean-linear contact force–displacement law with
constant Coulomb sliding friction (bottom)
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“true history” and “no history” refer to whether or not tangential
contact history is stored and used in the friction model. Included
in this comparison is the “pseudohistory” scenario, in which the
tangential contact displacement vector is approximated by the
product of the relative tangential velocity vector at the contact
point and the time step-size at any given time. This pseudohistory
approach is attractive, since unlike the true history alternative, it
avoids the storage of a tangential contact history vector over mul-
tiple time steps for each contact point. However, Fig. 2 shows that
the pseudohistory approximation is no better than ignoring the
tangential displacement history altogether for the quasi-static
direct shear test. This is explained by the observation that under
quasi-static (or static) deformation conditions, the dependence of
the pseudohistory approximation on the relative interparticle tan-
gential velocity, which is zero, effectively eliminates the interpar-
ticle tangential contact force and so renders the interparticle
friction coefficient l effectively zero.

Also noteworthy in Fig. 2 is the fact that the interparticle fric-
tion coefficient l for the spheres, which could also be described as
a microscale “interparticle friction angle” /l ¼ tan�1l, is
nowhere close to having the same value as the macroscale
“material friction coefficient” lmacro for the bulk granular mate-
rial. The latter, more commonly described as a bulk granular ma-
terial friction angle / ¼ tan�1lmacro, is the material parameter
that defines the yield surface for the bulk granular material
according to the Mohr–Coulomb yield criterion. The material fric-
tion angle / is also known as the angle of repose for the bulk
granular material. Nor should it be surprising that / 6¼ /l, since,
as noted in Ref. [25], even if the interparticle friction coefficient
l, and hence the microscale friction angle /l, is zero, the bulk
granular material friction angle / will in general not be zero.
Rather, if l¼ 0, then / ¼ w, where w is the dilation angle of the
granular material. Note that typically, w� 15 deg for densely
packed well-graded sands [26]. In particular, we note from Fig. 2

that, when the tangential contact displacement history model is
used, while l¼ 0.5 and hence /l � 26:6 deg for the spheres, the
peak ratio of shear stress to normal stress for the bulk granular
material is lmacro� 2, and hence /p � 63 deg ; and the residual
ratio of shear stress to normal stress for the bulk granular material
is lmacro� 1, and hence /r � 45 deg. On the other hand, when
the tangential contact displacement history model is not used,
lmacro� 0.25 throughout the simulation, and hence /p ¼ /r

¼ / � 14 deg. Note that all of these results are obtained in the
absence of any rolling or spinning friction.

To emphasize the importance of using multistep tangential con-
tact displacement history, it should be pointed out that other fac-
tors involved in the model, such as the values of kn, kt, cn, and ct,
turned out to play a secondary role in the outcome of the simula-
tion. In fact, a significant degree of variation exists in the literature
for the exact values of the contact stiffness coefficients kn and kt

[18]. The same is true for the mass proportional damping coeffi-
cients cn and ct. The latter are frequently simply chosen suffi-
ciently large to eliminate numerical noise in the DEM-PM
simulations. For example, the results of the DEM-PM simulations
of direct (ring) shear tests with periodic boundary conditions on
ASTM C 778-06 standard graded (quartz) sand with a log-normal
particle size distribution, mean diameter D50¼ 0.35 mm, and coef-
ficient of uniformity Cu¼ 1.7 were considered in Ref. [27]. In
these simulations, which employed the multistep tangential con-
tact displacement history model described herein, the damping
coefficients in Eq. (1) were taken to be cn¼ 40 s�1 and ct¼ 20 s�1,
and the contact stiffnesses kn and kt were taken to be constant,
with kn¼ 1012 N/m and kt¼ 8(1011) N/m. Despite these simplifica-
tions, and the fact that the simulations performed included no roll-
ing friction and the sand particles were modeled as spheres of
different sizes, the correct macroscale residual bulk granular
material friction angle of /r ¼ 30 deg [28] was reproduced
exactly. The only other material parameter that needed to be
specified, in addition to the particle size distribution, was the
interparticle friction coefficient l¼ 0.5, which is considered by
Mitchell and Soga [24] to be “reasonable for quartz, both wet and
dry.” Note that the values of the peak and residual friction angles
are strongly dependent on the particle size distribution [29], which
is why the residual friction angle for uniform quartz spheres can-
not be expected to be the same as that of quartz spheres (or well-
rounded quartz sand) with a log-normal particle size distribution.

4 Validation Against Direct Shear Experiments With

Uniform Glass Beads

Section 3 demonstrated the difference in results between the
true history and no history scenarios; herein we compare the true
history shear–displacement curves against experimental data
reported in Ref. [30]. Specifically, to verify that the Chrono
DEM-PM contact model with true tangential displacement history
currently does indeed accurately model the microscale physics
and emergent macroscale properties of a simple granular material,
Fig. 3 shows shear versus displacement curves obtained from both
experimental [30] (top) and Chrono -simulated (center and bot-
tom) direct shear tests, performed under constant normal stresses
of 3.1, 6.4, 12.5, and 24.2 kPa, on 5000 uniform glass beads. The
simulation geometry in its final position is similar to that shown in
Fig. 2 (top), except that the inside dimensions of the shear box are
now 12 cm in length� 12 cm in width. The height of the granular
material specimen in the box is still approximately 6 cm. In both
the experimental and simulated direct shear tests, the glass spheres
have a uniform diameter of 6 mm, and the random packing of
5000 spheres was initially obtained by a rainfall method, after
which the spheres were compacted by the confining normal stress
without adjusting the interparticle friction coefficient. The DEM-
PM simulations were performed in Chrono using a Hertzian
normal contact force model and the true tangential contact dis-
placement history with Coulomb friction. The material properties
of the spheres in the simulations were taken to be those

Fig. 2 Direct shear simulation setup (top) and shear versus
displacement results (bottom) obtained by Chrono [14] and
LIGGGHTS [15] for 1800 randomly packed uniform spheres
using the true tangential contact displacement history model of
Eq. (4), the pseudohistory model of Eq. (5), and no tangential
contact history
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corresponding to glass [30], for which the density is 2550 kg/m3,
the interparticle friction coefficient is l¼ 0.18, Poisson’s ratio is
�¼ 0.22, and the elastic modulus is E¼ 4(1010) Pa, except that
the elastic modulus was again reduced by several orders of magni-
tude, to E¼ 4(106) Pa (center) and E¼ 4(107) Pa (bottom) for
comparison, to ensure a stable simulation with a reasonable time
integration step-size of Dt¼ 10�5 s. The shear speed was 1 mm/s.

Figure 3 (center) shows that the DEM-PM direct shear simula-
tions performed in Chrono on 5000 glass spheres with E¼ 4(106)
Pa matches reasonably well the physical experiments for all but
the highest normal stress of 24.2 kPa. This observed error in the
simulation results, which increases with increasing normal stress,
is consistent with the fact that the contact stiffness for the spheres
in these DEM-PM simulations is 4 orders of magnitude smaller
than the stiffness of true glass beads. To explore the effect that the
value of the elastic modulus has on the DEM-PM direct shear

results, we have also performed the DEM-PM simulations using
an elastic modulus of E¼ 4(107) Pa for the spheres, which is still
3 orders of magnitude smaller than the true elastic modulus of
glass beads. Figure 3 (bottom) shows that increasing the value of
the elastic modulus of the spheres in the direct shear simulations
by an order of magnitude to E¼ 4(107) Pa; i.e., using a contact
stiffness for the spheres that is three rather than 4 orders of magni-
tude smaller than the physically correct contact stiffness, results
in a peak and residual shear stress that is much closer to the exper-
imentally observed values for all four of the constant normal
stresses tested. This is a significant observation, since it has often
been argued in the DEM-PM literature that decreasing the value
of the elastic modulus to allow a larger stable time step-size
should only affect the elastic portion of the shear displacement
curve for the bulk granular material. A comparison of Figs. 3
(center) and 3 (bottom), however, while confirming this difference
in the elastic portion of the shear–displacement curve, also reveals
a significant difference in the plastic or postyield portion of the
shear–displacement curve for the direct shear test, in particular
the peak and residual shear stresses, and the corresponding peak
and residual friction angles, for all four of the constant normal
stresses tested.

5 Conclusions

In relation to using computer simulation to capture the dynam-
ics of granular material, this technical note makes the following
two points. First and foremost, contrary to common perception,
eliminating the tangential contact history in the DEM-PM yields
wrong results in a shear test that, while basic and deceptively sim-
ple, remains difficult to simulate. Moreover, a quasi-history
approach that only relies on the tangential deformation at the cur-
rent time step produces inaccurate results. Second, a comparison
against experimental data suggests that the simulation results are
only moderately impacted by the values selected for the DEM-PM
model parameters, of which the normal stiffness kn turns out to
quantitatively influence the most the outcome of the numerical
experiments. Specifically, over a broad spectrum of values for kt,
cn, and ct, the simulation results are qualitatively acceptable for
artificially low values of kn, a compromise made in order to allow
stable numerical integration at larger simulation time steps. How-
ever, more accurate results call for higher values of kn that come
close to the theory predicted values for this parameter.
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