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Deflection of a viscoelastic cantilever under a uniform surface stress:
Applications to static-mode microcantilever sensors undergoing adsorption
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The equation governing the curvature of a viscoelastic microcantilever beam loaded with a uniform
surface stress is derived. The present model is applicable to static-mode microcantilever sensors
made with a rigid polymer, such as SU-8. An analytical solution to the differential equation
governing the curvature is given for a specific surface stress representing adsorption of analyte onto
the viscoelastic beam’s surface. The solution for the bending of the microcantilever shows that, in
many cases, the use of Stoney’s equation to analyze stress-induced deflection of viscoelastic
microcantilevers �in the present case due to surface analyte adsorption� can lead to poor predictions
of the beam’s response. It is shown that using a viscoelastic substrate can greatly increase sensitivity
�due to a lower modulus�, but at the cost of a longer response time due to viscoelastic creep in the
microcantilever. In addition, the effects of a coating on the cantilever are considered. By defining
effective moduli for the coated-beam case, the analytical solution for the uncoated case can still be
used. It is found that, unlike the case of a silicon microcantilever, the stress in the coating due to
bending of a polymer cantilever can be significant, especially for metal coatings. The theoretical
results presented here can also be used to extract time-domain viscoelastic properties of the polymer
material from beam response data. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3086626�

I. INTRODUCTION

Currently, microcantilevers are being extensively inves-
tigated as potential chemical and biological sensor platforms
to meet the need for real-time environmental monitoring as
well as to perform medical diagnostic tests. The microcanti-
lever’s projected high sensitivity and the ability to design a
very small array employing a large number of sensors have
been the main driving factors behind this research.1 Detec-
tion limits at the parts-per-trillion level as well as single mol-
ecule detection have been demonstrated.2–5

Microcantilever sensors may be operated in either the
dynamic �resonant� or the static mode. In the dynamic mode,
mass loading and viscoelastic changes in the coating cause a
measurable shift in the resonant frequency and quality
factor.6–8 When operated in the static mode, expansion of the
coating caused by absorbed anlayte or a surface stress caused
by analyte adsorption onto the coating causes the microcan-
tilever to bend.7,9,10 The sorption process �either absorption
or adsorption� determines how the deflection is analyzed.
Deflection caused by absorption-induced coating expansion
is similar to the bending of a bimetal thermostat. As a result,
the bimetal thermostat analysis by Timoshenko11 is often
used to predict the deflection of the microcantilever caused
by analyte absorption. Recently, it has been shown that when
using a polymer coated microcantilever sensor it is often
necessary to account for the viscoelastic properties of the

coating. This leads to a more complex behavior and the de-
flection may exhibit an overshoot during absorption.12 De-
flection caused by adsorption-induced surface stress is gen-
erally analyzed using Stoney’s equation,13,14

wtip =
3L2�1 − ���s

E1h1
2 , �1�

where wtip is the deflection at the tip of the cantilever, L is
the length of the cantilever, �s is the surface stress, and E1,
h1, and � are the Young’s modulus, thickness, and Poisson’s
ratio of the base layer, respectively. In the present paper, it
will be convenient to represent the cantilever material by its
biaxial modulus, M1=E1 / �1−��, rather than the Young’s
modulus, E1.

In the static mode, the need for higher sensitivity to sur-
face stress resulted in an increased interest in polymer-based
microcantilevers, where the cantilever itself is made of a
relatively rigid polymer with good chemical resistance such
as SU-8.15,16 These glassy polymers offer less resistance to
adsorption-induced surface stress compared to silicon, thus
enhancing the sensitivity. However, using a polymeric canti-
lever has the added complexity of a time-dependent relax-
ation modulus, which is generally not considered when ana-
lyzing the deflection with Stoney’s equation. To obtain a
generalized form of Stoney’s equation, which takes into ac-
count the viscoelasticity of the beam, the polymer material is
represented as a three-parameter solid. The model describes
the bending of a viscoelastic beam loaded with a surface
stress. In some cases, the viscoelastic behavior of the canti-
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lever can result in a longer response time due to viscoelastic
creep in the microcantilever. It may be possible to misinter-
pret creep in the microcantilever as continued adsorption.
This, in turn, will lead to an overestimation of the analyte
concentration if the time-dependence of the relaxation modu-
lus is not considered. Using the generalized model, the above
phenomena, which are overlooked when using Stoney’s
equation, can be taken into account so that it is possible to
theoretically predict the microcantilever’s bending response
and choose polymer materials for which the response time is
not increased. Furthermore, it is shown that the model can be
used to extract the time-domain viscoelastic properties of the
cantilever’s material. These material properties are necessary
to design devices and to predict sensor responses.

II. THEORY

A. Formulation of the stress-curvature relationship

Consider a viscoelastic beam as shown in Fig. 1�a�, with
length L, width b, and thickness h1. A thin layer of thickness
h2�h1 is mechanically bonded to the top of the cantilever
beam. It is assumed that the beam is made from a rigid
viscoelastic material �glassy polymer� that behaves as a
three-parameter solid in terms of the biaxial stress/strain re-
lationship. That is, in the cantilever, the biaxial stress and
strain satisfy the three-parameter solid model,

��t� + �r
d�

dt
= M���t� + �rM0

d�

dt
, �2�

where M� and M0 are known as the asymptotic �relaxed�
biaxial modulus and initial �unrelaxed� biaxial modulus, re-

spectively, and �r is the relaxation time constant.17 Thus, the
beam material exhibits stress relaxation and creep �character-
istics of most polymeric materials� as shown in Fig. 2. It is
noted that a more complex viscoelastic stress/strain relation-
ship could be used in place of the three-parameter solid
model without much change in the procedure of the deriva-
tion. However, the three-parameter solid model is simple and
exhibits the general characteristics of any viscoelastic mate-
rial, namely, an initial modulus, an asymptotic modulus, and
a parameter that describes the rate of the transition between
the two moduli.

In the layer of thickness h2, a uniform stress, �2, is as-
sumed to exist. �This can be the result of various phenomena
including residual stress of a deposited coating, a reduction
in surface energy due to adsorption, repulsion among sorbed
molecules, or thermal expansion of a thin coating.� It is as-
sumed that h2→0 and �2→� such that h2�2→�s, where �s

is known as the surface stress and has units �N/m� or force
per beam width. The kinematic assumptions of elementary
beam theory are invoked �Bernoulli–Euler and small
defomations�.18 This allows one to write the strain profile
through the beam as a linear function that, by definition, is
zero at the neutral axis,

��z,t� = ��t��hn�t� − z� , �3�

where � is the curvature of the beam, hn defines the location
of the neutral axis, and z is the vertical coordinate taken
positive downward from the top of the base layer, as shown
in Fig. 1�b�. Extensional strains and tensile stresses are taken
positive. The curvature is defined as the second derivative of
the deflection with respect to x, �=d2w /dx2. Note that this
notation implies that a positive curvature corresponds to
downward deflection. The linear strain profile implies a lin-
ear stress profile �shown in Fig. 1�b�� by use of the hereditary
integral representation of a viscoelastic material.12 Thus, it is
possible to write the stress profile through the thickness of
the cantilever in terms of the stress at the top �z=0�, �0�t�,
and at the bottom �z=h1�, �h1�t�, of the cantilever,

FIG. 1. �a� Illustration of the microcantilever geometry. �b� Stresses acting
on a cross section of the microcantilever.

FIG. 2. Biaxial relaxation modulus, M�t�, �stress caused by a unit step
strain� and the biaxial creep compliance, Jb�t�, �strain caused by a unit step
stress� of a viscoelastic material modeled as a three-parameter solid.
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��z,t� =
�h1�t� − �0�t�

h1
z + �0�t� . �4�

The structure �cantilever and thin upper layer� is not sub-
jected to any external mechanical load. Thus, the resultant
axial force and bending moment from the stress distribution
and the surface stress must be zero �i.e., �s�t�+�0

h1��z , t�dz
=0 and �0

h1z��z , t�dz=0, where the moments are taken about
the origin to eliminate contribution of the surface stress�.
Imposing these two conditions on the stress profile �4� results
in the following two relations:

�0�t� = − 2�h1�t� , �5a�

�0�t� = −
4

h1
�s�t� . �5b�

Equations �4� and �5a� imply that at z= �2 /3�h1, the stress is
always zero. This, in turn, implies that the neutral axis �i.e.,
the locus of points on the cross section for which the strain is
zero� is given by hn= �2 /3�h1. At any point through the thick-
ness of the beam, the stress/strain relationship must be satis-
fied. Equation �2� may therefore be used to relate the stress
and strain at the top �z=0� of the cantilever,

�0�t� + �r
d�0

dt
= M��0�t� + �rM0

d�0

dt
. �6�

Substitution of Eqs. �3� and �5b� into Eq. �6� yields a differ-
ential equation relating the surface stress to the curvature of
the beam as

M�h1
2��t� + �rM0h1

2d�

dt
= − 6�s�t� − 6�r

d�s

dt
. �7�

The solution to this equation yields the curvature of the vis-
coelastic beam subjected to a specific applied surface stress
history. It is noted that Eq. �7� reduces to Stoney’s equation,
with M� or M0 in place of the biaxial modulus, as the relax-
ation time constant approaches zero or infinity, respectively.
This is intuitive because, as the relaxation time constant ap-
proaches these limits, the time varying relaxation modulus
becomes a constant and the material behaves as an elastic
material. Similarly, if M��M0 then the modulus again re-
mains constant and the material behaves elastically. Note that
there is a difference in sign between Stoney’s Eq. �2� and Eq.
�7�. This arises because, in the present paper, a downward
deflection is taken to be positive, whereas in Stoney’s equa-
tion a downward deflection is negative.

B. Application to polymer-based microcantilever
sensors

As previously stated, the stress generated at the surface
of the cantilever can be from various sources. The physical
phenomenon that is causing the surface stress will determine
the time-dependent function �s�t� �i.e., how the surface stress
is applied with time�. In the study of microcantilever sensors,
the surface stress can be caused by molecules adsorbing onto
the top surface of the cantilever. In the formulation of the
problem, the adsorbed layer can be represented by the thin
upper layer whose thickness, h2, approaches zero. To deter-

mine the adsorption-induced surface stress as a function of
time, it is first necessary to determine how the number of
adsorbed molecules is related to the ambient analyte concen-
tration. This relationship is based on two assumptions. First,
it is assumed that the number of adsorbed molecules at equi-
librium is proportional to the ambient concentration of the
analyte. Second, it is assumed that the rate of adsorption is
proportional to the difference between the amount adsorbed
at equilibrium and the current amount adsorbed. The con-
stants of proportionality are the adsorption coefficient, �, and
the adsorption decay rate, �s

−1 ��s is the adsorption time con-
stant�, respectively. Under these assumptions the model for
adsorption takes the form,

dN

dt
=

1

�s
��Camb�t� − N�t�� , �8�

where Camb�t� is the ambient concentration and N�t� is the
number of adsorbed analytes. For relatively small ambient
concentrations causing single layer adsorption, this is a prac-
tical model as it represents type I adsorption.19

A surface stress is generated when adsorption of the ana-
lytes onto the surface of the microcantilever causes the ana-
lyte molecules to interact with each other and with the mol-
ecules that make up the adsorbing surface.20 For relatively
small ambient concentrations causing low analyte coverage,
the surface stress is primarily caused by the interaction be-
tween the adsorbate atoms and the adsorbing surface and is
proportional to the analyte coverage.20 This stress can be
obtained by analyzing the change in interfacial energy at the
adsorption surface, using21

�s = 	a,f − 	a,i = 
Ga
�

M
, �9�

where 	a,i and 	a,f are the initial and final interfacial energies
of the adsorbing surface, respectively, 
Ga is the change in
Gibb’s free energy caused by adsorption, � is the mass of
absorbed analyte per unit area, and M is the molar mass of
the analyte. Thus, for a given surface area the surface stress
is proportional to the number of adsorbed molecules, �s�t�
=−�N�t�; then, Eqs. �7� and �8� imply that the overall system
response of a viscoelastic cantilever undergoing adsorption is
governed by

d�s

dt
=

1

�s
�− ��Camb�t� − �s�t�� , �10a�

d�

dt
= −

1

�r

M�

M0
��t� +

6

�rM0h1
2� �r

�s
− 1��s�t�

+
6

�sM0h1
2��Camb�t� . �10b�

Note that the surface stress is compressive �negative� when it
is caused by a reduction in the interfacial energy �a sponta-
neous adsorption process�.21 Thus, � is generally positive.

Equations �10a� and �10b� can be solved for the case of
a step-function ambient concentration, Camb�t�=Cambus�t�
�where us�t� is the unit step function�. This would be equiva-
lent to solving Eq. �7� for a surface stress given by �s�t�=
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−��Camb�1−exp�−t /�s��us�t�. It is noted that this form of the
surface stress history �or adsorption kinetics� has been cho-
sen as a practical representation of the adsorption processes
of a hypothetical system. It is possible that the real adsorp-
tion kinetics �and the surface stress history� may be of a
different form, depending on the specifics of the surface
chemistry involved, and the ambient concentration associ-
ated with a particular analyte delivery system might not be
accurately represented by a step function. In these cases, one
can simply solve Eq. �7� with the appropriate surface stress
history, obtained from the adsorption kinetics and the spe-
cific analyte delivery function �rather than us�t��.

The analytical solution to Eqs. �10a� and �10b� for a step
in ambient concentration is given by

��t� = −
6�ss

M�h1
2	1 +

��̄ − 1�M̄

1 − �̄M̄
exp
−

t

�s
�

−
1 − M̄

1 − �̄M̄
exp
− M̄

t

�r
��us�t� , �11�

where �ss=−��Camb is the steady-state surface stress and the
following dimensionless parameters have been introduced:

M̄ =
M�

M0
, �12a�

�̄ =
�s

�r
. �12b�

In the case where the eigenvalues of the differential equa-

tions in Eqs. �10a� and �10b� are repeated, i.e., when �̄M̄
=1, Eq. �11� does not hold. This occurs when the creep time
constant, �c�M0 /M���r, and the adsorption time constant
are identical. In order to find the tip deflection, one simply
integrates the constant curvature twice to obtain wtip

=��L2 /2�.

C. Coated microcantilever sensors

In practical devices, adsorption of analytes onto the mi-
crocantilever is usually facilitated by a coating �thin rubbery
polymer or metal�, which has some affinity for the analyte.
In this case, the coating, which is assumed to be initially
unstressed, is represented by a third layer that is between the
microcantilever, h1, and the thin layer of adsorbed molecules,
as shown in Fig. 3. To use the above equations to analyze
such �bio�chemical sensors, the coating must be thin and soft
so that any stresses in the coating caused by bending of the
microcantilever do not have a significant effect on the axial
force or the bending moment. These stresses in the coating
are usually neglected in the case of an elastic �e.g., silicon�
cantilever because the modulus of the cantilever material is
quite large. Therefore, the stresses in the cantilever dominate
the stresses in the coating for a wide range of coating moduli
and thicknesses. This is likely to still be true when the vis-
coelastic cantilever is coated with a polymer. However, even
a thin metal coating may add significant rigidity to the beam.
As a result, Eq. �11� is valid for metal coated cantilevers only
if the metal thickness is to be less than about 1%–3% the

cantilever’s thickness depending on the modulus of the can-
tilever and of the metal coating. More specifically, as will be
shown, it is required that M�h1Mchc, where Mc and hc are
the biaxial modulus and thickness of the thin elastic coating,
respectively. If this condition is not met, the governing Eq.
�7� can be modified to account for the stress in the coating.

For a thin and elastic coating, the stress resulting from
the coating being extended during bending can be treated as
a concentrated force per unit width acting at the interface,
z=0, along with the surface stress. As a result, Eq. �5a� and
the location of the neutral axis remain the same as in the
previous derivation and the resultant axial force caused by
the stress in the coating can be approximated as Fc

= �2 /3�h1�Mchc. Requiring that the resultant axial force
through a cross section of the beam be zero, one obtains

�0�t� = −
4

h1
�s�t� −

8

3
Mchc��t� . �13�

Substituting Eqs. �3� and �13� into Eq. �6�, the governing
equation relating the curvature to the surface stress when the
stress in the coating is significant can be written as

�M� + 4
hc

h1
Mc�h1

2��t� + �r�M0 + 4
hc

h1
Mc�h1

2d�

dt

= − 6�s�t� − 6�r
d�s

dt
. �14�

Equations �14� and �7� have the same form. Therefore, the
analytical solution to Eq. �7� can still be used by defining an
effective initial biaxial modulus and an effective asymptotic
biaxial modulus for the coated beam as

M0,eff = �M0 + 4
hc

h1
Mc� , �15a�

M�,eff = �M� + 4
hc

h1
Mc� , �15b�

respectively. The structural behavior of the coated cantilever
is identical to a homogeneous beam made from a three pa-
rameter solid having the effective moduli as defined in Eqs.
�15a� and �15b� and the original relaxation time constant as
the material property.

FIG. 3. Schematic of a coated microcantilever sensor with an adsorption
layer. The stresses acting on a cross section of the microcantilever beam are
illustrated.
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Even a very thin metal coating will significantly raise the
effective modulus of the coated beam. For example, a 50 nm
gold coating with a biaxial modulus of Mc=95 GPa, bonded
to a 2 �m SU-8 cantilever �M0=4.5 GPa, M�=3.7 GPa�
has an effective initial biaxial modulus of 14 GPa and an
effective asymptotic modulus of 13.2 GPa. The coated beam
“effectively” relaxes by only 6% �compared with 18% relax-
ation for the uncoated SU-8� and could thus be approximated
quite well as an elastic beam. However, this assumes that
such thin gold films are themselves elastic. Some thin metal
films have been known to exhibit viscoelastic behavior.22

If the stress in the coating due to bending of the micro-
cantilever is significant and the coating can be modeled as a
viscoelastic three-parameter solid, it is still possible to define
similar effective biaxial moduli under certain conditions. As-
suming the resultant force in the coating acts at the interface
�z=0�, the neutral axis remains the same as in the previous
derivations, hn= �2 /3�h1. Thus, because the coating is thin,
the strain in the coating can be assumed uniform and ap-
proximated as �c= �2 /3�h1�. Requiring the total axial force
to be zero, one obtains two coupled differential equations
describing the curvature of a viscoelastic cantilever coated
with a thin viscoelastic material under an applied surface
stress as

2M�,ch1��t� + 2�r,cM0,ch1
d�

dt
= 3�c�t� + 3�r,c

d�c

dt
, �16a�

M�h1
2��t� + �rM0h1

2d�

dt
+ 6hc�c�t� + 6�rhc

d�c

dt

= − 6�s�t� − 6�r
d�s

dt
, �16b�

where �c is the stress in the coating. These equations can be
further simplified to fit the form of Eq. �14� if the relaxation
time constant of the coating is the same as that of the canti-
lever material,

�M� + 4
hc

h1
M�,c�h1

2��t� + �r�M0 + 4
hc

h1
M0,c�h1

2d�

dt

= − 6�s�t� − 6�r
d�s

dt
. �17�

Equations �17� and �7� have the same form. Therefore, the
structural behavior of the composite beam �viscoelastic coat-
ing and a viscoelastic base layer� is identical to a homoge-
neous beam made from a three parameter solid having the
effective moduli,

M0,eff = �M0 + 4
hc

h1
M0,c� , �18a�

M�,eff = �M� + 4
hc

h1
M�,c� . �18b�

Note that if the relaxation time constant of the coating is not
similar to that of the cantilever material then the composite
�coated beam� will not behave as a three-parameter solid and
this definition of effective moduli does not hold. In this case,

Eqs. �16a� and �16b� can still be applied to obtain the deflec-
tion of the cantilever as a function of time.

As an example of a polymer microcantilever coated with
a viscoelastic material, consider a 2 �m SU-8 cantilever
with 50 nm aluminum coating. A 1.16 �m thick aluminum
film was shown to exhibit viscoelastic behavior.22 By fitting
the experimental data in that work with a three-parameter
solid model the 1.16 �m thick aluminum was found to have
an initial Young’s modulus of 70 GPa and an asymptotic
modulus of 60 GPa with a relaxation time constant of
roughly 600 s. Using a constant Poisson’s ratio of 0.35, the
corresponding values of the initial and asymptotic biaxial
modulus of the thin aluminum coating are 108 and 92 GPa,
respectively. A 2 �m SU-8 cantilever with a 50 nm alumi-
num coating would have effective initial and asymptotic bi-
axial moduli of 15.3 and 12.9 GPa, respectively, using Eqs.
�18a� and �18b� �assuming that the properties of a 50 nm
thick aluminum are the same as those of a 1.16 �m thick
aluminum�. In this case, the relaxation factor is nearly un-
changed and the overall response is simply a scaled version
of the response obtained from Eq. �7�, not taking into ac-
count the stresses in the coating. Here, the initial biaxial
modulus of the coating was used to modify the initial biaxial
modulus of the polymer cantilever, and the asymptotic biax-
ial modulus of the coating was used to modify the
asymptotic biaxial modulus of the cantilever.

III. RESULTS AND DISCUSSION

This section will be organized into three subsections.
The first will examine how the response depends on the re-

laxation factor �1−M̄� and the time constant ratio ��̄�. Then,
the benefits and consequences of using a microcantilever
sensor made from a viscoelastic material will be discussed.
Finally, a simple method for extracting the time-domain vis-
coelastic properties of the cantilever material will be pro-
posed.

A polymer that is receiving much attention for the imple-
mentation of microcantilevers is SU-8. Previous studies have
shown that it is feasible to manufacture and implement mi-
crocantilever �bio�chemical sensors from SU-8.16 Therefore,
many of the calculations and simulations in this paper will
use the material properties of SU-8 for the polymeric micro-
cantilever. The viscoelastic properties of SU-8 have been
previously characterized in terms of the �uniaxial� relaxation
modulus.23 Fitting this relaxation modulus to the three-
parameter solid model one obtains an initial modulus in the
range of 3.1–3.2 GPa, an asymptotic modulus in the range of
2.5–2.7 GPa, and a relaxation time constant of approximately
600 s. The Poisson’s ratio of SU-8 is approximately 0.3.24

Using this data to approximate the biaxial behavior, one ob-
tains initial and asymptotic biaxial moduli of 4.5 and 3.7
GPa, respectively, and the same relaxation time constant
�600 s�.

A. Cantilever response

The analytical solution �Eq. �11�� for the cantilever
bending due to an applied surface stress is plotted in Fig. 4.
Normalized curvature ��M�h1

2 /6�ss� or normalized deflec-
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tion �wtipM�h1
2 /3L2�ss� is the ordinate while normalized time

�t /�r� is the abscissa. This forces the steady-state value of the
normalized curvature �and deflection� to be one. A family of
curves is shown for two different relaxation factors �1
−M� /M0=0.20 and 0.50�. For each relaxation factor the re-
sponse is shown for several time constant ratios ��s /�r�: 0,
0.1, 0.4, 0.7, 1.0, 1.5, and 2.5. Similarly, in Fig. 5, the nor-
malized deformation is shown as a function of time, where
the time is now normalized by the sorption time constant
�t /�s�. This normalization has the effect of showing the fam-
ily of responses for a fixed sorption time constant, whereas
Fig. 4 shows the responses for a fixed relaxation time con-
stant. Thus, one could examine Fig. 4 to investigate the pos-
sible responses that a specific microcantilever sensor �par-
ticular values of relaxation factor and relaxation time
constant� will have to various analyte/thin coating pairs
�various adsorption dynamics�. Alternatively, Fig. 5 can be
used to analyze the possible responses that a specific analyte/
thin coating pair �a particular adsorption dynamic� would
exhibit when used on different polymeric cantilevers �vari-
ous relaxation factors and relaxation time constants�. The
effects of the polymer base layer and the coating have been

separated because it is assumed that the base layer is chemi-
cally resistive and thus does not affect adsorption or surface
stress generation and that the coating is thin enough that it
does not affect the effective moduli, as defined in the previ-
ous section. It is noted these types of responses exhibiting
creep have been observed using SU-8 cantilever.16

Figure 5 illustrates some important differences between
the response of an elastic cantilever and that of a polymeric
cantilever. Stoney’s Eq. �1� indicates that, for an elastic can-
tilever, the deflection and the surface stress are proportional.
For a time-varying surface stress, Stoney’s equation holds
pointwise in time and the deflection history is a scaled ver-
sion of the surface stress history. Therefore, the response of
an elastic cantilever is governed by only the adsorption time
constant �i.e., the time constant of the surface stress, �s�. On
the other hand, Stoney’s equation, with M0 or M� as the
biaxial modulus of the base layer, only provides the lower or
upper bounds for the response of a polymeric cantilever. At
the limits �r /�s→� or �r /�s→0, the polymeric cantilever
behaves as an elastic material because the material either
never relaxes or is completely relaxed, respectively, during

FIG. 4. Theoretical bending responses of a polymeric microcantilever for
different analyte/coating pairs represented by varying �s /�r. �a� Polymer
relaxation factor=0.2. �b� Polymer relaxation factor=0.5.

FIG. 5. Theoretical bending responses of different polymeric microcantile-
vers with the same analyte/coating pair. The different microcantilevers are
represented by varying �r /�s. �a� Polymer relaxation factor=0.2. �b� Poly-
mer relaxation factor=0.5.
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the time span of interest. However, for an arbitrary value of
�r /�s, the response starts in the neighborhood of the lower
bound curve and transitions toward the upper bound curve at
a rate dependent on the ratio of the time constants. Note that
the response does not reach the steady state until surface
adsorption has reached equilibrium and the creep process in
the base layer has ended. This can lead to a much longer
response time than that predicted by Stoney’s equation for an
elastic beam.

B. Sensitivity and response time

Two of the most important characteristics of a chemical
sensor are its sensitivity and its response time. As previously
mentioned, creep in the microcantilever can continue long
after adsorption is complete. This means that the polymeric
microcantilever takes longer to respond than an elastic �sili-
con, for example� microcantilever with the same coating.
Most importantly, if one is not aware of creep occurring in
the microcantilever, it is possible to confuse the creep with
continued adsorption, which will lead to a poor understand-
ing of the adsorption dynamics and possibly an overestima-
tion of the actual analyte concentration. However, sensitivity
�defined as wtip /�ss� is greatly improved when using a poly-
meric microcantilever due to the fact that most polymers
have a much smaller biaxial modulus than that of typical
elastic microcantilevers �e.g., silicon, which has a biaxial
modulus of approximately 200 GPa�. Thus, one gains sensi-
tivity at the cost of an increase in response time. However, it
is possible to minimize this increase in response time
through careful polymer selection.

Both optical and piezoresistive techniques have been
successfully used as readout methods for polymer-based
microcantilevers.16 The results presented in this section are
independent of the readout method employed as long as the
output is proportional to the tip deflection. This is the case
for optical or piezoresistive readout schemes. However, in
the case of a piezoresistive readout scheme, the piezoresis-
tive element may contribute significantly to the stiffness of
the beam and may need to be treated as a coating, as de-
scribed in Sec. II C.

Because creep will often occur after adsorption has
reached equilibrium, standard definitions of response time
may not be appropriate to characterize the response time of a
polymeric microcantilever. In chemical sensor applications,
any definition of the response time should be correlated with
the time required to make an accurate estimate of the analyte
concentration. Often, the steady-state sensor response is used
to determine the analyte concentration. Thus, the time re-
quired to reach 90% of the steady-state response is com-
monly defined as the response time. This definition of re-
sponse time, if applied to polymeric cantilevers, may not
relate to the time required to make an accurate estimation of
analyte concentration. Cantilevers with a large relaxation
time constant exhibit very slow creep and take an extremely
long time to reach the steady-state response. However, if
creep occurs at a much slower rate than that of absorption,
the response of a polymeric cantilever will be similar to that
of an elastic cantilever. In that case, it is not necessary to

wait for the sensor to creep to its steady state in order to
obtain an estimate of the analyte concentration. After adsorp-
tion has reached equilibrium, the slope of the response is
small enough that a final measurement can be taken at any
time and used to estimate the analyte concentration without
much variation. The fact that the sensor has not reached its
steady state �after creep� is not an issue because the sensor
would be calibrated using experimental runs stopped at ap-
proximately the same time. An appropriate definition of re-
sponse time is therefore linked to the slowing of the response
with time. As a result, response time may be defined here as
the time at which the slope of the response has decayed to
2% its maximum slope. �Of course, other definitions are pos-
sible.� For elastic cantilevers that undergo adsorption gov-
erned by Eq. �8�, the response time is just under four sorption
time constants �tr=3.912�s, see Fig. 6�b��. However, for

FIG. 6. �a� Loci of increase in response time of a polymeric cantilever
relative to that of an elastic cantilever. The increase in response time is
dependent only on the relaxation factor of the polymer and the time constant
ratio. �b� Bending response of an SU-8 microcantilever �length=400 �m,
thickness=2 �m� and silicon microcantilever �length=400 �m, thickness
=1 �m� to analyte adsorption resulting in a steady-state surface stress of
�0.1 N/m and having adsorption time constants of 60 and 120 s. The arrows
represent the sensor response times. Material properties determined from
Refs. 23 and 24, M�=4.5 GPa, M0=3.7 GPa, �r=600 s, were used to rep-
resent SU-8.
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polymeric cantilevers the response time is governed by the
adsorption time constant and the material properties of the
polymer.

The normalized response time �i.e., response time di-
vided by the adsorption time constant� can be calculated
from Eq. �11� and is a function of the relaxation factor and of
the time constant ratio ��s /�r�. Loci of increase in response
time for a polymeric cantilever relative to that of an elastic
�silicon, for example� cantilever are shown in Fig. 6�a�. For a
given relaxation factor, the largest increase in response time
occurs when the relaxation time constant is roughly two to
ten times greater than the adsorption time constant. Also, for
a given time constant ratio, �s /�r, the largest increase in re-
sponse time occurs for large relaxation factors. The results in
Fig. 6�a� also allow one to develop guidelines for the selec-
tion and use of polymer cantilevers. For example, if one was
to limit the allowable increase in response time to 25%,
SU-8, which has a relaxation factor of 0.18 and a relaxation
time constant of 600 s, could be used to detect adsorption
processes with a time constant of less than 60 s or more than
600 s. Figure 6�a� also indicates that an SU-8 microcantile-
ver could be used for all adsorption processes �i.e., an arbi-
trary value of the adsorption time constant� if one was will-
ing to accept response times that were no more than 50%
larger than the response time of an elastic cantilever. Figure
6�b� shows the simulated responses of a 2 �m thick SU-8
microcantilever and a 1 �m thick silicon microcantilever
detecting surface adsorption with a time constant of 60 s
leading to an equilibrium surface stress of �0.1 N/m. �Re-
sults for an adsorption time constant of 120 s are also
shown.� These responses for SU-8 are represented by the x
on Fig. 6�a�. In the case of a 60 s adsorption time constant,
the response time �represented by arrows in Fig. 6�b�� is 235
s for an elastic cantilever and 296 s for a SU-8 cantilever,
which represents an increase of 26%. When the adsorption
time constant is increased to 120 s, the response time is 469
s for an elastic cantilever and 682 s for a SU-8 cantilever,
which represents an increase of 45%. It is reiterated that the
specific values for the response times calculated in this sec-
tion are based on the definition of response time as the time
at which the slope of the response has decayed to 2% its
maximum value.

Equation �11� indicates that the sensitivity of the poly-
mer cantilever is inversely proportional to M�h1

2. Thus, the
sensitivity of a polymer cantilever is increased greatly com-
pared to that of a silicon cantilever. However, it is also nec-
essary to consider the thickness of the polymeric cantilever
because each polymer may have a different fabrication limit
for the smallest possible thickness of the cantilever. Silicon
cantilevers can be produced with thicknesses less than
0.5 �m, whereas reported SU-8 cantilevers have thicknesses
of 2 �m. However, even when the polymer cantilever is
thicker, in most cases, sensitivity is still increased because
the modulus is much smaller. Figure 6�b� shows that the
sensitivity of the 2 �m thick SU-8 cantilever is 13.9 times
greater than that of the 1 �m thick silicon cantilever.

C. Extraction of viscoelastic properties

Some polymers have been characterized in the frequency
domain at a specific frequency25,26 or for a range of
frequencies.27 However, few data on the time-domain vis-
coelastic properties of polymer materials are available in the
literature; examples of two exceptions are polyisobutylene
and recently SU-8.23,27 Also, it is noted that the polymer
material properties may depend on fabrication processes
such as curing, deposition technique, etc. The theory pre-
sented herein can be used to provide a simple technique to
extract the time-domain viscoelastic properties of a polymer
from the cantilever’s response to a surface stress.

If a surface stress is applied to the microcantilever very
rapidly with respect to the relaxation time constant, then �̄
approaches zero. In this limit, Eq. �11� can be simplified and
the beam curvature can be written as

��t� = −
6�ss

h1
2M�


1 − �1 −
M�

M0
�exp�−

M�

M0

t

�r
��us�t� . �19�

Equation �19�, which has the same form as the biaxial creep
compliance, Jb�t�, for a three-parameter solid �Fig. 2�, indi-
cates that the cantilever’s deflection at time, t=0, is given by

wtip�0� = −
3L2�ss

h1
2M0

, �20�

and that the steady-state deflection is given by

wtip��� = −
3L2�ss

h1
2M�

. �21�

The time constant of the transition between the initial and
steady-state deflection is the creep time constant, defined as28

�c 
M0

M�

�r. �22�

The values of wtip�0�, wtip���, and �c in Eqs. �20�–�22� can be
determined graphically, as shown in Fig. 7, when sorption is
very fast compared to the relaxation. If the geometry and the

FIG. 7. Determination of the initial and asymptotic cantilever deflection and
the creep time constant from the bending response of the polymeric canti-
lever. These parameters are used for the extraction of the time-domain vis-
coelastic properties of the cantilever. The cantilever exhibits 33% relaxation
and a creep time constant of 300 s.
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steady-state applied surface stress ��ss� are known, the equa-
tions can then be used to extract M0, M�, and �r directly
from the cantilever response. These parameters completely
characterize the polymer material for a three-parameter solid.
However, if the geometry and/or the steady-state applied sur-
face stress are unknown, it is still possible to extract the
relaxation factor and the relaxation time constant by dividing
Eq. �21� into Eq. �20� to obtain

M�

M0
=

wtip�0�
wtip���

, �23�

and using Eq. �22� to determine the relaxation time constant.
These two parameters, the relaxation factor and relaxation
time constant, are sufficient to determine the response time
of the polymeric microcantilever.

It is noted that the surface stress could be induced on the
cantilever by several methods. Bonding a very thin, elastic
material to the microcantilever and imposing a small thermal
load or fast chemical adsorption are two possible techniques
to apply the rapid surface stress. If the surface stress can be
generated very rapidly compared to the relaxation time con-
stant �for example, �s�0.05 �r�, it will be possible to mea-
sure the initial and steady-state deflections and the creep time
constant directly from the response. As shown in Fig. 7, this
can be done by estimating the limiting case of the response
given by Eq. �19�. Equations �20�–�23� can then be used to
obtain the material properties of the polymer. If the surface
stress is induced slowly �compared to the previous example�,
the extraction of polymer properties may still be possible by
fitting the measured response to Eq. �11�. Again, the geom-
etry and the steady-state elongation must be known in order
to extract all material properties and the sorption time con-
stant. Otherwise, one can obtain the relaxation factor, the
relaxation time constant, and the sorption time constant. If
relaxation occurs much faster than sorption, it may not be
possible to extract any information about the initial modulus
or the relaxation time constant. When relaxation occurs rap-
idly compared to sorption, the differences between the re-
sponse of a polymeric microcantilever and that of an elastic
microcantilever �with biaxial modulus equal to the
asymptotic modulus of the polymeric cantilever� will be so
small that the material properties cannot be extracted using
the presented technique.

IV. CONCLUSION

A theory of the bending of a polymeric �viscoelastic�
microcantilever undergoing adsorption-induced surface
stress is presented. The theory includes the effects of vis-
coelastic creep in the polymeric cantilever and the solution to
the governing equation shows that, in many cases, creep in
the microcantilever would cause a microcantilever-based
sensor to continue to respond after adsorption is complete,
thereby leading to a longer response time than that of an
elastic �e.g., silicon� microcantilever. The response time can
be doubled or even tripled in some cases. In chemical sensor
applications, creep exhibited in the sensor response would, in
turn, lead to an increase in the time of detection of the target
analyte and would lead to a misunderstanding of adsorption
dynamics and an overestimation of analyte concentration if

viscoelastic creep is not taken into account in the analysis.
However, many polymers, for which creep is not as promi-
nent, could be used to develop microcantilever sensors. For
example, using the developed theory, it is shown that an
SU-8 microcantilever would, in the worst case, have a re-
sponse time that is 50% longer than that of a silicon cantile-
ver, but with an increase in sensitivity by more than a factor
of 10. Thus, SU-8 appears to be a viable microcantilever
material provided that viscoelastic creep is accounted for in
the analysis.

A simple technique that can be used to extract the time-
domain viscoelastic properties of the microcantilever is also
proposed. This technique will be helpful in the characteriza-
tion, and the selection, of glassy polymers that show poten-
tial for the implementation as microcantilever-based sensors.
Knowledge of material properties will be used to better un-
derstand the device response. Furthermore, with this infor-
mation it will be possible to predict the sensor’s steady-state
response and extract the adsorption dynamics from the sen-
sor response.
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