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Calculation of damping rates in thin inhomogeneous ferromagnetic films
due to coupling to lattice vibrations

R. D. McMichaela) and Andrew Kunz
National Institute of Standards and Technology, Gaithersburg, Maryland 20899

This article describes calculations of ferromagnetic resonance damping rates due to coupling
between the magnetization and lattice vibrations through inhomogeneities. The mechanisms we
have explored include generation of shear phonons through inhomogeneous anisotropy and
generation of both longitudinal and shear phonons through inhomogeneous magnetostriction. In
both cases, inhomogeneities couple the uniform precession to finite wave vector phonons. For both
coupling mechanisms, the predicted damping rate is on the order of 106 s21 in transition metals. The
damping rate by these mechanisms is inversely proportional to the fifth power of the shear phonon
velocity, and may play a significant role in mechanically softer materials such as magnet/polymer
nanocomposites. @DOI: 10.1063/1.1450831#

I. INTRODUCTION

It is well known that inhomogeneities can cause uniform
precession modes to scatter into finite-wave vector spinwave
excitations in a process described by the two-magnon
model.1–7 The two-magnon process produces an effective
line width in ferromagnetic resonance experiments, but it
may be regarded as something other than true damping be-
cause the energy stays within the magnetization without be-
ing transferred to the lattice. The analogous process was il-
lustrated in micromagnetic models of switching without
damping.8

The inhomogeneities that allow the uniform,k50, pre-
cession mode to drive nonuniform precession modes with
wave vectorkÞ0 will also allow uniform precession to
couple tokÞ0 sound waves in the film and substrate. The
transfer of energy to sound waves would be a true damping
effect, but its measurement by ferromagnetic resonance
would be masked by the presence of two-magnon broaden-
ing. The purpose of this article is to estimate theoretically
whether the inhomogeneities that enable two-magnon pro-
cesses within the magnetic subsystem also enable a signifi-
cant amount of true damping to sound waves in the lattice.

We consider a Hamiltonian that includes the uniform
mode of precession, a manifold of phonons and interaction
terms of the form

H
\

5v0a†a1(
k,s

vs~k!ck,s
† ck,s1(

k,s
~Fk,sack,s

†

1Fk,s* a†ck,s!, ~1!

wherea,a† andck,s ,ck,s
† are the lowering and raising opera-

tors for the uniform precession mode and for phonons, re-
spectively. Phonon modes are identified by wave vectork,
and polarization indexs.

The decay rate for the uniform precession,G, is given by
the golden rule of time dependent perturbation theory,

G5
2p
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uFk,su2 d@\v02\vs~k!#. ~2!

To proceed with this formulation, we must determine the
interaction coefficientsFk,s in terms of materials properties
and the properties of the excitations.

For small deviations of the magnetization from the equi-
librium direction, we write the magnetization asM5M sr̂

1muû1mff̂. The equilibrium magnetization direction is
along the unit vectorr̂; û andf̂ are chosen to lie along the
principal axes of the uniform precession~see Fig. 1!.

We write the energy of the magnetization in a uniform
film as

E5m0Vf~ 1
2 huumu

21 1
2 hffmf

2 ! , ~3!

wherehuu andhff are normalized fields andVf is the vol-
ume of the magnetic film. For magnetization aligned with an
applied fieldHa in the plane of a film,huu5Ha /Ms and
hff5(Ha1Ms)/Ms .

In terms ofa anda†, mu andmf are given by

mu,05
1

i
A \v0

2m0Vfhuu
~a2a†!, ~4!

a!Electronic mail: rmcmichael@nist.gov

FIG. 1. Coordinate system used for the calculations. The film and substrate

lie in the x–z plane. Unit vectorsûk and f̂k are chosen as polarization
vectors for shear phonons.
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The displacement of atoms in the film and substrate can
be written as9

u~r !5(
k,s
A \

2rVsvs~k!
~cks1c2ks

† !ês~k!eik"r, ~6!

wherer is the substrate density,Vs is the substrate volume,
and vs(k) is the angular frequency of a phonon with wave
vectork and polarization vectorês .

In Sec. II, we calculate the damping rate with the anisot-
ropy as the spin lattice coupling, and in Sec. III, we calculate
the direct-to-lattice damping rate due to magnetostriction.

II. COUPLING VIA ANISOTROPY

The phonon-generating process can be described classi-
cally. Imagine a small grain of anisotropic material in a uni-
form host. The precessing magnetization and the lattice in
this grain will experience equal but opposite, time-dependent
torques due to the local anisotropy. The relaxation of the
lattice in response to these torques leads to the dissipation of
magnetic energy by this mechanism.

For a material with an inhomogeneous anisotropy, the
local energy density can be expanded in a Taylor series inmu

and mf . The first order terms give rise to magnetization
ripple10 and the second order terms are

Ep5
m0Vf

N (
r
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2 hff~r !mf~r !2#. ~7!

Written in terms of Fourier coefficients

Ep5m0Vf(
k

@ f uu,2kmu,kmu,01 f ff,2kmf,kmf,0

1 f uf,2k~mu,kmf,01mf,kmu,0!#, ~8!

where only those terms involving the uniform precession are
kept and the uniform and inhomogeneous parts ofhi j (r ) are
separated

hi j ~r !5hi j 1 (
kÞ0

f i j ,ke
ik"r. ~9!

In Eq. ~7!, and in what follows,mu and mf are small
magnetization changes due to rotations ofM relative to the
lattice. The magnetization with respect to the direction of the
local crystal axes becomesm5m01mp , wherem0 is the
magnetization due to uniform precession magnons only and
mp is the effective magnetization due to local rotation of the
lattice which is described by the rotation vector¹3u:

mp,k5
1

N (
r

Msr̂~¹3u!e2 ik"r

5 iA \
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Assigning the polarization vectorsê1 and ê2 to ûk and
f̂k , respectively, the double cross product in Eq.~10! can be
written

M3k3 ûk52Mskcos~fk2f!û, ~11!

M3k3f̂k52Msk@cos~uk!sin~f2fk!û

1sin~uk!f̂#. ~12!

The perturbation energy@Eq. ~8!# can now be expanded
in terms of raising and lowering operators for magnons and
phonons. Using Eqs.~11! and~12!, theu andf components
of mp @Eq. ~10!# can be identified and substituted formu,k
andmf,k and Eqs.~4! and~5! can be substituted formu,0 and
mf,0 . For each polarization indexs, the coefficientsFk,s of
terms containingck

†a can be identified by comparison with
Eq. ~1!. The result is

(
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In this expression we have assumed that the material has
symmetry such that̂ f i j (r ) f kl(r1r 8)&5^ f i j (r ) f kl(r2r 8)&
where^ f & is the spatial average off and i , j , k, andl stand
for u and f. With this assumption,f i j ,k f kl,k* is real. Terms
odd in f2fkrm

have also been dropped because they will
cancel in the sum overk.

To proceed further, the properties ofu f i j ,ku2 must be de-
termined. As an example, we assume

f i j ~r !5H f i j ~r i! u 0,y,t f

0 u y>t f
, ~14!

wherer i is a vector in the plane of the film, and we assume
that f i j (r i) is correlated over a distanceD such that

^ f i j ~r i! f i j ~r i1r i8!&5^ f i j
2 ~r i!&e

2ur i8u/D. ~15!

Under these assumptions
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whereki is the in-plane component ofk.
To calculateG, the sum overk in Eq. ~2! is converted to

an integral,(k→Vs /(2p)3*dk for proper evaluation of the
delta function. We assume a linear, isotropic dispersion rela-
tion for the shear phonons,vk5cuku:
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For high frequencies, when the delta function in Eq.~1! se-
lects large values ofk such thatukut f@1 andukuD@1. The
terms on the second line of Eq.~17! decrease withk, so the
damping rate will decrease like 1/v3 for largev.

For smallk such thatukut f!1 andukuD!1, the terms on
the second line of Eq.~17! are approximatelyD2t f , and the
damping rate can be approximated by

G'
m0Ms

2D2t f~gm0Ms!
2v2

8prc5 @huu~^ f ff
2 &1^ f uf

2 &!

1hff~^ f uu
2 &1^ f uf

2 &!#. ~18!

For low v, the damping rate is proportional to the square of
the frequency. We expect maximum damping when the cor-
relation length and/or film thickness are on the order of a
phonon wavelength.

Note that the damping rate depends sensitively on a
number extrinsic materials parameters including the correla-
tion lengthD, and the thickness of the film. If we use order-
of-magnitude magnetic parameters typical of Permalloy
films, (Ms583105 A/m, and D5t f550 nm! mechanical
properties typical of silicon, (r52.33103 kg/m3, c53
3103 m/s! andv52p310 GHz, and if we allow for a very
large perturbation field on the same order asMs , such that
^ f i j

2 &51, the damping rate due to generation of phonons is
still only on the order of 106 s21, much smaller than rates of
109 s21 that are typically observed in ferromagnetic reso-
nance experiments. Note that Eq.~17! depends on the speed
of sound for transverse waves asc25. For a magnet/polymer
composite with a lower speed of sound, the damping by this
mechanism may be large enough to be dominant.

III. COUPLING VIA MAGNETOSTRICTION

Magnetostrictive coupling between magnetization pre-
cession modes and phonons have been observed as fine
structure in the ferromagnetic resonance of the garnet due to
standing sound waves in the substrates.11–13 Abrahams and
Kittel14 calculated the damping rate in single crystals due to
a process where magnon scattering is accompanied by emis-
sion or absorption of a phonon. Suhl15 has calculated damp-
ing by generation of shear sound waves in particles much
smaller than the wavelength of sound and viscous behavior
of the lattice. In both of these works, the damping rate is
small compared to experimental values.

We outline a calculation of the damping rate due to mag-
netostrictive generation of phonons in polycrystalline films
using the the cubic magnetoelastic coupling energy given by

Emagel5
Vf

N (
r

@B1~exxa1
21eyya2

21ezza3
2!

1B2~exya1a21eyza2a31ezxa3a1!#, ~19!

whereei j is the strain tensor anda i is a direction cosine of
the magnetization relative to the local crystallographic axes;
a i5mi /Ms . The strain is given by

ei j 5
1

2 S ]ui

]xj
1

]uj

]xi
D . ~20!

Because the directions of the crystallographic axes vary
from grain to grain in the film, we define a unitary coordinate
transformation matrixU„r … such thata i5( jUi j (r )M j /Ms .
The next step in the calculation would be to use Eqs.~4!, ~5!,
and ~6! to expand Eq.~19! in terms of magnon and phonon
raising and lowering operators. Becausea i is a linear com-
bination of Ms , mu , and mf , productsa ia j will contain
cross terms proportional tomu /Ms andmf /Ms with coeffi-
cients on the order of unity that depend onr . With these
substitutions, the coupling energy takes a form similar to Eq.
~8! with termsBg2k /(m0Ms

2) in place off i j ,2k whereg2k is
a Fourier component of coefficients of ther -dependent coor-
dinate transformation from local crystallographic axes to the
lab coordinates.

For transition metals with magnetostriction on the order
of 1025, B is typically of 106 J/m, the same order of mag-
nitude as m0Ms

2 . Based on this estimate, damping to
phonons via magnetostriction and damping to phonons via
magnetocrystalline anisotropy are similar in magnitude. Per-
haps the similar damping rates predicted for these two
mechanisms should not be surprising since both magneto-
striction and magnetocrystalline anisotropy have their origins
in spin-orbit coupling.

In conclusion, the results of these calculations indicate
that inhomogeneous coupling between the magnetization and
lattice vibrations may be strong enough to give measurable
damping in transition metal thin films. For magnet/polymer
nanocomposites or other materials with low sound speeds,
damping by phonon generation may play a much more sig-
nificant role.
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