Marquette University e-Publications@Marquette

Chemistry Faculty Research and Publications

Chemistry, Department of

2-4-2016

Reactivity of Acyclic (pentadienyl)iron(1+) Cations with Phosphonate Stabilized Nucleophiles: Application to the Synthesis of Oxygenated Metabolites of Carvone

Do W. Lee *Marquette University*

Charles Felix Manful Marquette University

Jayapal Reddy Gone *Marquette University*

Yuzhi Ma Marquette University

William Donaldson Marquette University, william.donaldson@marquette.edu

Accepted version. *Tetrahedron*, Vol. 72, No. 5 (February 4, 2016): 753-759. DOI. © 2016 Elsevier. Used with permission.

Marquette University

e-Publications@Marquette

Department of Chemistry Faculty Research and Publications/College of Arts and Sciences

This paper is NOT THE PUBLISHED VERSION; but the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in th citation below.

Tetrahedon, Vol. 72, No. 5 (February 4, 2016): 753-759. <u>DOI</u>. This article is © Elsevier and permission has been granted for this version to appear in <u>e-Publications@Marquette</u>. Elsevier does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

Reactivity of Acyclic (pentadienyl)iron(1+) Cations with Phosphonate Stabilized Nucleophiles: Application to the Synthesis of Oxygenated Metabolites of Carvone

Do W. Lee Department of Chemistry, Marquette University, Milwaukee, WI Charles F. Manful Department of Chemistry, Marquette University, Milwaukee, WI Jayapal Reddy Gone Department of Chemistry, Marquette University, Milwaukee, WI Yuzhi Ma Department of Chemistry, Marquette University, Milwaukee, WI William A. Donaldson Department of Chemistry, Marquette University, Milwaukee, WI

Abstract

The addition of phosphonate stabilized carbon nucleophiles to acyclic (pentadienyl)iron(1+) cations proceeds predominantly at an internal carbon to afford (pentenediyl)iron complexes. Those complexes bearing an electron withdrawing group at the σ -bound carbon (i.e., **13/14**) are stable and isolable, while complexes which do not contain an electron withdrawing group at the σ -bound carbon undergo CO insertion, reductive elimination and conjugation of the double bond to afford cyclohexenone products (**21/22**). Deprotonation of the phosphonate **13/14** or **21** and reaction with paraformaldehyde affords the olefinated products. This methodology was utilized to prepare oxygenated carvone metabolites (±)-**25** and (±)-**26**.

Graphical abstract

Keywords

Dienyl-iron cations, Nucleophilic addition, Horner–Emmons olefination, Cyclocarbonylation, Terpenes

1. Introduction

Nucleophilic addition to cationic polyenyl-metal complexes is an exemplar of organometallic chemistry. Where these reactions proceed in good yield and with high regioselectivity, they have been utilized in organic synthesis.¹ There are numerous examples of the reaction of (cyclohexadienyl)- and (cycloheptadienyl)Fe(1+) cations (**1a**–**d**, Eq. 1) with stabilized carbon nucleophiles such as malonates,^{2a=} ¹β-ketoesters,^{2k=m}β-diketones,^{2n=p} 2-cyano acetates,^{2a=r} and arylsulfonyl acetates.^{2s=t}

In spite of their potential as synthons for Horner–Emmons olefination, there are few examples of the reaction of dienyl-iron cations³ or other organometallic cations⁴ with phosphonate stabilized carbon nucleophiles. Stephenson, et al., reported the reaction of (cyclohexadienyl)Fe(CO)₃⁺ cations **3a/b** with the potassium salt of α -phosphoramide acetates proceeded with good regioselectivity, but in only

modest yields (Eq. 2).³ Furthermore, the products **4** were not further processed into the corresponding alkenes via reduction of the ester and subsequent elimination.

We and others have examined the reactivity of acyclic (pentadienyl)iron(1+) cations **5** with nucleophiles.⁵ While certain nucleophiles attack at the pentadienyl terminus to generate *E,Z*-diene complexes **6**, other nucleophiles react via attack at an internal pentadienyl carbon to generate 2-substituted (3-pentene-1,5-diyl)Fe complexes **7**. This latter reactivity is relatively unique to acyclic (pentadienyl)Fe⁺ cations compared to their cyclic counterparts **1**. Complexes **7a**, in which the R¹ substituent attached to the iron-bonded sp³carbon is not an electron-withdrawing group, are not stable and these eventually decompose to cyclohexenone products **8**, via CO insertion followed by reductive elimination and olefin isomerization.⁶² In contrast, those complexes **7b** which possess an electron-withdrawing R¹ substituent are stable, isolable species which are resistant to CO insertion. Oxidatively induced-reductive elimination of complexes **7b** generate vinylcyclopropane-carboxylates **10**.⁸

We herein report on the reaction of acyclic (pentadienyl)iron cations with phosphonate stabilized carbon nucleophiles, culminating in an application to the synthesis of oxygenated metabolites of carvone.

2. Results and discussion⁹

Addition of the anion generated from trimethyl phosphonoacetate or diethyl (2oxopropyl)phosphonate to (1-methoxypentadienyl)iron cation (**11**)¹⁰proceeded at the C2 carbon to afford the 2-substituted (pentenediyl)iron complexes **13a** or **13b** (<u>Scheme 2</u>, <u>Table 1</u>). In a similar fashion, addition of the anions generated from trimethyl phosphonoacetate or [6-(*t*butyldiphenylsilyl)oxy]-2-oxohexylphosphonic acid dimethyl ester¹¹ with cation (**12**)^{8k} afforded the (pentenediyl)iron complexes **14a** or **14b**. Complexes **13a**, **13b**, **14a**, **14b** were obtained as inseparable mixtures of diastereomers at the indicated (*) carbon, as determined by ¹H NMR spectroscopy. Each exhibited two doublet signals in the range δ 0.01–0.80 ppm which were assigned to the hydrogen attached to the σ -bound carbon (H¹) of each diastereomer.^{86,1k} That **13a**, **14a**, and **13b** were diastereomeric at the indicted carbon was further corroborated by their conversion to a single enoate or enone (**15a**, **16a** or **15b**) upon Horner–Emmons olefination with paraformaldehyde.

Scheme 1. Nucleophilic attack on acyclic pentadienyl-iron cations 5.

Scheme 2. Addition of phosphonate stabilized nucleophiles to (1-methoxycarbonylpentadienyl)iron(1+) cations, and subsequent HWE olefination. Ar=2,5-dimethoxyphenyl; R"=(CH₂)₄OSiPh₂t-Bu. Reagents: *i*) Na⁺ – CH[P(O)(OR')₂R]; *ii*) base, paraformaldehyde.

Table 1. Addition of phosphonate stabilized nucleophiles to (1-methoxycarbonylpentadienyl)iron(1+) cations, and subsequent HWE olefination (E=CO₂Me)

R⁵	R	R'	Product (yield)	Base	Product (yield)
Н	CO ₂ Me	Me	13a (69%)	NaH	15a (84%)
Н	C(O)Me	Et	13b (66%)	NaH	15b (50%)
Ar	CO ₂ Me	Me	14a (85%)	<i>n-</i> BuLi	16a (90%)
Ar	C(O)R″	Me	14b (98%)		

Ar=2,5-dimethoxyphenyl; R"=(CH₂)₄OSiPh₂t-Bu.

Deprotection of the silvl ether of alkylated β -ketophosphonate **14b**, gave the alcohol **17** (<u>Scheme 3</u>), which upon Swern oxidation afforded aldehyde **18**; both **17** and **18** were obtained as a mixture of diastereomers. Subsequent intramolecular Horner–Emmons olefination of **18** gave the cyclohexenone **19**as a single diastereomer. Notably, a signal at δ 6.20 ppm in the ¹H NMR spectrum corresponds to H3' and signals at δ 198.4, 143.9, and 141.8 ppm in the ¹³C NMR spectrum correspond to the carbonyl and olefinic carbons of the cyclohexenone fragment.

Scheme 3. Intramolecular Horner–Emmons olefination to generate cyclohexenone (pentenediyl)iron complex **19**.

The regioselectivity for addition of the phosphonate stabilized nucleophiles to cation **11** is similar to the addition of malonate, arylsulfonyl acetates and alkenyl Grignards to this same cation.^{Bacefil} In contrast, the regioselectivity for addition to **12** is considerably greater than that for addition of alkenyl Grignards to this cation.^{Bacefil} Additionally, the functionality introduced onto the (pentenediyl) ligand by the present sequence of nucleophilic addition/Horner–Emmons olefination would not be available within an alkenyl Grignard reagent.

In contrast to the above results, reaction of (pentadienyl)iron cation **20** with sodium trimethyl phosphonylacetate gave a mixture of regioisomeric cyclohexenones **21a/22a**, each of which consisted of a mixture of diastereomers at the indicated (*) carbon (<u>Scheme 4</u>, <u>Table 2</u>). The ratio of **21a:22a** was determined by integration of the ¹H NMR signals for H3 of **21a**compared to the integration of the H3 signal for **22a**. Olefination of the mixture of **21a/22a** with paraformaldehyde gave a mixture of **23a/24a**; a pure sample of **23a** could be obtained by column chromatography. In a similar fashion, reaction of **20** with sodium diethyl (2-oxopropyl)phosphonate or with sodium diethyl (phenylsulfonyl)-methanephosphonate gave a mixture of **21b/22b** or **21c** respectively; each of which consisted of a mixture of **23b/24b**, while olefination of **21c** gave the vinylsulfonate **23c**. The structures of **21** and **23** were

assigned as 5-substituted-2-methylcyclohexenones on the basis of their NMR spectral data. In particular, the signals for H-3 and the Me-2 appear at ca. δ 6.7–6.6 (m) and 1.75–1.80 (s) ppm, respectively, in their ¹H NMR spectra, while the signals for C1, C2, C3 and Me-2 appear at ca. δ 199, 135, 144, and 15.9 ppm, respectively, in their ¹³C NMR spectra.

Scheme 4. Addition of phosphonate stabilized nucleophiles to (1-methylpentadienyl)Fe(CO)³⁺ cation.

Table 2. Addition of phosphonate stabilized nucleophiles to (1-methylpentadienyl)iron(1+) cations, and subsequent HWE olefination^a

R	OR'	Product (ratio,ª yield)	Product (ratio,ª yield)
CO₂Me	OMe	21a+22a (10:1, 87%)	23a+24a (10:1, 69%)
COMe	OEt	21b+22b (6:1, 74%)	23b+24b (6:1, 89%)
SO₂Ph	OEt	21c (47%)	23c (72%)

^aRatio of constitutional isomeric products determined by ¹H NMR integration of the β-hydrogen signals.

Formation of cyclohexenone product **21** is rationalized by nucleophilic attack at an internal pentadienyl carbon of **20** to afford the (pentenediyl)iron complex **9** (R¹=H, R⁵=Me, <u>Scheme 1</u>). Carbonyl insertion followed by reductive elimination and subsequent conjugation of the double bond affords **21**. 10-Hydroxycarvone (**25**, <u>Scheme 5</u>) has been isolated from *Hyssopus cuspidatus*, a plant used in Chinese folk medicine for the treatment of fever and broncusus asthma.^{12a} This terpene has also been isolated as a minor carvone metabolite from cultured cells of the Madagascar periwinkle, *Catharanthus*

roseus,^{12b} and as an excreted metabolite of carvone in the urine of rabbits,^{13a} and human volunteers,^{13b,c} while carvonic acid (**26**) has also been isolated as a human metabolite of carvone.^{13b,c} 10-Hydroxycarvone has been prepared from carvone by regioselective chlorination at C10 and subsequent solvolysis of the halide.^{14,15} Saponification of **23a** afforded carvonic acid **26**. Attempted reduction of **26** with borane gave a complex mixture of products. Alternatively, α-deprotonation of the cyclohexenone **23a**with LDA, followed by addition of DIBAL gave **25** after workup. The spectral data obtained for **25** and **26** were consistent with their literature values.^{13b,14a}

Scheme 5. Synthesis of oxygenated metabolites of carvone.

3. Conclusions

In contrast to the addition of α -phosphoramide acetate anions to (cyclohexadienyl)iron(1+) cations, the addition of phosphonate stabilized carbon nucleophiles to *acyclic* (pentadienyl)iron(1+) cations occurs primarily at an internal dienyl carbon to form (pentenediyl)iron complexes. The fate of the (pentenediyl)iron products depends on the presence or absence of an electron withdrawing ester substituent at the σ -bound carbon. Horner–Wadsworth–Emmons olefination of the phosphonate addition products generates (2-alkenyl-3-pentene-1,5-yl)iron complexes or 5-alkenyl-2-methyl-2-cyclohexenones. The latter are suitable precursors for the preparation of 10-hydroxycarvone and carvonic acid.

4. Experimental

4.1. General data

All reactions involving moisture or air sensitive reagents were carried out under an nitrogen atmosphere in oven-dried glassware with anhydrous solvents. THF and ether were distilled from sodium/benzophenone. Purifications by chromatography were carried out using flash silica gel (32– 63 μ). NMR spectra were recorded on either a Varian Mercury+ 300 MHz or a Varian UnityInova 400 MHz instrument. CDCl₃, CD₃OD, d₆-acetone were purchased from Cambridge Isotope Laboratories. ¹H NMR spectra were calibrated to 7.27 ppm for residual CHCl₃, 3.31 ppm for CD₂HOD, or 2.05 ppm for d₅-acetone. ¹³C NMR spectra were calibrated from the central peak at 77.23 ppm for CDCl₃, 49.15 ppm for CD₃OD, or 29.92 ppm for d₆-acetone. Coupling constants are reported in Hz. Elemental analyses were obtained from Midwest Microlabs, Ltd., Indianapolis, IN, and high-resolution mass spectra were obtained from the University of Nebraska Center for Mass Spectrometry and the COSMIC lab at Old Dominion University.

4.2. Tricarbonyl(5-(methoxycarbonyl)-4-(1-methoxycarbonyldimethylphosphonomethyl)-2-penten-1,5-diyl)iron. (±)-13a

To a stirring suspension of sodium hydride (175 mg, 7.2 mmol) in dry THF (120 mL) at 0 °C under N₂, was added trimethyl phosphonoacetate (885 mg, 4.86 mmol). The reaction mixture was stirred for 30 min, and then a solution/suspension of (±)-**11** (2.00 g, 4.86 mmol) in dry THF (60 mL) was added. The reaction mixture was stirred overnight, and then quenched with water. The mixture was diluted with CH_2Cl_2 and the layers were separated. The aqueous layer was extracted once with CH_2Cl_2 and the combined organic extracts were washed once with saturated aqueous NaCl, and dried (MgSO₄), and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, ethyl acetate) to afford the product (±)-**13a**(372 mg, 69%) as a yellow oil; δ_{H} (400 MHz, CDCl₃) 4.69–4.39 (2H, m, H-3 and H-4), 3.81–3.55 (14H, m, 4×OCH₃ and H-2 and H-6), 2.67–2.39 (2H, m, H-5exo and H-5endo), 0.33 and 0.01 (1H total, 2×d, *J* 8.7 Hz each, H-1). δ_{C} (partial, 100 MHz, CDCl₃) 210.2, 209.9, 209.7, 209.6, 203.5, 203.3, 179.7, 179.6, 167.3 (d, *J*_{CP} 5.3 Hz), 166.7 (d, *J*_{CP} 4.7 Hz), 97.9, 97.4, 62.7, 62.6, 60.8, 60.6, 37.4 (*J*_{CP} 3.8 Hz), 37.0 (*J*_{CP} 4.0 Hz), 13.3 (*J*_{CP} 1.9 Hz), 12.1 (*J*_{CP}14.1 Hz). HRMS (FAB): MNa⁺–3CO, found 385.0110. C₁₂H₁₉O₇PFeNa requires 385.0114.

4.3. Tricarbonyl(5-(methoxycarbonyl)-4-(1-diethylphosphono-2-oxopropyl)-2-penten-1,5-diyl)iron. (±)-13b

The reaction of the anion generated from diethyl (2-oxopropyl) phosphonate (240 mg, 1.21 mmol) and sodium hydride in dry THF with cation **11** (500 mg, 1.21 mmol) was carried out in a fashion similar to the preparation of **13a**. The residue was purified by column chromatography (SiO₂, ethyl acetate) to afford (±)-**13b** (365 mg, 66%) as a yellow oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.79–4.50 (2H, m, H-3 and H-4), 4.29–4.05 (4H, m, $-OCH_2CH_3$), 4.01–3.87 and 3.72–3.63 (2H total, H-2 and H-6), 3.76 and 3.74 (3H total, 2×s, OCH₃), 2.98–2.51 (2H, m, H-5exo and H-5endo), 2.37 and 2.18 (3H total, 2×s, COCH₃), 1.48–1.31 (6H, m, $-OCH_2CH_3$), 0.44 and 0.01 (1H total, 2×d, *J* 8.4 Hz each, H-1). $\delta_{\rm c}$ (partial, 100 MHz, CDCl₃) 210.0 [209.7] (COMe), 203.3 [203.2], 201.9 [201.8], 201.21 [201.20] (Fe–CO), 179.6 [179.5] ($-CO_2CH_3$), 97.0 [96.8] (C-4), 64.2, 61.7, 61.5, 54.4, 51.3 [51.2] ($-CO_2CH_3$), 36.5, 36.1, 32.3, 29.8, 12.5, 11.9 [11.8] (C-1). HRMS (FAB): MNa⁺, found 397.0476. C₁₄H₂₃O₆PFeNa requires 397.0474.

4.4. Tricarbonyl(5-(methoxycarbonyl)-4-(1-methoxycarbonyldimethylphosphonomethyl)-1-(2,5-dimethoxyphenyl)-2-penten-1,5-diyl)iron. (±)-14a

The anion generated from trimethyl phosphonoacetate (0.40 g, 2.2 mmol) and NaH (58 mg, 2.4 mmol) in dry THF (10 mL) at 0 °C was added by cannula to a solution of (\pm) -12 (1.1 g, 2.0 mmol) in dry CH_2CI_2 (50 mL) at -78 °C. After stirring for 1 h at -78 °C, the reaction mixture was slowly warmed to room temperature, and then quenched with saturated aqueous NH₄Cl. Workup of the reaction mixture was similar to that for **13a**. The residue was purified by column chromatography (SiO₂, gradient ethyl acetate \rightarrow ethyl acetate-methanol=4:1) to afford (±)-**14a** as a yellow solid (0.99 g, 85%). An analytically pure mixture of diastereomers (ca. 2:1 ratio) was obtained by recrystallization from CH₂Cl₂/hexanes; mp 150–151 °C; [Found: C, 47.37; H, 4.92. C₂₃H₃₀O₁₂PFe requires C, 47.20; H, 5.17%]; δ_H (400 MHz, CDCl₃) major diastereomer 6.70–6.85 (3H, m, ArH), 5.27 (1H, dd, J 7.2, 12.7 Hz, H-4), 4.66 (1H, d, J 12.8 Hz, H-5), 4.32 (1H, t, J 7.2 Hz, H-3), 3.87, 3.72, 3.69, 3.67 (19H total, 4×s & m, OCH₃ and H-2), 2.71 (1H, dd, ³J_{HH} 11.3, ²J_{PH} 20.6 Hz, CH(CO₂Me)P(O)(OMe)₂), 0.77 (1H, d, J 8.5 Hz, H-1); minor diastereomer: 6.85-6.70 (3H, m, ArH), 5.33 (1H, dd, J 7.2, 12.7 Hz, H-4), 4.61 (1H, d, J12.8 Hz, H-5), 4.52 (1H, t, J 7.2 Hz, H-3), 3.76, 3.74, 3.69, 3.67, 3.64, 3.59 (19H, 6×s & m, OCH₃ and H-2), 2.69 (1H, dd, ³J_{HH} 11.3, ²J_{PH} 20.6 Hz, $CH(CO_2Me)P(O)(OMe)_2)$, 0.44 (1H, d, J 8.5 Hz, H-1); δ_c (100 MHz, CDCl₃) major diastereomer: 210.2, 209.4, 203.7, 179.8, 167.4 (*J*_{CP} 5.2 Hz), 153.6, 151.3, 128.3, 113.4, 111.5, 109.4, 93.5, 70.2, 55.9, 55.8, 54.7, 54.0, 53.4, 53.3, 52.8, 52.5, 51.4, 37.0 (*J*_{CP} 7.5 Hz), 12.8 (*J*_{CP} 8.5 Hz); minor diastereomer: 210.0, 209.4, 203.8, 179.7, 166.8 (*J*_{CP} 4.9 Hz), 153.6, 151.3, 128.3, 113.4, 111.5, 109.4, 93.0, 56.2, 55.9, 54.8, 54.5, 53.6, 53.5, 52.7, 51.4, 37.5 (J_{CP} 4.2 Hz), 11.6 (J_{CP} 13.9 Hz); δ_P (CDCl₃, 162 MHz) 21.4 (major), 21.6 (minor).

4.5. Tricarbonyl[4-(6-t-butyldiphenylsilyloxy-1-(dimethylphosphonyl)-2-oxohexyl)-5-methoxycarbonyl-1- (2,5-dimethoxyphenyl)-2-penten-1,5-diyl]iron. (±)-14b

A solution of the anion prepared from [6-(*t*-butyldiphenyl-silyl)oxy]-2-oxohexylphosphonic acid dimethyl ester (0.46 g, 1.0 mmol) and NaH (48 mg, 1.2 mmol) in dry THF (30 mL) at 0 °C, was subsequently cooled to -78 °C and a solution of (±)-**12** (0.82 g, 1.5 mmol) in dry CH₂Cl₂ (50 mL) was added with stirring. Workup of the reaction mixture was similar to that for **14a**. The residue was purified by column chromatography (SiO₂, hexanes–ethyl acetate=4:1→2:1 gradient) to afford an equimolar mixture of diastereomers (±)-**14b** (0.85 g, 98%) as a yellow solid; mp 44–46 °C; [Found: C, 58.37; H, 5.99. C₄₂H₅₄O₁₂PSiFe requires C, 58.27; H, 6.29%]; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.68–7.62 (4H, m, SiPh₂), 7.43–7.33 (6H, m, SiPh₂), 6.88–6.79 (3H, m, ArH), 5.35 and 5.15 (1H total, 2×dd, *J* 7.2, 12.8 Hz each, H-4), 4.70 and 4.64 (1H total, 2×d, *J* 12.8 Hz each, H-5), 4.57 and 4.30 (1H total, 2×t, *J* 7.2 Hz each, H-3), 3.92, 3.86, 3.79, 3.76, 3.74, 3.73, 3.72, 3.71, 3.67 and 3.65 (17H total, 10×s and m, OCH₃ and CH₂OSi), 3.00 (0.5H, dd, ${}^{3}J_{HH}$ 11.7, ${}^{2}J_{PH}$ 22.0 Hz, CH(COR)P(O)(OMe)₂), 2.92 (0.5H, dd, ${}^{3}J_{HH}$ 11.8, ${}^{2}J_{PH}$ 21.3 Hz, CH(COR)P(O)(OMe)₂), 2.73–2.64 (1H, m), 2.40–2.30 (1H, m), 1.75–1.45 (4H, m), 1.022 and 1.018 (9H, 2×s, SiC(CH₃)₃), 0.80 and 0.33 (1H total, 2×d, J8.4 Hz each, H-1); δ_{P} (162 MHz, CDCl₃) 21.0, 22.0. Due to the presence of two diastereomers, as well as ${}^{31}P$ coupling, interpretation of the ${}^{13}C$ NMR spectrum was not attempted.

4.6. Tricarbonyl(4-(1-methoxycarbonylethenyl)-5-(methoxycarbonyl)-2-penten-1,5-diyl)iron. (±)-15a

To a solution of (±)-**13a** (40 mg, 0.088 mmol) in dry THF (3 mL) at 0 °C was added NaH (2.6 mg). The mixture was stirred for 15 min, and then paraformaldehyde (2.6 mg, 0.11 mmol) was added at 0 °C. The reaction mixture was warmed to room temperature over a 3 h period and then quenched with H₂O. The mixture was diluted with CH₂Cl₂ and the layers were separated. The aqueous layer was extracted once with CH₂Cl₂ and the combined organic extracts were washed once with saturated aqueous NaCl, and dried (MgSO₄), and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, hexanes–ethyl acetate=17:3) to afford (±)-**15a** (25 mg, 84%) as a yellow oil which solidified in the refrigerator. $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.08 (1H, d, *J* 1.2 Hz, C₌CH₂), 5.36 (1H, d, *J* 1.6 Hz, C₌CH₂), 4.70 (1H, td, *J* 7.4, 12.0 Hz, H-4), 4.60 (1H, t, *J* 7.2 Hz, H-3), 4.11 (1H, br t, *J* 8.2 Hz, H-2), 3.72 (3H, s, OCH₃), 3.69 (3H, s, OCH₃), 3.48 (1H, td, *J* 1.8, 7.6 Hz, H-5exo), 2.21 (1H, dd, *J* 2.0, 12.4 Hz, H-5endo), 0.34 (1H, d, *J* 8.8 Hz, H-1). $\delta_{\rm c}$ (100 MHz, CDCl₃) 211.0, 210.4, 204.1, 180.1, 166.3, 142.7, 123.5, 97.8, 62.1, 53.9, 51.7, 51.3, 40.0, 11.0. HRMS (FAB): M₂Na⁺–6CO, found 555.0386. (C₁₁H₁₄O₄Fe)₂Na requires 555.0386.

4.7. Tricarbonyl(4-(1-methenyl-2-oxypropyl)-5-(methoxycarbonyl)-2-penten-1,5-diyl)iron. (±)-15b

The Horner–Emmons olefination of (±)-**13b** (360 mg, 0.789 mmol) with sodium hydride (1.13 mmol) in dry THF (30 mL), followed by the addition of paraformaldehyde (24 mg, 0.80 mmol) was carried out in a fashion similar to the preparation of **15a**. Purification of the residue by column chromatography (SiO₂, hexanes–ethyl acetate=17:3) gave (±)-**15b** (131 mg, 50%) as a yellow oil. δ_{H} (400 MHz, CDCl₃) 5.91 (1H, d, *J* 1.8 Hz, C=CH₂), 5.51 (1H, d, *J* 1.8 Hz, C=CH_E), 4.69 (1H, t, *J* 7.0 Hz, H-3), 4.61 (1H, td, *J* 7.5, 11.6 Hz, H-4), 4.15 (1H, t, *J* 9.0 Hz, H-2), 3.72 (3H, s, OCH₃), 3.45 (1H, d, *J* 8.4 Hz, H-5exo), 2.25 (3H, s, COCH₃), 2.18 (1H, d, *J* 11.2 Hz, H-5endo), 0.36 (1H, d, *J* 8.8 Hz, H-1); δ_{c} (100 MHz, CDCl₃) 210.8, 210.1, 204.0, 180.4, 142.9, 124.0, 97.8, 62.4, 54.1, 52.0, 51.6, 40.3, 11.5. HRMS (FAB): M₂Na⁺, found 523.0483. (C₁₁H₁₄O₃Fe)₂Na requires 523.0477.

4.8. Tricarbonyl(5-(methoxycarbonyl)-4-(1-methoxycarbonylethenyl)-1-(2,5-dimethoxyphenyl)-2-penten-1,5-diyl)iron (±)-16a

To a solution of (±)-**14a** (0.40 g, 0.68 mmol) in dry THF (20 mL) at -78 °C was added a solution of *n*-butyl lithium in hexanes (0.47 mL, 1.6 M, 0.75 mmol). The mixture was stirred for 1 h, and then paraformaldehyde (41 mg, 1.36 mmol) was added. The reaction mixture was warmed to room temperature over a 3 h period and then quenched with saturated aqueous NH₄Cl. The mixture was extracted several times with ether and the combined organic extracts were dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, hexanes–ethyl acetate=4:1) to afford (±)-**16a** (0.30 g, 90%) as a yellow solid. Mp 163–166 °C (dec). [Found: C, 54.37; H, 4.66. C₂₂H₂₂O₉Fe requires C, 54.34; H, 4.56%]; δ_{H} (400 MHz, CDCl₃) 6.87 (1H, d, *J* 2.4 Hz, ArH), 6.86–6.77 (2H, m, ArH), 6.11 (1H, d, *J* 2.0 Hz, C=CH₂), 5.45 (1H, d, *J* 2.0 Hz, C=CH_E), 5.41 (1H, dd, *J* 7.2, 12.4 Hz, H-4), 4.52 (1H, t, *J* 7.2 Hz, H-3), 4.42 (1H, d, *J*12.4 Hz, H-5), 4.23 (1H, br t, *J* 8.4 Hz, H-2), 3.89, 3.76, 3.75 and 3.72 (12H total, 4×s, OCH₃), 0.85 (1H, d, *J* 8.8 Hz, H-1); δ_{c} (100 MHz, CDCl₃) 210.3, 209.9, 204.3, 180.4, 166.5, 153.7, 151.4, 142.6, 128.7, 124.3, 113.2, 111.6, 109.4, 93.4, 69.8, 56.1, 56.0, 55.9, 51.9, 51.6, 40.5, 10.6.

4.9. Tricarbonyl[4-(1-(dimethylphosphonyl)-6-hydroxy-2-oxohexyl)-5-methoxycarbonyl-1-(2,5-dimethoxyphenyl)-2-penten-1,5-diyl]iron. (±)-17

To a solution of (±)-**14b** (1.00 g, 1.15 mmol) in dry THF (50 mL) under N₂, was added a solution of TBAF in THF (2.3 mL, 1 M, 2.3 mmol). The reaction mixture was stirred at room temperature for 18 h, concentrated under reduced pressure, and the residue purified by column chromatography (SiO₂, ethyl acetate→ethyl acetate—methanol=4:1) to afford an equimolar mixture of diastereomers (±)-**17** as a yellow solid (0.58 g, 80%). Mp 45–47 °C; δ_{H} (400 MHz, CDCl₃) 6.88–6.77 (3H, m, ArH), 5.33 and 5.20 (1H total, 2×dd, J7.2, 12.8 Hz each, H-4), 4.68 and 4.64 (1H total, 2×d, J 12.8 Hz each, H-5), 4.32 and 4.13 (1H total, t, J 7.1 Hz each, H-3), 3.96–3.92 (1H, m), 3.91, 3.90, 3.76, 3.74, 3.73, 3.72, 3.69, 3.68, 3.66 (15H, 9×s, OCH₃), 3.60–3.56 (2H, m), 3.03 (0.5H, dd, ${}^{3}J_{HH}$ 11.7, ${}^{2}J_{PH}$ 22.0 Hz, CH(COR)P(O)(OMe)₂), 2.92 (0.5H, dd, ${}^{3}J_{HH}$ 11.7, ${}^{2}J_{PH}$ 21.1 Hz, CH(COR)P(O)(OMe)₂), 2.86–2.56 (1H, m), 2.40–2.30 (1H, m), 2.20 (1H, br s), 1.75–1.45 (4H, m), 0.74 and 0.33 (1H total, 2×d, J 8.4 Hz each, H-1); δ_{c} (100 MHz, CDCl₃) 210.0 [209.9], 209.4 [209.1], 204.1 (d, J_{Pc} 4.7), 203.7 [203.5], 203.1 (d, J_{Pc} 3.7), 179.9 [179.7], 153.6, 151.2, 128.2, 113.2, 111.5, 109.2 [109.1], 92.7 [92.6], 70.0, 61.9, 60.9, 60.6, 59.7, 56.0, 55.81, 55.77, 55.7, 55.4, 55.2, 53.3, 53.2, 53.1, 52.9, 51.4, 51.3, 45.3, 42.9, 36.9, 36.5, 31.6 [31.5], 19.5 [19.4], 12.4, 11.7 [11.6]; δ_{P} (162 MHz, CDCl₃) 21.9, 21.0. HRMS (ESI): MNa⁺, found 647.0958. C₂₆H₃₃O₁₂PFeNa requires 647.0957.

4.10. Aldehyde (±)-18

To a solution of oxalyl chloride (0.13 g, 1.0 mmol) in dry CH_2Cl_2 (10 mL) at -78 °C under N₂ was added dropwise a solution of DMSO (0.14 mL, 2.0 mmol) in dry CH₂Cl₂ (10 mL). The reaction mixture was stirred for 2 min, and then a solution of (\pm) -17 (0.30 g, 0.48 mmol) in dry CH₂Cl₂ (10 mL) was added dropwise over a period of 5 min. After stirring for 15 min, triethylamine (0.5 g, 5.0 mmol) was added and the reaction mixture was stirred for 5 min. The reaction mixture was warmed to room temperature over a period of 1 h, and guenched with water (50 mL). The mixture was extracted several times with CH₂Cl₂, and the combined extracts were concentrated under reduced pressure. The residue purified by column chromatography (SiO₂, ethyl acetate–methanol=10:1) to afford an equimolar mixture of diastereomers (±)-18 (0.30 g, quant.) as a yellow solid. Mp 40–42 °C; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.76 and 9.70 (1H total, 2×t, J 1.0 Hz each, CHO), 6.90–6.70 (m, 3H, ArH), 5.35 and 5.22 (1H total, 2×dd, J 7.2, 12.8 Hz each, H-4), 4.71 and 4.65 (1H total, 2×d, J 12.8 Hz each, H-5), 4.54 and 4.32 (1H total, 2×t, J 7.2 Hz each, H-3), 3.92, 3.91, 3.80, 3.78, 3.77, 3.75, 3.74, 3.715, 3.71, 3.70, 3.68, 3.67 (16H, 12×s and m, OCH₃ and H-2), 2.99 (0.5H, dd, ³J_H 11.6, ²J_{PH} 22.0 Hz, CH(COR)P(O)(OMe)₂), 2.90 (0.5H, dd, ³J_{HH} 11.6, ²J_{PH} 21.2 Hz, CH(COR)P(O)(OMe)₂), 2.82 (0.5H, t, J 7.0 Hz), 2.77 (0.5H, t, J 7.2 Hz), 2.52–2.34 (3H, m), 1.95–1.75 (2H, m), 0.77 and 0.32 (1H total, 2×d, J 8.4 Hz, H-1); δ_P (162 MHz, CDCl₃) 21.7, 20.8. HRMS (ESI): MNa⁺, found 645.0811. $C_{26}H_{31}O_{12}PFeNa$ requires 645.0801. Due to the presence of two diastereomers, as well as ³¹P coupling, interpretation of the ¹³C NMR spectrum was not attempted.

4.11. Tricarbonyl(5-(methoxycarbonyl)-4-(6-oxo-1-cyclohexenyl)-1-(2,5-dimethoxyphenyl)-2-penten-1,5-diyl)iron. (±)-19

To a suspension of NaH (8 mg, 0.3 mmol) in dry THF (10 mL) at 0 °C under N₂ was added dropwise a solution of (±)-**18** (0.10 g, 0.16 mmol) in dry THF (10 mL). The reaction mixture was stirred for 5 h, warmed to room temperature, and then heated at reflux for 4 h. After cooling to room temperature, the reaction mixture was quenched with saturated NH₄Cl (20 mL) and the resulting mixture was extracted several times with CH₂Cl₂. The combined extracts were concentrated under reduced pressure, and the residue purified by column chromatography (SiO₂, hexanes–ethyl acetate=1:1) to afford (±)-**19** (40 mg, 50%) as a bright yellow solid. Mp 160–162 °C; $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.85–6.75 (3H, m, ArH), 6.49 (1H, br s, H-3'), 5.29 (1H, dd, *J* 7.0, 12.2 Hz, H-4), 4.63 (1H, t, *J* 7.6 Hz, H-3), 4.36 (1H, d, *J* 12.8 Hz, H-5), 4.20 (1H, br t, *J* 8.4 Hz, H-2), 3.90, 3.74, 3.73 (9H, 3×s, OCH₃), 2.36–2.25 (4H, m), 1.89–1.84 (2H, m), 0.86 (1H, d, *J* 8.8 Hz, H-1); $\delta_{\rm c}$ (100 MHz, CDCl₃) 210.6, 210.1, 204.4, 198.4, 180.6, 153.7, 151.4, 143.9, 141.8, 129.1, 113.0, 111.6, 109.3, 93.1, 69.4, 58.3, 56.0, 55.9, 51.6, 39.3, 38.9, 25.9, 22.7, 9.7. HRMS (ESI): MNa⁺, found 519.0712. C₂₄H₂₄O₈FeNa requires 519.0718.

4.12. Carvonic acid methyl ester (±)-23a

To a solution of the anion generated from trimethyl phosphonoacetate (0.533 g, 2.73 mmol) and NaH (262.3 mg, 5.460 mmol) in dry THF (50 mL) at 0 °C, was added solid cation 20 (1.0 g, 2.7 mmol) in one portion. The reaction mixture warmed to room temperature and stirred for 2 h, during this time a yellow-brown turbidity began to appear. The reaction mixture was diluted CH₂Cl₂ (50 mL), saturated solution of methanolic NaHCO₃ (80 mL) was added, and the mixture stirred overnight. Water (30 mL) was added, and the mixture extracted several times with CH₂Cl₂. The combined extracts were dried (MgSO₄) and concentrated. The residue was purified by flash column chromatography (SiO₂, ethyl acetate-hexanes= $50\% \rightarrow 70\%$ gradient) to afford a mixture of diastereomeric cyclohexenones **21a/22a** as a light yellow oil (458 mg, 87%). Due to the complex nature of the ¹H and ¹³C NMR spectra, this mixture was not further characterized. The mixture of diastereomeric phosphonate esters (210 mg, 0.721 mmol) was added to a suspension of sodium hydride (43 mg, 1.1 mmol) in dry THF (20 mL) at 0 °C. The mixture was stirred at 0 °C for 30 min. Paraformaldehyde (43.4 mg, 1.48 mmol) was added slowly at a rate such that the temperature remained below 30 °C, and the mixture was stirred for 1 h. The mixture was diluted with H₂O and extracted several times with CH_2CI_2 . The combined extracts were dried (MgSO₄) and concentrated. The residue was purified by flash chromatography (SiO₂, ether-hexanes= $0\% \rightarrow 75\%$ gradient) to afford a mixture of (±)-**23a** and (±)-**24a** (10:1 ratio by ¹H NMR integration) as a pale oil (136 mg, 97%). Careful column chromatography gave a pure sample of **23a**. v_{max} (CH₂Cl₂) 3470, 2924, 2853, 1717, 1675, 1457, 1375 cm⁻¹; δ_{H} (400 MHz, CDCl₃) 6.76–6.72 (1H, m, H-3), 6.27 (1H, s, C—CH₂), 5.58 (1H, s, C—CH₂), 3.74 (3H, s, OCH₃), 3.29–3.20 (1H, m), 2.62 (1H, ddd, J 2.4, 4.0, 16.2 Hz, H-6), 2.62–2.53 (1H, m), 2.44 (1H, dd, J 12.8, 16.0 Hz, H-6), 2.35–2.25 (1H, m), 1.79 (3H, s, 2-Me); δ_{c} (100 MHz, CDCl₃) 199.2, 167.0, 144.4, 142.4, 135.7, 124.8, 52.2, 43.1, 37.0, 31.9, 15.9. HRMS (ESI): MNa⁺, found 411.1786. C₁₁H₁₄O₃)₂Na requires 411.1778.

4.13. Diethyl (1-(4-methyl-3-oxocyclohex-4-en-1-yl)-2-oxopropyl)phosphonate (±)-21b and diethyl (1-(2-methyl-3-oxocyclohex-4-en-1-yl)-2-oxopropyl)phosphonate (±)-22b

To an ice cold stirring suspension of NaH (25 mg, 0.62 mmol) in freshly distilled THF (10 mL) was added dropwise diethyl 2-oxopropylphosphonate (79 mg, 0.41 mmol) in drops. The resultant mixture was stirred at 0 °C for 45 min. The solid cation **20** (150 mg, 0.409 mmol) was added slowly. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with CH_2Cl_2 (10 mL) and saturated NaHCO₃/MeOH (10 mL). The reaction was stirred for 24 h. The reaction was quenched with water (10 mL). The organic portions were extracted several times with CH_2Cl_2 , washed with brine, dried (Na₂SO₄) and concentrated. Purification of the residue by flash column chromatography (SiO₂, ethyl acetate—hexane=0–60% gradient) afforded an inseparable mixture of regioisomeric

cyclohexenones (±)-**21b** and (±)-**22b** (~7:1 ratio by ¹H NMR integration) as a colorless oil (89.7 mg, 74%). ¹H NMR (CDCl₃, major isomer, 300 MHz) δ 6.75–6.62 (1H, m, H-3), 4.18–4.07 (4H, m, P(O)(OCH₂CH₃)₂), 3.22 and 3.15 (1H total, 2×dd, *J* 8.7, 9.3 Hz each, CH(COMe)P(O)(OEt)₂), 2.89–2.66 (2H, m), 2.43–2.21 (3H, m), 2.33 and 2.29 (3H total, 2×s, C(O)*Me*), 1.75 (3H, s, Me-2), 1.32 (6H total, t, *J* 7.2 Hz, OCH₂CH₃); ESI-HRMS *m/z* 325.1175 (calcd for C₁₄H₂₃O₅PNa (M+Na) *m/z*325.1175). Due to the presence of two diastereomers, as well as ³¹P coupling, interpretation of the ¹³C NMR spectrum was not attempted.

4.14. 2-Methyl-5-(1-methylene-2-oxopropyl)-2-cyclohexenone (±)-23b and 6-methyl-5-(1-methylene-2-oxopropyl)-2-cyclohexenone (±)-24b

The Horner–Wadsworth–Emmons olefination of **21b/22b** (74 mg, 0.25 mmol) with paraformaldehyde (14 mg, 0.47 mmol) was carried out in a fashion similar to the preparation of **23a/24a**. The residue was purified by flash column chromatography (SiO₂, ethyl acetate–hexane: 0–60% gradient) to afford an inseparable mixture of regioisomers (±)-**23b** and (±)-**24b** (~5:1 by ¹H NMR integration) as a pale oil (39 mg, 89%). **23b**: $\delta_{\rm H}$ (300 MHz, CDCl₃) 6.75–6.69 (1H, m, H-3), 6.14 (1H, C—CH₂), 6.01 (1H, s, C—CH₂), 3.42–3.28 (1H, H-5), 2.58–2.42 (2H, m, H-6 & H-6'), 2.41–2.30 (4H, m & s, MeCO & H-4), 2.26–2.12 (1H, m, H-4'), 1.78 (3H, s, Me-2); $\delta_{\rm c}$ (75 MHz, CDCl₃) 199.5, 199.3, 150.7, 144.6, 135.6, 125.2, 43.1, 35.4, 32.1, 26.6, 15.9. **24b**: $\delta_{\rm H}$ (300 MHz, CDCl₃, partial) 6.93–6.84 (m), 6.20 (s), 6.05–5.98 (m), 6.87 (s), 3.13–2.99 (m), 2.72–2.60 (m). HRMS (ESI): MNa⁺, found 201.0886. C₁₁H₁₄O₂Na requires 201.0887.

4.15. 2-Methyl-5-(1-phenylsulfonylethenyl)-2-cyclohexenone (±)-23c

To an ice cold stirring suspension of NaH (25 mg, 0.62 mmol) in freshly distilled THF (10 mL) was added dropwise diethyl (phenylsulfonyl)methylphosphonate (116 mg, 0.409 mmol). The resultant mixture was stirred at 0 °C for 45 min. The solid cation **20** (150 mg, 0.409 mmol) was added slowly. The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with CH_2Cl_2 (10 mL) and saturated NaHCO₃/MeOH (10 mL). The reaction was stirred for 24 h. The reaction was quenched with water (10 mL). The organic portions were extracted several times with CH_2Cl_2 , washed with brine, dried (Na₂SO₄) and concentrated. Purification of the residue by flash column chromatography (SiO₂, ethyl acetate–hexane=0–80% gradient) afforded **21c** as a pale oil (76 mg, 47%). HRMS (ESI): MNa⁺, found 423.1002. $C_{18}H_{25}O_6$ SPNa requires 423.1002. This compound was used in the olefination reaction without further characterization. To an ice-cold stirring suspension of NaH (6 mg, 0.2 mmol) in dry THF (3 mL) was added **21c** (50 mg, 0.13 mmol). The mixture was stirred at 0 °C for 30 min, paraformaldehyde (14 mg, 0.47 mmol) was added slowly at such a rate that the temperature remained below 30 °C and the reaction mixture stirred for 1 h at room temperature. The reaction

mixture was diluted H₂O (10 mL) and the mixture extracted several times with CH₂Cl₂. The combined extracts were dried (MgSO₄) and concentrated. The residue was purified by flash column chromatography (SiO₂, ethyl acetate—hexane=0–45% gradient) to afford (±)-**23c** (25 mg, 72%) as a pale oil. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.85 (2H, d, *J* 7.7 Hz, ArH), 7.65 (1H, t, *J* 8.3 Hz, ArH), 7.55 (2H, t, *J* 7.7 Hz, ArH), 6.66 (1H, d, *J* 5.8 Hz, H-3), 6.53 (1H, s, C—CH₂), 5.89 (1H, s, C—CH₂), 3.08–2.95 (1H, m), 2.67–2.55 (1H, m), 2.43–2.23 (3H, s & m), 1.74 (3H, s, Me-2); $\delta_{\rm c}$ (75 MHz, CDCl₃) 197.8, 153.1, 143.8, 138.9, 135.8, 134.1, 129.7, 128.3, 124.5, 43.6, 35.6, 33.0, 15.9. HRMS (ESI): MNa⁺, found 299.0712. C₁₅H₁₆O₃SNa requires 299.0709.

4.16. 10-Hydroxycarvone (±)-25

To a stirring solution of LDA in heptanes (0.91 mL, 2.0 M, 1.8 mmol) in THF (5 mL) at -78 °C was added dropwise a solution of **23a** (91 mg, 0.61 mmol) in THF (1 mL). The reaction mixture was stirred at this temperature for 30 min after which a solution of DIBAL–H in hexanes (2.8 mL, 1.0 M, 2.8 mmol) was slowly added. The reaction mixture was stirred at -78 °C for 3 h, after which the mixture was warmed to room temperature and stirred for 1 h. The reaction was quenched with water, extracted several times with CH₂Cl₂, and the combined extracts were washed with brine and concentrated. The residue was purified by flash column chromatography (SiO₂, acetone–hexanes=0%–>35% gradient) to afford (±)-**25** (56 mg, 76%) as a yellow oil. δ_{H} (300 MHz, CD₃OD) 6.92–6.85 (1H, m, H-3), 5.14 (1H, s, C=CH₂), 4.96 (1H, s, C=CH₂), 4.08 (2H, s, CH₂OH), 2.88–2.76 (1H, m), 2.62–2.35 (4H, m), 1.76 (3H, br s, Me-2); δ_{H} (75 MHz, CDCl₃) 199.7, 150.4, 144.6, 135.8, 110.6, 65.1, 43.5, 38.5, 31.8, 15.9. The NMR spectral data for this product was consistent with the literature values.¹⁴⁹

4.17. Carvonic acid (±)-26

To a solution of (±)-**23a** (69 mg, 0.46 mmol) in THF/methanol/H₂O (2:2:1, 4 mL) was added in small portions lithium hydroxide (116 mg, 2.77 mmol). The mixture was stirred at room temperature for 1 h and then the mixture was acidified with dilute aqueous HCl and the resulting mixture was extracted several times with ethyl acetate. The combined extracts were washed with brine, dried (NaSO₄) and concentrated. The residue was purified by flash chromatography (SiO₂, acetone–hexanes=0% \rightarrow 50% gradient) to afford carvonic acid (±)-**26** (43 mg, 52%) as a yellowish oil. $\delta_{\rm H}$ (300 MHz, CDCl₃) 6.80–6.72 (1H, m, H-2), 6.44 (1H, s, C=CH₂), 5.72 (1H, s, C=CH₂), 3.32–3.20 (1H, m, H-5), 2.66 (1H, dd, *J* 2.8, 11.8 Hz, H-6), 2.62–2.57 (1H, m), 2.48 (1H, dd, *J* 9.6, 12.3 Hz, H-6'), 2.40–2.29 (1H, m), 1.80 (3H, s, Me-2); $\delta_{\rm c}$ (CDCl₃, 75 MHz) 199.2, 144.4, 141.8, 135.8, 127.2, 43.1, 36.8, 31.8, 15.9, signal for COOH not observed. The NMR spectral data for this product was consistent with the literature values.^{13b}

Acknowledgments

This work was supported by the National Science Foundation (<u>CHE-0848870</u>) and NSF instrumentation grant (<u>CHE-0521323</u>). High-resolution mass spectra were obtained at the Old Dominion University COSMIC facility.

References and notes

 1(a)P.J. Harrington. Transition Metals in Total Synthesis. John Wiley & Sons, New York, NY (1990). (b)
 A.J. Pearson. Science, 223 (1984), pp. 895-901. (c) A.J. Birch, L.F. Kelly, D.V. Weerasuria. J. Org. Chem., 53 (1988), pp. 278-281. (d) C. Roe, G.R. Stephenson. Org. Lett., 10 (2008), pp. 189-192. (e)
 I. Bauer, H.J. Knolker. I. Marek, Z. Rappoport (Eds.), Chemistry of Organoiron Compounds, John Wiley & Sons Ltd, Chichester, UK (2014), pp. 155-232

2(a) A.J. Birch, L.F. Kelly, D.J. Thompson J. Chem. Soc., Perkin Trans. 1 (1981), pp. 1006-1012. (b) A.J. Pearson, S.L. Kole, T. Ray. J. Am. Chem. Soc., 106 (1984), pp. 6060-6074. (c) L.A. Paquette, R.G. Daniels, R. Gleiter. Organometallics, 3 (1984), pp. 560-567. (d) A.J. Pearson, M.P. Burello. Organometallics, 11 (1992), pp. 448-456. (e) N. Millot, C. Guillou, C. Thal. Tetrahedron, 53 (1997), pp. 12553-12564. (f) H.-J. Knoelker, E. Baum, M. Heininger. Tetrahedron Lett., 38 (1997), pp. 8021-8024. (g) C.W. Ong, J.N. Wang, T.-L. Chien. Organometallics, 17 (1998), pp. 1442-1445. (h) C.E. Anson, R.D.A. Hudson, S.A. Osborne, D.G. Smyth, G.R. Stephenson. *Tetrahedron* Lett., 39 (1998), pp. 7603-7606. (i) S.-S.P. Chou, S.-H. Liu. J. Organomet. Chem., 555 (1998), pp. 227-236. (j) H. Graden, J. Hallberg, N. Kann, T. Olsson. J. Comb. Chem., 6 (2004), pp. 783-788. (k) A.J. Pearson, I.C. Richards, D.V. Gardner. J. Org. Chem., 49 (1984), pp. 3887-3891. (I) A.J. Pearson, S.L. Kole, J. Yoon. Organometallics, 5 (1986), pp. 2075-2081. (m) E. Mincione, P. Bovicelli, S. Cerrini, D. Lambda. Heterocycles, 23 (1985), pp. 1607-1610. (n) A.J. Birch, K.B. Chamberlain, D.J. Thompson. J. Chem. Soc., Perkin Trans. 1 (1973), pp. 1900-1903. (o) A.J. Birch, D. Bogsanyi, L.F. Kelly. J. Organomet. Chem., 214 (1981), pp. C39-C42. (p) M.C.P. Yeh, W.C. Tsao, Y.J. Wang, H.F. Pai. Organometallics, 26 (2007), pp. 4271-4277. (q) G.R. Stephenson, H. Finch, D.A. Owen, S. Swanson. Tetrahedron, 49 (1993), pp. 5649-5662. (r) E.J. Sandoe, G.R. Stephenson, S. Swanson. Tetrahedron Lett., 37 (1996), pp. 6283-6286. (s) A.J. Pearson, B.A. Roden. J. Chem. Soc., Perkin Trans. 1 (1990), pp. 723-725 (t) G.R. Stephenson, M. Voyle, S. Williams. Tetrahedron Lett., 31 (1990), pp. 3979-3982

<u>3(a)</u>G.R. Stephenson, K. Milne. *Aust. J. Chem.*, 47 (1994), pp. 1605-1612. (b)

I.M. Paoltai, G.R. Stephenson, L.A.P. Kane-Maguire. J. Organomet. Chem., 319 (1987), pp. C5-C10
 4(a) For an intramolecular addition of phosphonate-stabilized nucleophiles on cationic Ru-arenes see:
 F.C. Pigge, J.J. Coniglio, R. Dalvi. J. Am. Chem. Soc., 128 (2006), pp. 3498-3499. (b) For intermolecular substitution of haloarene-iron cations see: G.A. Artamkina, P.K. Pazonov, I.P. Beletskaya. Tetrahedron Lett., 42 (2001), pp. 4385-4387

5 For reviews see: (a) R. Gree. *Synthesis* (1989), pp. 341-355. (b) R. Gree, J.P. Lellouche.

L.S. Liebeskind (Ed.), Advances in Metal-Organic Chemistry, Vol. 4, JAI Press, Greenwich, CT (1995),
pp. 129-273. (c) C. Iwata, Y. Takemonto. Chem. Commun. (1996), pp. 2497-2504. (d) W.A. Donaldson.
Aldrichimica Acta, 30 (1997), pp. 17-24. (e) L.R. Cox, S.V. Ley. Chem. Soc. Rev., 27 (1998), pp. 301-314. (f)
W.A. Donaldson. Curr. Org. Chem., 4 (2000), pp. 837-868. (g) W.A. Donaldson, S. Chaudhury. Eur. J. Org.
Chem. (2009), pp. 3831-3843. (h) H.-J. Knoelker. M. Schlosser (Ed.), Organometallics in Synthesis, Third
Manual, John Wiley & Sons, New Jersey, NJ (2013), pp. 545-776

 6(a) K.F. McDaniel, L.R. Kracker II. *Tetrahedron Lett.*, 31 (1990), pp. 2373-2376. (b)
 W.A. Donaldson, L. Shang, C. Tao, Y.K. Yun, M. Ramaswamy, V.G. Young Jr. *J. Organomet. Chem.*, 539 (1997), pp. 87-98. (c) S. Chaudhury, W.A. Donaldson. *J. Am. Chem. Soc.*, 128 (2006), pp. 5984-5985. (d) S. Chaudhury, S. Li, D.W. Bennett, T. Siddiquee, D.T. Haworth, W.A. Donaldson. *Organometallics*, 26 (2007), pp. 5295-5303. (e) C.F. Manful, W.A. Donaldson. *Eur. J. Org. Chem.* (2014), pp. 6787-6795

- <u>7</u>For other organoiron routes to cyclohexenones see: (a) R. Aumann. J. Am. Chem. Soc., 96 (1974), pp. 2361-2362 (b) M.M. Schulze, U. Gockel. J. Organomet. Chem., 525 (1996), pp. 155-158. (c)
 D.F. Taber, K. Kanai, Q. Jiang, G. Bui. J. Am. Chem. Soc., 122 (2000), pp. 6807-6808. (d)
 D.F. Taber, G. Bui, B. Chen. J. Org. Chem., 66 (2001), pp. 3423-3426. (e) D.F. Taber, P.V. Joshi, K. Kanai. J. Org. Chem., 69 (2004), pp. 2268-2271. (f) D.F. Taber, R.B. Sheth. J. Org. Chem., 73 (2008), pp. 8030-8032
- 8(a) Y.K. Yun, W.A. Donaldson. J. Am. Chem. Soc., 119 (1997), pp. 4084-4085. (b) K. Godula, W.A. Donaldson. Tetrahedron Lett., 42 (2001), pp. 153-154. (c) Y.K. Yun, K. Godula, Y. Cao, W.A. Donaldson. J. Org. Chem., 68 (2003), pp. 901-910. (d) J.M. Lukesh, W.A. Donaldson. Chem. Commun. (2005), pp. 110-112.
 (e) N.J. Wallock, W.A. Donaldson. Org. Lett., 7 (2005), pp. 2047-2049.

(f)N.J. Wallock, D.W. Bennett, T.A. Siddiquee, D.T. Haworth, W.A. Donaldson. *Synthesis* (2006), pp. 3639-3646. (g) R.K. Pandey, S. Lindeman, W.A. Donaldson. *Eur. J. Org. Chem.* (2007), pp. 3829-3831. (h)
T.A. Siddiquee, J.M. Lukesh, S. Lindeman, W.A. Donaldson *J. Org. Chem.*, 72 (2007), pp. 9802-9803. (i)
R.K. Pandey, L. Wang, N.J. Wallock, S. Lindeman, W.A. Donaldson. *J. Org. Chem.*, 73 (2008), pp. 7236-7245 (j) J.R. Gone, N.J. Wallock, S. Lindeman, W.A. Donaldson. *Tetrahedron Lett.*, 50 (2009), pp. 1023-1025. (k) D.W. Lee, R.K. Pandey, S. Lindeman, W.A. Donaldson. *Org. Biomol. Chem.*, 9 (2011), pp. 7742-7747

- <u>9</u>All compounds are racemic mixtures of enantiomers. Only one enantiomer has been pictured for clarity.
- 10C. Tao, W.A. Donaldson. J. Org. Chem., 58 (1993), pp. 2134-2143
- <u>11</u>H. Toshima, H. Aramaki, A. Ichihara. *Tetrahedron Lett.*, 40 (1999), pp. 3587-3590
- <u>12</u>(a)M. Furukawa, M. Makino, E. Ohkoshi, T. Uchiyama, Y. Fujimoto. *Phytochemistry*, 72 (2011), pp. 2244-2252.
 (b) H. Hamada, H. Yasumune, Y. Fuchikami, T. Hirata, I. Sattler, H.J. Williams, A.I.Scott. *Phytochemistry*, 44 (1997), pp. 615-621
- <u>13(a)</u>T. Ishida, M. Toyota, Y. Asakawa. *Xenobiotica*, 19 (1989), pp. 843-855. (b) W. Engel. J. Agric. Food Chem., 49 (2001), pp. 4069-4075. (c) W. Engel. J. Agric. Food Chem., 50 (2002), pp. 1686-1694
- <u>14(a)</u>M. Xuan, I. Paterson, S.M. Dalby. Org. Lett., 14 (2012), pp. 5492-5495. (b) K. Weinges, G. Schwarz. Liebigs Ann. Chem. (1993), pp. 811-814
- <u>15</u>Parenthetically, (±)-carvone has been prepared from *racemic* tricarbonyl(2-methoxy-1-methylcyclohexadiene)iron in 3 steps, 14% overall yield. G.R. Stephenson. J. Chem. Soc., Perkin Trans. 1 (1982), pp. 2449-2456

Reactivity of acyclic (pentadienyl)iron(1+) cations with phosphonate stabilized nucleophiles: Application to the synthesis of oxygenated metabolites of carvone

Do W. Lee, Charles F. Manful, Jayapal Reddy Gone, Yuzhi Ma, and William A. Donaldson*

¹ H NMR spectrum of (\pm) -13a (CDCl ₃)	S2
13 C NMR spectrum of (±)-13a (CDCl ₃)	S 3
¹ H NMR spectrum of (\pm) -13b (CDCl ₃)	S4
13 C NMR spectrum of (±)-13b (CDCl ₃)	S5
¹ H NMR spectrum of (\pm) -14a (CDCl ₃)	S6
13 C NMR spectrum of (±)-14a (CDCl ₃)	S7
¹ H NMR spectrum of (\pm) -14b (CDCl ₃)	S8
13 C NMR spectrum of (±)-14b (CDCl ₃)	S9
¹ H NMR spectrum of (\pm) -15a (CDCl ₃)	S10
13 C NMR spectrum of (±)-15a (CDCl ₃)	S11
¹ H NMR spectrum of (\pm) -15b (CDCl ₃)	S12
13 C NMR spectrum of (±)-15b (CDCl ₃)	S13
¹ H NMR spectrum of (\pm) -16a (CDCl ₃)	S14
13 C NMR spectrum of (±)- 16a (CDCl ₃)	S15
¹ H NMR spectrum of (\pm) -17 (CDCl ₃)	S16
13 C NMR spectrum of (±)-17 (CDCl ₃)	S17
¹ H NMR spectrum of (\pm) -18 (CDCl ₃)	S18
13 C NMR spectrum of (±)-18 (CDCl ₃)	S19
¹ H NMR spectrum of (\pm) -19 (CDCl ₃)	S20
13 C NMR spectrum of (±)- 19 (CDCl ₃)	S21
¹ H NMR spectrum of (\pm) -23a (CDCl ₃)	S22
13 C NMR spectrum of (±)-23a (CDCl ₃)	S23
¹ H NMR spectrum of (\pm) - 21b / (\pm) - 22b (CDCl ₃)	S24
¹ H NMR spectrum of (\pm) -23b/ (\pm) -24b (CDCl ₃)	S25
13 C NMR spectrum of (±)-23b/(±)-24b (CDCl ₃)	S26
¹ H NMR spectrum of (\pm) -23c (CDCl ₃)	S27
13 C NMR spectrum of (±)-23c (CDCl ₃)	S28
¹ H NMR spectrum of (\pm) -25 (CD ₃ OD)	S29
13 C NMR spectrum of (±)-25 (CDCl ₃)	S30
¹ H NMR spectrum of (\pm) -26 (CDCl ₃)	S31
¹³ C NMR spectrum of (\pm) - 26 (CDCl ₃)	S32

(S)

(S)

(%)

S I

 $\bar{\omega}$

\$

_	5 m m	0	0 == 0		4 QI	-000	N07707	Ŋ
	337 946 323	432	696 422 555	73 30	35, 35	55 90 80	09 97 97 93 93 93 93	.64
	04.0	80.	53. 51. 51.	28. 13.	93	77 77 69	56 55 51 51 40	-10
	N N N							
						$\times 1/$		
						Y	YKI	
	Ύ							1
						k l		
		MeO ₂ C	OMe OMe					
		Mag C						
		MeO ₂ O	Fe			1		
			(CO) ₃					
		10	ÓMe					
		13					Ť	
		(100 N	AHZ, CDCI ₃)					
		(+	1)- 166				1	
Ľ			- www					1 I
								Ŷ.
				Ŧ Ĩ			11 1	
				l.	1			
				1				
ŀ								
		1	aČ r	1				
		1		d (
			1					
Ľ								
ŀ								
Ì.								
Ł								
ŀ								
.	الشابان براز بالالمانية المناسبين بمارا بر	ويعلوان والمراجر والمستعر يتأو	. المعنة المحافظة معاملاً	in the last of a later in	د مربق بالار المالينين بالغام بالماليا	الفاقة فأديران التحاقين	Low and a statistic to a	الارام بالمراد المراجع المراجع والمراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع
1	Antifana eta activaristati a	e din setteri de l'és les	A team formed bates are b	PORT OF ALL OF STATISTICS	na okol uso oversatol ta takan sa ki	teres in the second		die in is die i
R I	and stated and the same the same	a nua ang ang ang ang ang ang ang ang ang an	and the second	Abit and a plant to a distant of		and the state of the states		ti alik 1. selt i aliki ble dar me atre sherada se tarke i na kata bar dar
ľ	200	10. 10. 10. 10 10 10 10 10 10 10 10 10 10 10 10 10	150	ni ar casi ana c u perta da	1 100	0.e= 12 25	50	PPM
	thight line						1	USER: DATE: Aug 25 2010
ł	F1: 100 526 F2	399 745	SW1: 24510		OF1: 10570.8		PTS1d: 31875 .	32768
t	EX: s2pul		PW: 5.8 us	PD: 1.0 sec	NA: 512	LB: 1.0		Nuts - \$dlee0825-13C.fid
۰÷								

S

L

õ

S

S

S

S 26

-

