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Calculations of energy transfer in the recombination reaction that forms ozone are carried out within
the framework of the mixed quantum/classical theory and using the dimensionally reduced 2D-model
of ozone molecule, with bending motion neglected. Recombination rate coefficients are obtained
at room temperature for symmetric and asymmetric isotopomers of singly and doubly substituted
isotopologues. The processes of resonance formation, spontaneous decay, collisional dissociation,
and stabilization by bath gas (Ar) are all characterized and taken into account within the steady-state
approximation for kinetics. The focus is on stabilization step, where the mysterious isotopic η-effect
was thought to originate from. Our results indicate no difference in cross sections for stabilization of
scattering resonances in symmetric and asymmetric isotopomers. As practical results, the general and
simple analytic models for stabilization and dissociation cross sections are presented, which can be
applied to resonances in any ozone molecule, symmetric or asymmetric, singly or doubly substituted.
Present calculations show some isotope effect that looks similar to the experimentally observed
η-effect, and the origin of this phenomenon is in the rates of formation/decay of scattering resonances,
determined by their widths, that are somewhat larger in asymmetric isotopomers than in their symmet-
ric analogues. However, the approximate two-dimensional model used here is insufficient for consis-
tent and reliable description of all features of the isotopic effect in ozone. Calculations using an accu-
rate 3D model are still needed. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4945779]

I. INTRODUCTION

Anomalous enrichment of stratospheric ozone in heavy
isotope 18O1,2 and the mass-independent fractionation (MIF)
of oxygen isotopes in the laboratory ozone experiments3,4

were discovered more than 30 years ago. Over this period
of time many geoscientists and physical chemists in both
experimental and theoretical communities tried to elucidate
the molecular level origin of these phenomena, but despite
any substantial progress made on the topic, several gray areas
still remain.5–8

It was established experimentally that the MIF of oxygen
occurs due to large and unusual isotope effect in the
recombination reaction that forms ozone

O2 + O → O∗3, (1)

O∗3 +M → O3 +M∗. (2)

Here M denotes a quencher (can be any atmospheric molecule,
or Ar atom in the laboratory experiments) whose role is to
carry away energy released by the metastable intermediate O∗3
(scattering resonance, excited rotationally and vibrationally
above dissociation threshold). Experimental studies of various
isotopic substitutions in this reaction indicate that asymmetric
ozone molecules are formed at higher rates, compared to
their symmetric isotopomers.9–14 For example, consider ozone
molecule substituted with one 18O atom, a singly substituted
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dmitri.babikov@mu.edu

isotopologue. It has two possible isotopomers: asymmetric
16O16O18O and symmetric 16O18O16O. Experimental results
indicate13 that for asymmetric 16O16O18O the total rate of
formation is 10% higher than the rate of formation of symmet-
ric 16O18O16O. In Earth’s atmosphere this singly substituted
isotopologue is most abundant (besides the standard ozone), so
understanding the origin of this phenomenon has paramount
importance for interpretation of the MIF of oxygen in general.
A similar effect occurs in the doubly substituted isotopologue
of ozone (rare in the atmosphere, but readily produced in
the laboratory experiments to obtain more insight into the
process). Namely, for asymmetric isotopomer 16O18O18O, the
total rate of formation is almost 16% higher compared to the
formation rate of symmetric isotopomer 18O16O18O.13 Overall,
all symmetric ozone molecules (five different isotopologues,
see Refs. 13 and 14) exhibit very similar formation rates that
are about 20% lower than the general trend of asymmetric
isotopomers.13

Rigorous theoretical explanation of this phenomenon is
still missing. In early 2000’s, in order to incorporate this
feature into their statistical model of ozone formation, Gao
and Marcus introduced η-effect empirically,15–17 based on
experimental evidence. They hypothesized that this non-
statistical effect may occur during the stabilization step of
the recombination reaction, process (2), and argued that in
symmetric molecules the density of dynamically active states
may be lower, compared to asymmetric molecules.15 Marcus
also discussed several other alternative sources of η-effect,
such as spin-orbit coupling18 in the asymptotic region of the
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potential energy surface (PES), resonance coupling effect,19

chaotic behavior of trajectories at high energies18 and, more
recently, the Coriolis coupling effect20,21 that may be different
in symmetric and asymmetric isotopomers of O3. While all
these are legitimate hypotheses, no convincing proof has ever
been shown for any of these.

Instead of postulating the effect and then trying to find
a suitable explanation for it, it would be more valuable to
develop a rigorous theoretical description for the recom-
bination process, based on first principles. Thus, in 2000s
several groups proposed quantum dynamical treatments of the
process (2), using standard methods of inelastic scattering,
such as time independent coupled-channel formalism. In
order to make these full-quantum calculations computationally
affordable, Charlo and Clary22,23 employed a sudden-collision
assumption for O∗3 + Ar encounter, and a frozen-bending
approximation for O∗3 vibrations. Unfortunately, their ground-
breaking work suffered from the use of Jacobi coordinates
for description of the multi-channel process and was not
particularly successful in reproducing the isotope effect. The
next study by Xie and Bowman24 offered a considerable
improvement by implementing the full-dimensional treatment
of O∗3. However, their calculations have been carried out for
very few (just three) combinations of impact parameter of
Ar and orientation of O∗3. Ivanov and Schinke25 reported
calculations of state-to-state transitions that were converged
with respect to the number of partial waves, but their basis
set included just the bound states of O3, and no scattering
resonances O∗3. Notably, no isotope effects due to symmetry
were found in any of these calculations. Origin of the
mysterious η-effect remained unidentified.

One recognizes that the exact quantum calculations are
prohibitively expensive for the process (2) by looking at
the work done by the groups of Clary,22,23 Bowman,24 and
Schinke.25 They all used the sudden collision approximation
and carried out calculations for non-rotating ozone molecule
(J = 0) only, and also each of them employed at least one more
simplifying assumption in addition to the first two. Neither
incorporated lifetimes of O∗3 into their treatments of kinetics.

More recently, in early 2010s,26–30 we proposed an
alternative method for theoretical treatment of the process
(2)—a mixed quantum/classical theory for collisional energy
transfer and ro-vibrational energy flow. Our method is still
approximate, but it allows bypassing some of the difficulties
described above. First of all, our method allows avoiding the
sudden collision approximation and treating the dynamics of
O∗3 + Ar scattering in a time-dependent manner (classically).
This is important, since a typical O∗3 + Ar collision is not
sudden, but is more like a slow adiabatic process, where the
fast vibrational motion of O∗3 is able to adjust continuously
to position of Ar atom during the scattering process. Second,
we incorporate the rotation of O∗3 including a broad range of
rotational excitations, up to J ∼ 90 and compute the rotational
quenching of O∗3 in collisions with Ar (also classically).
These classical approximations are justified because, in this
reaction, we do not expect any quantum effects due to
scattering of heavy Ar or due to rotation of heavy O∗3.
However, quantum mechanics is retained for description of the
vibrational motion in O∗3, which incorporates zero-point energy

and symmetry of vibrational modes, quantization of states,
scattering resonances, including accurate calculations of their
formation/decay rates and their collision-induced dissociation.

In this paper we apply an improved version of our
mixed quantum/classical theory to the most important
four isotopomers of ozone introduced above: 16O16O18O,
16O18O16O, 16O18O18O, and 18O16O18O. Calculations are
carried out within a dimensionally reduced (approximate)
model of O3.31 The main goal is to obtain some insight into
the process (2), stabilization of scattering resonances O∗3 by
collision with Ar, where, according to Marcus’s hypothesis,
the η-effect might originate from.

II. THEORETICAL FRAMEWORK

A. Reaction mechanism

Kinetics of the processes (1)-(2) is described within
micro-canonical framework, where different scattering reso-
nances of O∗3 are treated as different chemical species.32–34 For
each scattering resonance O(i)

3 at energy Ei the processes
affecting its population [O(i)

3 ] are considered and the
corresponding rate constants are introduced. Those are as
follows.

(i) Formation of O(i)
3 from isotopically labeled reagents

characterized by the second-order rate coefficient k form
i

O2 + O → O(i)
3 . (3)

(ii) Spontaneous unimolecular decay of O(i)
3 onto products

characterized by the first-order rate coefficient kdec
i

O(i)
3 → O2 + O. (4)

(iii) Stabilization of O(i)
3 by collision with bath gas particle M

characterized by the second-order rate coefficient kstab
i

O(i)
3 +M → O3 +M∗. (5)

(iv) Collision-induced dissociation O(i)
3 onto oxygen atoms

and molecules characterized by the second-order rate
coefficient kdiss

i

O(i)
3 +M∗ → O2 + O +M. (6)

The coefficients k form
i and kdec

i for each scattering resonance are
related to each other through the micro-canonical equilibrium
constant:28 k form

i = kdec
i Keq(Ei). This equilibrium constant for

each scattering resonance is computed statistically, using
known formula.28 All other moieties are obtained from
quantum mechanics. Namely, the width Γi of quantum
scattering resonance O(i)

3 gives us directly the value of
kdec
i = Γi. The values of kstab

i and kdiss
i are computed

from corresponding cross sections in the O(i)
3 +M collision

dynamics simulations. One important difference from our
previous work28 is that we do not employ the low-pressure
assumption anymore and do not neglect the finite decay rates.
Instead, similar to analysis of experimental recombination
kinetics,9–14 we assume the steady-state conditions for
concentration of each state O(i)

3 , which allows deriving analytic
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expression for the third-order recombination rate coefficient
of the overall reaction,30

κrec =

i

Γi Keq(Ei)
Γi + (kstab

i + kdiss
i )[M] kstab

i , (7)

where the sum is over all scattering resonances O(i)
3 .

Note that in our model of kinetics we neglect back exci-
tations, O3 +M∗ → O(i)

3 +M, assuming that concentration of
formed ozone [O3] is small, and transitions between different
scattering resonances, O(i)

3 +M → O( j)
3 +M, assuming that

their populations are entirely determined by equilibrium with
reagent and product combinations of O2 + O. At low and
moderate pressures of the bath gas [M] these processes are
less important than those discussed above.

It is instructive to express the rate coefficient kstab
i through

cross section σstab
i , and the equilibrium constant Keq(Ei)

through the ratio of relevant partition functions. This allows
rewriting Eq. (8) in the following transparent form:28

κrec = C

i

wi σ
stab
i , (8)

in order to emphasize that the recombination rate coefficient
is computed as a weighted sum of stabilization cross sections
σstab

i over all scattering resonances. The temperature- and
pressure-dependent unit-less weight wi for each resonance is
given by

wi =
Γi (2J + 1) e−Ei/kT

Γi + (kstab
i + kdiss

i )[M] . (9)

The factor C, common for all resonances and introduced for
convenience, is

C =
(

8kT
π µ

)1/2 1
Qel Qtr Qrot

. (10)

Here µ is the reduced mass for collision of Ar + O3. The
partition functions Qel, Qtr, and Qrot of the reactant/product O2
in Eq. (11) are computed statistically.28

B. Adiabatic bending model of ozone

Quantum dynamics calculations presented in this paper
were carried out within the dimensionally reduced model of O3
in which the bond distances R1 and R2 were treated explicitly

(two most relevant vibrational degrees of freedom), while the
bending motion of O3 was restricted to the ground vibrational
state.26–28 The first step of this procedure is minimization of
three-dimensional potential energy surface (PES) of ozone
along the bending coordinate, for each set of fixed values of
R1 and R2.31 This procedure gives a relaxed two-dimensional
PES, Vpot(R1,R2). A contour line of this surface is given in
Fig. 1, which exhibits the covalent well of O3 connected
to two O + O2 entrance/exit channels. Schrodinger equation
(time-independent for the spectra and time-dependent for the
collision dynamics) is solved on this surface by expanding the
vibrational wave function Ψ(R1,R2) over the two-dimensional
grid of points, optimized to the shape of the surface, and using
the FFT technique to compute the action of kinetic energy
operator T̂kin onto Ψ(R1,R2). Further details of our approach
can be found in Refs. 26–28.

In such dimensionally reduced model the excited bending
states of O3 are missing, so the density of states is lower
compared to true ozone molecule, roughly, by a factor of
seven. This simplifies the problem and makes calculations of
O∗3 +M collision dynamics computationally affordable. The
retained vibrational states describe stretching of bonds in
O3. They include not only two normal-mode progressions
of states—the symmetric-stretch and the asymmetric-stretch
states but also two local-mode progressions of states, found
closer to dissociation threshold and associated with O· · ·OO
and OO· · ·O vibrations. Examples of wave functions for such
states, for the case of the doubly substituted isotopomer, are
given in Fig. 1. Nodal structure of the normal mode wave-
function in Fig. 1(a) follows the symmetric-stretch coordinate
(R1 + R2)/

√
2, while the nodal structure of the local mode

wave-function in Fig. 1(b) follows the bond-stretch coordinate
R2. Although the dimensionally reduced model does not offer
a complete description of the ozone forming reaction, still, it
allows obtaining new and valuable insight into the stabilization
process (2). Detailed tests of this model were reported in our
earlier publication (Sec. IV A on Page 12 of Ref. 26), using
the PES of Babikov et al.35

C. Mixed quantum/classical dynamics

Dynamics of the ozone-forming reaction is treated using
the mixed quantum/classical theory for collisional energy

FIG. 1. Relaxed 2D PES of ozone used
in this work. Contours are given to em-
phasize two formation/decay channel
of the recombination reaction. Chan-
nels are labeled by the correspond-
ing reagents O2 + O producing either
(a) symmetric 18O16O18O, or (b) asym-
metric 18O18O16O. Typical vibrational
wave functions for a normal mode state
N(8,0) and a local mode state L(0,10)
in the dimensionally reduced model of
ozone are also shown.
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transfer and ro-vibrational energy flow developed earlier.
All details of this method can be found in Refs. 26–28.
Here we give a brief summary and emphasize new features,
relevant to the isotope effect. The vibrational motion of O∗3 is
treated using the time-dependent Schrödinger equation and the
wave-packet technique. This allows capturing quantum effects
associated with molecular vibration, such as zero-point energy,
quantization of states, tunneling, scattering resonances, and
symmetry. At the same time, the advantage is taken of
the quasi-classical regime usually valid for rotational and
translational degrees of freedom at room temperature. Namely,
the collisional O∗3 +M motion responsible for scattering is
described by classical trajectories. The rotational motion
of O∗3 is also treated classically within the fluid rotor
approach.26,36,37 The rotation-vibration interaction in O∗3 is
included by introducing the centrifugal potential term Vrot into
the vibrational Hamiltonian

Ĥ = T̂kin + Vpot(R1,R2) + Vrot(R1,R2) + Vopt(R1,R2). (11)

This term represents rotational energy of the molecule and
is a continuous smooth function of its shape, i.e., the
function of its internal vibrational coordinates R1 and R2.
This approach is expected to work better than any other
method of angular momentum decoupling, since the tensor
of inertia of the molecule is not fixed at a single chosen
molecular configuration, but changes smoothly as molecular
shape is distorted by evolution of vibrational wave function
Ψ(R1,R2). We compute Vrot(R1,R2) numerically on the same
grid of points used to propagate the vibrational wave packet
Ψ(R1,R2). In this way, the rotational motion of the molecule,
described classically, affects its vibrational motion, treated
with quantum mechanics. The energy is exchanged between
translational, rotational, and vibrational degrees of freedom,
but the total energy is conserved.26,36,37 The sudden collision
approximation is avoided, while rotation of O∗3 (including
rotational quenching/excitation by collisions with M) is treated
explicitly in a broad range of J values, here up to J ∼ 90.

Finally, the complex absorbing potential Vopt(R1,R2) in
the following analytic form:38

Vopt(R1,R2) =



0, R ≤ Rc,

−iAc exp[−Wc/(R − Rc)], R > Rc,
(12)

where R =


R2
1 + R2

1 is introduced into the asymptotic part
of the PES in order to compute energies Ei and width
Γi of scattering resonances O(i)

3 as complex eigenvalues
Ei − i (Γi/2), which correspond to complex eigenfunctions
Φi(R1,R2). Based on a rigorous convergence study, the
following set of potential parameters was chosen: Rc = 7a0,
Wc = 6a0, and Ac = 104 cm−1.

D. State-to-state transitions

In the mixed quantum-classical method the probabilities
of vibrational state-to-state transitions, for each collision
trajectory, are obtained by projecting the final wave packet
Ψ(R1,R2) onto the vibrational eigenstates Φ j(R1,R2) of the
final rotational state,

pj, i =
�

Φ j(R1,R2)|Ψ(R1,R2)��2. (13)

Index i labels initial states O(i)
3 and means that at the initial

moment of time (before the O∗3 +M collision) the wave
packet was started in a given vibrational eigenstate Φi(R1,R2).
Transition probabilities pj, i can be used to define stabilization
probability for each initial vibrational state as

Pstab
i =

E<0
j

pj, i. (14)

Note that summation in Eq. (14) is over the final vibrational
states at energies below dissociation threshold, E j < 0, i.e.,
over all stable states of ozone. This is a very natural definition
of stabilization, where the processes of rotational quench-
ing/excitation of the molecule are taken into account. Gener-
ally, the final rotational state of the molecule (after collision)
is different from the initial rotational state (before collision),
due to rotational energy transfer going on simultaneously
with vibrational energy transfer. Equation (14) is another new
feature of this work, different from the previous work,28 where
the purely vibrational quenching was regarded as stabilization,
without taking into account the rotational energy transfer.
It appears, however, that rotational energy loss is the main
stabilization pathway.

Probability of dissociation is computed as

Pdiss
i = 1 −


j

pj, i, (15)

where the sum is over all bound states and narrow scattering
resonances. Cross sections are obtained from probabilities
Pstab
i and Pdiss

i as average over the collision trajectories.
Namely, for stabilization, we use

σstab
i = πb2

max


traj

b Pstab
i

traj
b

, (16)

and similar for dissociation. Note that the sum over trajectories
includes sampling over the thermal distribution of O∗3 +M
collision energies. Furthermore, the number of trajectories for
different rotational states, within given vibrational state, are
different and proportional to their weights wi. Convergence is
checked with respect to the values of κrec

i that give contribution
of each vibrational state into the overall recombination
process: κrec =


vib

κrec
i . In this formula, summation is over

vibrational states only. The rotational states are sampled as
initial classical conditions for each vibrational state, and are
summed into κrec

i = C

rot

wi σ
stab
i , including their weights. This

sampling procedure is explained in detail in Ref. 28.

III. RESULTS AND ANALYSIS

A. Energies and widths of resonances

Wave functions Φi(R1,R2), energies Ei and widths Γi
were computed for symmetric and asymmetric isotopomers
of singly and doubly substituted ozone isotopologues:
16O18O16O, 16O16O18O, 18O16O18O, and 18O18O16O, within
the dimensionally reduced model discussed above, for
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0 ≤ J ≤ 90, |K | ≤ J. The values of energies for J = 0 are
given in Table I, together with state assignments in terms
of the normal N(v1,v2) or local L(v1,v2) vibration mode
quantum numbers. For the normal mode states the values
of v1 and v2 designate symmetric and asymmetric stretch
quanta, respectively, while for the local mode states they
give the number of quanta along R1 and R2 (see Fig. 1). For
each isotopomer in Table I, fourteen upper vibrational states,
most relevant to the recombination process, are included
(out of 51 states in 16O18O16O, 16O16O18O, and 18O16O18O,
and 54 states in 18O18O16O). These states exhibit up to
eleven quanta of vibrational excitation. At J = 0 all these
states are bound vibrational states at energies Ei < 0. They
become scattering resonances only when a sufficient amount of
rotational excitation lifts them above the dissociation threshold
(E > 0).

The widths of states Γi (decay rates of resonances)
change smoothly as J and K increase. In Fig. 2 we present
several typical dependencies of Γi(J,K). Frames (a) and
(c) give examples of the normal mode states in symmetric
and asymmetric isotopomers, respectively, while frame (e)
corresponds to the local mode state. Color indicates the
absolute value of Γi, with green corresponding roughly to
the interval from Γi ≈ 5 · 10−3 to 2 · 10−2 cm−1. We found
that for the normal mode states the width of resonance Γi
does not increase beyond 10−2 cm−1, even at very high levels
of rotational excitation (J,K). This can be rationalized by
the vibrational character of these states, which is a pure
symmetric stretch (e.g., N(8,0) in frames (a) and (c) of Fig. 2).
Namely, exciting vibrations of two bonds in O3 simultaneously
and in-phase does not promote dissociation onto O2 + O.
This is reflected by increased lifetimes and relatively narrow
resonance widths of these states. In contrast, for the local

mode states (such as L(0,10) in frame (e) of Fig. 2) resonances
exhibit much broader widths, up to Γi ≈ 2 · 10 cm−1 (red color)
because the vibrational character of this state correlates well
with the asymptotic O2 + O motion. Typically, the values of
Γi for the local mode states are significantly larger, compared
to Γi for the normal mode states, for all isotopic combinations
we studied.

The corresponding weights wi of resonances are also
presented in Fig. 2, frames (b), (d), and (f). These pictures
show very clearly which values of J and K are important for
the recombination process (red color, wi ≈ 5 and higher) and
which are not (dark blue color, wi < 0.05). We see that at
very high levels of rotational excitation (J > 60) the weights
wi of resonances are small. This is due to the Boltzmann
factor in Eq. (9), vanishing at high energies. At low J,
when resonances sit deep behind the centrifugal barrier, their
weights wi can also be small, but in such cases due to very
small values of Γi in the numerator of Eq. (9). For example, at
P = 0.1 bars the weights are negligible if the values of widths
are Γi ≤ 10−5 cm−1 (dark blue color). Larger weights are
obtained for broader resonances, 10−3 ≤ Γi ≤ 10−2 cm−1 (cyan
to green colors), at moderate levels of rotational excitation
(20 < J < 60), at energies near the top of centrifugal barrier
or slightly above it. The weights close to the maximum
possible wi ≈ (2J + 1) e−Ei/kT are obtained for resonances
with Γi ∼ 3 · 10−1 cm−1 (lemon-yellow color). Typically, the
values of wi for the local mode states are significantly higher
compared to wi for the normal mode states.

Note also that all three examples presented in Fig. 2
belong to the doubly substituted case. Similar pictures for
singly substituted isotopologue can be found in the recent
paper.30 Importantly, both singly and doubly substituted
isotopologues share the properties discussed above.

TABLE I. Energies, assignments, and contributions to recombination rates for upper vibrational states of symmetric and asymmetric ozone isotopomers in the
dimensionally reduced model.

Symmetric 16O18O16O Asymmetric 16O16O18O Symmetric 18O16O18O Asymmetric 18O18O16O

#
Evib

(cm−1)
Modes,
quanta

1035κ(i)
(cm6/s)

Evib

(cm−1)
Modes,
quanta

1035κ(i)
(cm6/s)

Evib

(cm−1)
Modes,
quanta

1035κ(i)
(cm6/s)

Evib

(cm−1)
Modes,
quanta

1035κ(i)
(cm6/s)

54 −38.6 L(2,7) 0.124
53 −118.7 L(7,2) 0.354
52 −150.5 L(11,0) 0.338
51 −241.5 N(8,0) 0.120 −194.0 N(8,0) 0.275 −353.5 N(8,0) 0.070 −384.7 N(8,0) 0.058
50 −355.1 L(8,1) 0.433 −207.0 L(8,1) 0.665 −376.6 L(1,8) 0.304 −392.5 L(1,8) 0.424
49 −355.1 L(1,8) 0.433 −315.0 L(10,0) 0.689 −376.6 L(8,1) 0.304 −467.9 L(0,10) 0.389
48 −409.6 N(7,1) 0.072 −318.9 L(1,8) 0.324 −456.4 L(0,10) 0.352 −517.7 L(8,1) 0.121
47 −456.1 L(10,0) 0.382 −331.0 N(7,1) 0.111 −456.4 L(10,0) 0.352 −537.6 N(7,1) 0.051
46 −456.1 L(0,10) 0.382 −435.0 L(0,10) 0.331 −470.7 N(7,1) 0.136 −597.3 L(10,0) 0.111
45 −573.9 N(6,2) 0.278 −466.1 N(6,2) 0.176 −589.2 N(6,2) 0.122 −688.2 N(6,2) 0.062
44 −734.3 N(5,3) 0.054 −601.9 N(5,3) 0.084 −739.8 N(5,3) 0.028 −825.2 N(5,3) 0.026
43 −785.0 N(4,4) 0.030 −671.4 N(4,4) 0.055 −761.2 N(4,4) 0.036 −900.4 N(4,4) 0.011
42 −959.3 L(9,0) 0.012 −814.8 L(9,0) 0.030 −974.8 L(0,9) 0.008 −968.0 L(0,9) 0.01
41 −959.3 L(0,9) 0.012 −922.1 L(7,1) 0.028 −974.8 L(9,0) 0.008 −1115.3 L(9,0) 0.001
40 −1080.2 L(7,1) 0.010 −952.4 L(0,9) 0.006 −1079.9 L(1,7) 0.005
39 −1080.2 L(1,7) 0.010 −1028.5 L(1,7) 0.009 −1079.9 L(7,1) 0.005
38 −1240.8 N(7,0) 0.002 −1196.9 N(7,0) 0.002 −1339.7 N(7,0) 0.000

Total 2.228 Total 2.784 Total 1.724 Total 2.089
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FIG. 2. Rotational distributions of res-
onance widths Γi(J,K ) and weights
wi(J,K ), in the left and right columns,
respectively, for several typical vibra-
tional states in the dimensionally re-
duced model of ozone: ((a) and (b)) The
normal mode state N(8,0) of symmet-
ric 18O16O18O; ((c) and (d)) the nor-
mal mode state N(8,0) of asymmetric
18O18O16O; ((e) and (f)) the local mode
state L(0,10) of asymmetric 18O18O16O.

B. Stabilization and dissociation cross sections

Stabilization cross sections σstab
i , to be used in Eq. (8),

were computed from the collision dynamics simulations using
Eq. (16), for each ro-vibrational metastable state O(i)

3 . Note
that for each vibrational state of Table I there are hundreds
of relevant rotational states (see Fig. 2), and the amount
of data produced in our calculations is huge. In order to
make sense of all these data we tried to analyze how the
computed values of σstab

i depend on various characteristics
of the ro-vibrational states. For example, we found that there
is a reasonable correlation between the total energy of the
scattering resonance Ei, and the stabilization cross section
σstab

i . We analyzed these σstab
i (Ei) dependencies for the states

of different character (normal vs. local vibration modes),
for symmetric vs. asymmetric isotopomers, and for singly
vs. doubly substituted isotopologues. Figure 3 summarizes
our findings. Each frame of this figure combines data for all
ro-vibrational states in Table I, of all characters (both local and
normal modes together) of both singly and doubly substituted
isotopologues. The only difference is that Fig. 3(a) contains
data for symmetric isotopomers only, while Fig. 3(b) contains
the same data for asymmetric isotopomers. In this way, we
can test the old hypothesis that asymmetric isotopomers of
ozone are stabilized at a higher rate compared to symmetric
isotopomers.29,30

Visually, the data of Figs. 3(a) and 3(b) are very similar.
To quantify the differences (if any) between stabilization
cross section for symmetric and asymmetric isotopomers,
we tried to fit each of the distributions by a rather typical
double-exponential model of energy transfer28

σstab(E) = σstab
0

(
exp


−E
γ


+ c exp


−E

d

)
. (17)

The values of fitting coefficients are given in Table II. The
corresponding curves are plotted on top of Figs. 3(a) and
3(b), and together in Fig. 3(c). Clearly, there is a very little
difference between them, within 7%, while the statistical error
of our calculations for each case is close to 4%. Importantly,
we do not see that the resonance states of asymmetric ozone
are stabilized more efficiently. In fact, we see that stabilization
cross sections of resonances in symmetric molecules are a bit
higher (just opposite to what we expected to find), but this
difference is small and is not really meaningful, since it is
within statistical error of sampling.

The third curve in Fig. 3(c) represents a fit of all
data, symmetric and asymmetric together, i.e., of the data
in Figs. 3(a) and 3(b) combined. The fitting coefficients for
this case are also given in Table II. This common fit is
very similar to the individual fits for two symmetries, which
strongly supports the following conclusion: We see no isotope
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FIG. 3. Distribution of stabilization cross sections for scattering resonances
in (a) symmetric and (b) asymmetric isotopomers of ozone. Frame (c) gives
three fits by the double-exponential model: one for each distribution (red for
symmetric and blue for asymmetric) and the common fit of all data together
(green).

effect in stabilization cross sections that could potentially lead
to a significant and robust η-effect.

To build a better model for energy transfer we introduced,
in addition to the double-exponential dependence on total
resonance energy Ei, the dependence on vibrational energy of
the resonance Evib

i , expressed in the following way:

TABLE II. Fitting parameters for analytic dependence of Eq. (17) for stabi-
lization cross section.

σstab
0 (a2

0) γ (cm−1) d (cm−1) c

Symmetric 131.60 202.58 1968.72 0.2778
Asymmetric 122.39 193.88 2523.20 0.2653
Common 123.92 218.40 2881.77 0.2430

σstab(E,Evib) = σstab
0

(
exp


−E
γ


+ c exp


−E

d

)
×

(
1 − Av

1 + (Evib/kT)2
)
. (18)

For this model, for the fit of both symmetric and asym-
metric isotopomers together (i.e., common fit of all the data
we obtained), the values of fitting parameters are σstab

0
= 184.46 a2

0, γ = 177.41 cm−1, d = 1462.92 cm−1, c = 0.2881,
and Av = 0.9939. Overall, the quality of this analytic model
is very reasonable. For example, if we replace the actual
computed values of σstab

i (Ei) for each ro-vibrational state
by those obtained from the Eq. (18), the final value of the
recombination rate coefficient κrec in Eq. (8) changes only by
+5.6%, +2.7%, +4.6%, and +2.2% in the cases of 16O18O16O,
16O16O18O, 18O16O18O, and 18O18O16O, respectively.

Following the same lines, the dissociation cross sections
for both isotopomers of both isotopologues were fit together
by the following analytic expression:

σdiss(E) = σdiss
0

*
,
1 + tanh




(E − Ediss
0 )

γdiss



+
-
. (19)

This fit was done separately for the local and normal modes,
because the local modes dissociate easier and exhibit larger
dissociation cross sections.28 The values of fitting parameters
are σdiss

0 = 9.59 a2
0, γdiss = 480 cm−1, and Ediss

0 = 651 cm−1

for the normal modes and σdiss
0 = 46.76 a2

0, γdiss = 239 cm−1,
and Ediss

0 = 544 cm−1 for the local mode states. The quality
of analytic model (19) is very reasonable. For example, if
we replace the actual computed values of σdiss

i (Ei) for each
ro-vibrational state by those obtained from expression (19),
the final value of the recombination rate coefficient κrec in Eq.
(8) changes only by −0.1%, +0.2%, −1.0%, and −1.5% in the
cases of 16O18O16O, 16O16O18O, 18O16O18O, and 18O18O16O,
respectively.

If we use two models together, namely, if we replace
the actual computed values of both σstab

i (Ei) and σdiss
i (Ei) for

each ro-vibrational state by those obtained from the Eqs. (18)
and (19), the final value of the recombination rate coefficient
κrec in Eq. (8) changes only by +5.2%, +2.9%, +2.8%, and
−0.3% in the cases of 16O18O16O, 16O16O18O, 18O16O18O, and
18O18O16O, respectively.

C. Discussion

The analytic models derived above for stabilization and
dissociation cross sections of ozone resonances represent
the most important practical result of this paper. Very little
information about efficiency of collisional stabilization is
available from literature and, to our best knowledge, no
information at all about the collision-induced dissociation
cross sections for ozone. One experimental datum we are
aware of is the average value of energy transfer ⟨∆E⟩
= 18 cm−1 derived by Troe39 for 16O16O16O, which is
not directly relevant to the absolute value of stabilization
cross sections for resonances. It is probably true to say
that theoretical progress on modelling the recombination
reaction that forms ozone was hindered, mostly, by the
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absence of virtually any information on stabilization step (2).
Further confusion/complication came from a widely accepted
hypothesis that stabilization cross sections for symmetric
and asymmetric isotopomers of ozone may be significantly
different and would be the source of the mysterious η-effect.
In contradiction with this hypothesis, we found no significant
difference in stabilization and dissociation cross sections for
symmetric and asymmetric isotopomers. The analytic models
we propose here, Eqs. (18) and (19), are applicable to both
symmetric and asymmetric isotopomers (with the same set of
fitting coefficients) and provide a very reasonable description
of the process. They can be used in conjunction with more
accurate models of the ozone molecule itself, such as the
full-dimensional 3D model of O3,40 which would be the major
improvement over the dimensionally reduced simplified 2D
ozone model employed here.

Although we do not see any appreciable difference in
stabilization cross sections for symmetric and asymmetric
isotopomers, we see significant differences in recombination
rate coefficients, which looks very much like the η-effect.
Namely, the last row of Table I gives the total recombination
rate coefficient, summed over all vibrational states. For
asymmetric isotopomer the rate coefficient is higher than
that for symmetric isotopomer, by 25% and 21% in the singly
and doubly substituted cases, respectively. These numbers
can be compared with experimental data, but indirectly, as
explained below.

Consider a singly substituted asymmetric product
16O16O18O. It can be formed from two entrance channels of
the PES that correspond to two distinct reactant combinations:
16O + 16O18O and 16O16O + 18O. In the experiment13 the rate
coefficients for these processes are 1.45 and 0.92 (relative to
the rate coefficient of the usual 16O + 16O16O → 16O16O18O).
Likewise, the symmetric product 16O18O16O can be formed
from two channels, but those are equivalent: 16O + 18O16O
and 16O18O + 16O, and the experimental rate coefficient for
each is 1.08 (relative to the same Ref. 13). Thus, the ratio
of total formation rates of 16O16O18O to 16O18O16O should
be computed as (1.45 + 0.92)/(1.08 + 1.08) = 1.10, which
means that it is 10% higher for asymmetric isotopomer,
compared to the symmetric one. Similar calculations for
the doubly substituted case, 18O18O16O vs. 18O16O18O,
using experimental data of Ref. 13, give (0.92 + 1.50)/(1.04
+ 1.04) = 1.16. Thus, asymmetric 18O18O16O is formed at a
rate that is 16% higher, compared to the corresponding sym-
metric isotopomer 18O16O18O. These experimental numbers,
10% and 16%, are somewhat smaller than the isotope effect
that we see in our calculations: 25% and 21% for the singly
and doubly substituted cases, respectively.

However, it should be pointed out that mechanistic
interpretation of experimental data is not straightforward.
It should probably be taken into account that a recent analysis
by Troe39 indicates that at room temperature the contribution
of energy transfer mechanism, Eqs. (1) and (2), is only ∼40%
of the total rate, with almost ∼60% coming from the chaperon
mechanism of recombination that, usually, is not associated
with any anomalous isotope effects.41 This information can
be taken into account by adding to our computed rates of
the energy transfer mechanism (Table I) a contribution of

the chaperon mechanism that is isotopomer independent,
with the estimated rate computed as 6/4 of the energy-
transfer rate, averaged over four considered isotopomers:
κ = 6/4 × 2.207 × 10−35 = 3.310 × 10−35(cm6/s). Obviously,
this would be a rough estimate. With such adjustment the
computed rate coefficient for asymmetric isotopomer is higher
than that for symmetric isotopomer by 10% and 8% in the
singly and doubly substituted cases, respectively. This is
somewhat closer to the experimentally observed differences
(10% and 16%, respectively13) but this agreement should not
be overemphasized, due to roughness of the adjustment made,
and also due to the reasons explained below.

First of all, the absolute values of recombination rate
coefficients in our calculations are, roughly, one order of
magnitude smaller compared to experimental values.13,39 This
is due to employment of the dimensionally reduced 2D model,
where the excited bending states of O3 are missing, and
the density of states is much smaller. The second problem,
also due to employment of the dimensionally reduced 2D
model, is that the differences between 16O18O16O, 16O16O18O,
18O16O18O, and 18O18O16O are artificially exaggerated, since
the number of states is small (only upper fourteen vibrational
states contribute, see Table I). In such situation the difference
in the properties of one state in symmetric and asymmetric
isotopomers, such as energy, or vibrational character, often
has large influence, and the isotope effect, to some extent, is
accidental. For example, from Table I, we see that although
all four considered ozone molecules have the same number of
the normal mode states (with slightly different energies), the
isotopomer 18O18O16O has three more local mode states (#52,
53, and 54, see Table I) that are not present in 16O18O16O,
16O16O18O, or 18O16O18O. This is because only one isotopomer
18O18O16O has two heavy isotopes in the same bond, which
produces the local vibrations of 18O18O moiety, characterized
by lower frequency and more states. Also, one can spot in
Table I that the upper normal mode state N(8,0), which is #51,
is characterized by significantly lower energies in the doubly
substituted cases 18O16O18O and 18O18O16O, compared to
the singly substituted 16O18O16O and 16O16O18O, which also
reduced significantly its contribution to the recombination
process. Such significant differences are not expected to
occur between isotopomers or isotopologues of the real ozone
molecule, where the density of states is higher (roughly by a
factor of seven), and evolution of one state can’t make a big
difference.

We can point out that the η-effect we observe in our
calculations comes from widths Γi (or decay rates) of
scattering resonances that tend to be larger in asymmetric
ozone molecules than in their symmetric isotopomers,30 which
translates into larger weights wi of resonances, and finally into
larger recombination rates for asymmetric ozone molecules.
This effect was discussed in detail in our recent paper30

and is also consistent with recent work on atom-exchange
process in O2 + O collisions, where significant isotope effects
were observed and attributed to scattering resonances in
O3 alone, without any bath gas involved.42–45 However,
for rigorous description of this effect in symmetric and
asymmetric isotopomers of both singly and doubly substituted
isotopologues, the dimensionally reduced 2D model of O3
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is insufficient. It appears to be too rough. More accurate
full-dimensional 3D description of ozone molecule is still
needed.

It is also important to note that a new PES for ozone
is now available from the recent work of Dawes and co-
workers.46–48 It has a flat shoulder in the channels region,
instead of a reef. This surface already allowed to improve
temperature dependence of the atom-exchange rates in O2 + O
collisions43–45 and may help to resolve some of the issues
discussed above.

IV. CONCLUSIONS

In this paper we presented the mixed quantum/classical
calculations of the energy transfer mechanism for the
recombination reaction that forms ozone, within the
dimensionally reduced 2D model of ozone molecule, with
bending motion neglected. Calculations were carried out at
room temperature for symmetric and asymmetric isotopomers
of singly and doubly substituted isotopologues: 16O18O16O,
16O16O18O, 18O16O18O, and 18O18O16O. The processes of
resonance formation, decay, collisional dissociation, and
stabilization were all characterized and taken into account.
The focus was on the stabilization step where, according to the
well accepted hypothesis, the isotopic η-effect might originate
from. We found no difference in cross sections of stabilization
of scattering resonances in symmetric and asymmetric
isotopomers. We also derived simple and general analytic
models for stabilization and dissociation cross sections
that can be applied to resonances in any ozone molecule
(symmetric or asymmetric, singly or doubly substituted). This
model will be used in the future studies of the ozone forming
reaction, where the full-dimensional accurate 3D model for
ozone vibrations will be employed. Present calculations show
some isotope effect, that looks similar to the experimentally
observed η-effect, and the origin of this phenomenon is in
formation/decay rates of scattering resonances, determined
by their widths, that are somewhat larger in symmetric
isotopomers than in their symmetric analogues. However,
the present two-dimensional model is too rough and incapable
of describing consistently all the features of the isotopic effects
in ozone. Calculations using an accurate 3D model,40 and a
new PES of Dawes,46–48 are ongoing and will be reported
elsewhere.
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