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Character Degrees of Normally Monomial Maximal Class 
5-Groups 

Michael C. Slattery 

ABSTRACT. This paper will impose limits on the possible sets of irreducible 
character degrees of a normally monomial 5-group of maximal class. 

1. Introduction 

Let G be a finite p-group. Then G is an M-group ("monomial") which means 
that every irreducible ordinary character of G can be induced from a linear char­
acter of some subgroup. If one can always choose the subgroup from which one is 
inducing the linear character to be normal, then we say G is an nM-group ("nor­
mally monomial"). Recently some papers ([3], [6]) have studied the character de­
grees of normally monomial p-groups and especially, normally monomial p-groups 
of maximal class. 

In this paper we will prove: 

THEOREM. Let G be a normally monomial, maximal class 5-group. Then cd(G) 
is either {I, 5, 25, 54}, the set of all powers of 5 up to some limit, {I, 5, 25, ... , 5k } 

with k ? 1, or either of those two forms with degree 25 removed. 

Throughout the paper, the computer algebra system Magma [2J was used to 
gain insight, verify computations, and compute required small cases. 

REMARK. In computations of character degrees of all maximal class 5-groups 
of order up to 513 and some up to 515 , no groups have been found with character 
degrees of the form {I, 5,25, 54} or {I, 5, 54}. Furthermore, all these groups have 
character degrees {I, 5,53 } or {I, 5, 25, ... ,5k } even when having nilpotence class 
of Pi greater than 2 or G not normally monomial. 

2. Certain Module Homomorphisms 

In this paper, we are only concerned withp = 5. Nonetheless, we will occasion­
ally use "p" for "5" in order to make certain formulas more readable or familiar. 

We need to set up the machinery from [5, Section 8.2]. Let K be the 5th local 
cyclotomic number field and () be the ring of integers in K. 
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In 0, let () be a fixed primitive 5th root of unity. Note that multiplication by () 
is an additive automorphism of 0 which has order 5. Thus we can use this action 
to view 0 as a 05-module. 

Let Ii, = () - 1 and p = (Ii,). Then p is the unique maximal ideal of 0 
Ipi : pHIl = P for all i ~ 1, and pp-l = (p). ' 

DEFINITION 2.1. For any ( E 0, define the Ii,-weight of <: to be the smallest 
positive integer i such that <: 1:. pi. For instance, units of 0 have Ii,-weight 1. 

The patterns of commutators in our groups will be closely related to homo­
morphisms from 0/\0 to 0, so we wish to examine some of these maps. For any 
integer a coprime to 5, define O'a to be a ring automorphism of (:) which maps () to 
()a. We then define 82 : 0 /\ 0 -+ 0 by 

(x 1\ y)82 = (X0'2)(YO'-1) - (Y0'2)(XO'-I)' 

We would also like to define li,a = li,O'a and Ua to be the unit in 0 such that 
li,a = fi,Ua· 

LEMMA 2.2. The value (I\;j+l /\ I\;j)82 has I\;-weight 2j + 2, j ~ O. 

PROOF. We compute 

(I\;j+l 1\ li,j)82 
fi,j+ 1 I\;i _ I\;i .... j+I 

2 -1 2'''-1 

= li,2i+1(u~+IU~1 - u~u~11) 

li,2j+l (U2 - U-l) (U2U_l)J 
E p2j+I\p2j+2 

where the las.t step i~ true because both (U2 - U-l) and clearly (U2U-l)j are units. 
Therefore (I\;J+l/\ li,J)82 has Ii,-weight 2j + 2. 0 

Similarly, we have 

LEMMA 2.3. The value (1i,j+2 /\ ",1)82 has Ii,-weight 2j + 3, j ;::: O. 

PROOF. As above, using the fact that (u~ - U~I) is a unit in O. 0 

Just to simplify notation, we write Tl for the map li,- l S2 (Note: This is not 
precisely the map Tl in [5, p.162]. It differs by a unit multiple). 

COROLLARY 2.4. The value (Ii,j+l/\ I\;j)Tl has Ii,-weight 2j + 1 and (Ii,H2/\/i,i)Tl 
has Ii,-weight 2j + 2, j ~ O. 

In order to define another homomorphism, we need more detailed information 
about 0/\0. Let 25 denote the 5-adic integers. Then we can view 0 as a free 
2 5-module of rank 4 generated by 1, (), fP and ()3. With this view, it is clear that 
o /\ 0 is a free Z5-module of rank 6 generated by 

(Bl) 

On the other hand, by Proposition 8.3.5 of [5], 0/\(:) is the direct sum of a 
free 1Z5C5-module of rank 1 generated by I\; /\ 1 and a free Z5-module generated 
by an element z satisfying certain conditions. In the case of p = 5, the element 
z = e /\ 1 + e3 /\ 1 + ()3 /\ e2 meets the conditions. Therefore 0/\ 0 is also generated 
over 1Z5 by 
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(B2) 

In order to convert from one basis to another, we can expand each element in 
B2 in terms of B 1. For instance, 

Ii,/\ 1 = «()-1) /\ 1 = «()/\ 1) - (11\1) =()/\ 1 

and, using the diagonal action of 0 5 on 0 /\ 0 

(1\;/\1)03 = (1i,()3)/\«()3) 
«()4 _ ()3) /\ ()3 = ()4 1\ 03 

« _()3 _ ()2 _ e _ 1) 1\ e3 

= _ «()2 /\ ()3) _ «() /\ ()3) _ (11\ ()3) 

«()3/\ 1) + «()3 /\ a) + (e3 
/\ ()2) 

and so on. This produces the translation matrix W 
() /\ 1 ()2 /\ 1 ()2 /\ () e3 /\ 1 ()3 /\ () a3 1\ ()2 

1\;/\1 1 0 0 0 0 0 
(I\; /\ 1)() 0 0 1 0 0 0 
(1i,/\1)()2 0 0 0 0 0 1 
(Ii, /\ 1 )()3 0 0 0 1 1 1 
(1i,/\1)()4 1 1 0 1 0 0 

z 10 0 1 0 1 
We can now define a homomorphism T* E HomOp(1\20, O/pn-m) where 

n > m ;::: 4 are integers which will be specified later. For now, n - m can be viewed 
as an arbitrary positive integer. Our map will be defined using the generators B2 
above. In particular, 

LEMMA 2.5. The values (1\;2/\I)T*, (1i,2/\I\;)T*, and (1\;3/\1)T* allhavel\;-weight 
n - m and (/i,i /\ li,j)T* = 1'n-m for all other values of i > j ;::: O. 

PROOF. The value of (x )T* is determined by the coefficient of z in x relative to 
the basis B2 above. Ifthat coefficient is a multiple of 5, then, since (5) = 1'4 = (1\;4), 
the Ii,-weight of (x)T* will be at least 4 + the Ii,-weight of (z)T*. That is 4 + n - m 
and so, in the quotient module, (x)T* = pn-m. However, if i or j is at least 4,. we 
can factor out a scalar value of 5 showing that the coefficient of z must be a multIple 
of 5. Hence, (I\;i /\ /i,j)T* = 1'n-m for i > j ~ 4. To finish the proof, it suffices to 
compute the z component of /i,i 1\ li,j for 3 ;::: i > j ~ O. In each case, we can expand 
li,i /\ li,j into a linear combination of basis Bl and then use the translation matrix 
W to switch to basis B2. In that way we find 

Coefficient of z 
/\ 1 I\; /i,2 

Ii, 0 
li,2 -1 1 
li,3 4 -5 5 

In particular, we note that the Ii,-weights of the remaining values of T* are as 

claimed. 0 
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3. Groups 

We recall some standard notation. Let G be a maximal class p-group of order 
pn and 'Yi (G) denote the terms of the lower central series. Let Pi = Pi (G) = 'Yi (G) 
for 2 :::; i :::; n and let PI = PdG) be the centralizer in G of P2/ P4 , and Po = G. 
Then the Pi form a chief series of G. 

Let sand Sl denote elements of G with S E G\P1 and S1 E PI \P2 and define 
Si = [Si-l, s] for 2 :::; i :::; n. If G has positive degree of commutativity, then 
Lemma 3.2.4 of [5] says that Pi = (Si)Pi+1, for 1 :::; i :::; n. In this case it follows 
that every element of G has a unique representation of the form seD S~l S~2 ••• s~~ll 
where 0 :::; ei < p. 

Following [5, p.157], let G be a 5-group of maximal class of order 5n with 
positive degree of commutativity. Suppose that PI is class 2 and let m be such 
that Pi = Pm. Then Pl/Pm and Pm are abelian. By Lemma 8.2.1 of [5], we have 
O-module isomorphisms fG : 0/pm-1 -+ P1/Pm and gG : O/pn-m -+ Pm given by 

(pm-I + ao + al}\, + ... + am_2}\,m-2)fG = Pms~Ds~l '" s~~-12 

( n-m + + + n-m-I) aD al an-m-l p + aO al}\, ... an- m-1}\, gG = Sm Sm+l ... Sn_1 . 

Then commutation in PI induces a homomorphism 'l'/G from /\2(pt/ Pm) -+ Pm. 
Define 

C<G = (fG /\ fG)'I'/GgC:/ : O/pm-I/\ O/pm-I -+ O/pn-m. 

Note that C<G is built out of commutation and, in particular, if ( = (K;i /\ }\,j)c<a, 
then (ga is just the commutator [Si+l, Sj-l-IJ. 

The next theorem provides some details about this homomorphism c<a. In order 
to describe eta it is useful to note that the homomorphisms Tl and T* map from 
0/\0 to O/pn-m. Now, O/pm-I/\ O/pm-I ~ (0/\ 0)/1 for some C5-submodule 
I. In [4, Section 7] it is shown that this I is in the kernel of each of T1 and T* and 
so each induces a homomorphism from O/pm-I/\ O/pm-I to O/pn-m. 

THEOREM 3.1. Let G be a group of maximal class of order 5n with Pi = Pm 
central in PI where n 2: m ~ 4. We assume G has positive degree of commutativity 
(this only rules out a few groups of order 56). 

If PI is not abelian, then G corresponds to a homomorphism C<a induced by 
aTl+bT* whereaEO,O:::;b:::;4, andifaEp, thenn=m+l andb=JO. Also 
one of the following holds: 

(1) m == 1 mod 4 and 2m ~ n + 1, 
(2) m > 4, m ¢. 1 mod 4 and 2m 2: n + 2, 
(3) m = 4, n = 7 and b == a mod p, 
(4) m = 4,n = 5 or 6 and b = O. 

PROOF. This is part of Theorem 7.6 of [4J. o 

We now wish to compute the pattern of commutators in PI for some special 
cases of aa. 

REMARK 3.2. Any value of K;-weight k is mapped by ga to an element of the 
form 

where am+k-l is not zero. 
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LEMMA 3.3. If G is a group with C<G ind1Lced by TI , then IPfl = p2lPf+11 unless 
IP/+ll = 1. If IPf+11 = 1 then IPfl:::; p2. 

PROOF. Fix r and consider P;. This subgroup is generated by the gG-images 
of {(K;i /\ K;j)Tt} where m - 1 > i > j ~ r - 1. By Corollary 2.4 these Tl values 
include items of K;-weight 2r - 1, 2r, 2r + 1, ... , 2m - 5. We want to know that 
2m - 5 2: n - m or, equivalently, 3m 2: n + 5. By Theorem 3.1 2m 2: n + 1 and 
since m 2: 4, we have 3m 2: n + 5. So, we can say that the Tl values above include 
items of K;-weight 2r - 1, 2r, 2r + 1, ... , n - m. 

Based on these K;-weights, the gG-images of these values will include elements of 
G with leading terms Sm+2r-2, Sm+2r-l, ... , Sn-I. It follows that P; = Pm+2r- 2(G). 
From this formula, the stated conditions on IPfl are immediate. 0 

LEMMA 3.4. If G is a group with C<G induced by T*, then IPil = IP21 = 5, and 
I Pf I = 1 for i 2: 3. 

PROOF. By Corollary 2.5, the only non-trivial values of (K;i /\ }\,j)T* have K;-
weight n - m and so Pi = P2 = Pn-1(G). 0 

Combining these, we have 

THEOREM 3.5. The possible values of the sequence IPil, IP21, ... for a maximal 
class 5-group with PI of nilpotence class 2 are: 

p2k-\ p2k-3, ... , p, 1, 1, .. . 
p2k,p2k-2, ... ,p2, 1, 1, .. . 
p2k,p2k-2, ... ,p2,p, 1, 1, ... for k ~ 1 

or 
p,p, 1, 1, ... 

PROOF. We first note that the computations above often assume that G has 
positive degree of commutativity. This is guaranteed if IGI > 56. Using the Small­
Groups database [1], we check the properties of small maximal cla~s 5-groups with 
PI having class 2. The 6 groups of order 55 and 25 groups of order 5 have sequences 
IPil, IP~I, ... equal to (5,1, ... ), (5,5,1, ... ), or (25,1, ... ). 

Now we can assume that G has positive degree of commutativity and so etG = 
aTI + bT* as above. 

First we consider b = O. By Lemma 3.3, the desired result holds if a = 1 and, 
similary, if the I\;-weight of a is 1. However, if the I\;-weight o~ a is greater than 1 
then the I\;-weight of (I\;i 1\ K;j)aTl is uniformly larger than (I\;' /\ 1\;1)Tl and so the 
indices IPf : P/+11 will not change unless the subgroups in question become trivial. 
Consequently, the sequence Wil, IP~I, ... will still fall into one of the patterns given, 
but the values will be smaller and will reach 1 sooner. 

Now if b > 0, the addition of (Iii /\ K;j)bT* will affect at most IPil and IP~I. 
Furthermore, since we are only introducing values of K;-weight n - m, the orders 
of the commutator subgroups will only be affected if they are trivial. That is, 
sequences of the form 25,1, ... and 5,1, ... will become 25,5,1, ... and 5,5,1, ... 
each of which are in the stated list. 0 

4. Character Degrees 

If G is normally monomial, the sequence Wi!, W21, ... is sufficient to compute 
the character degrees of G as follows. 
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LEMMA 4.1. Let G be a normally monomial p-group of maximal class. Then 
cd( G) - 1 = {IG : PH1 1, 0 ::; i < n such that PI > PI+d. 

PROOF. This result is found in the proof of Corollary 2.6 in [3]. o 
This allows us to classify the possible character degrees when Pi has class 1 or 

2. 

THEOREM 4.2. Let G be a normally monomial, maximal class 5-group with 
P1(G) at most class 2. Then cd(G) is either {1, 5,125} or the set of all powers of 
5 up to some limit, {1, 5, 25, ... , 5k }, k 2: 1. 

PROOF. If Pi is abelian, then G has an abelian group of index p and so the 
possible character degrees are 1 and p. 

Otherwise, Pi has class 2 and we can apply Theorem 3.5 to deduce possible 
values for IP{I, IP~I, .... In particular, the non-trivial orders if PI strictly decrease 
in every case except (5,5,1, ... ). For these strictly decreasing sequences, Lemma 
4.1 implies that the character degrees of G will form a full set of powers of 5 up to 
some limit, {1, 5,25, ... , 5k }, k 2: l. 

On the other hand a commutator subgroup pattern of 5,5,1, ... implies 

cd(G) = {I, IG : P11, IG: P3 1} = {I, 5, 125} 

o 
Now, a result of Mann's will allow us to lift this character degree information 

to any normally monomial, maximal class 5-group (regardless of class of Pl(G)). 

LEMMA 4.3. Let G be a normally monomial p-group satisfying IG : G'l = p2, 
and let cd(G) = {1,p,pT

3, ••• ,pTk}. If M is a maximal subgroup ofG, then cd(M) 
consists of 1, possibly p, and the numbers pTi-l. 

PROOF. This is one case of Corollary 13 of [6]. o 
THEOREM 4.4. Let G be a normally monomial, maximal class 5-group. Then 

cd(G) is either {1, 5, 25, 54}, the set {1, 5, 25, ... , 5k } with k ~ 1 of all powers of 5 
up to some l'imit, or either of those two forms with degree 25 removed. 

PROOF. Let G be any normally monomial maximal class 5-group, and let M 
be a maximal subgroup G not equal to Pl. Then, by [6]' M is normally monomial 
and maximal class. Furthermore, by Corollary 3.4.12 of [5] (withp = 5), Pi(M) = 
P2 (G) has class at most 2. Thus, by the previous section, cd(M) is constrained. 
Now, the preceding lemma shows that cd(G) is closely determined by cd(M) and 
so we deduce that cd( G) must be one the forms listed. 0 

5. Future Directions 

As mentioned in the Introduction, I only know of maximal class 5-groups which 
have character degrees {I, 5, 53} or {I, 5, 25, ... , 5k }. Thus the current result, while 
nice, is probably not the end of the story, even for 5-groups. 

A natural question is to ask what happens for p = 7,11, .... It seems likely 
that the character degrees of maximal class 7-groups will have all of the 5-group 
patterns (Le. {1, 7, 73 } and {1, 7, 49, ... , 7k }) and it appears from very preliminary 
computations that some other patterns of powers of 7 show up as well. I conjecture 
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f .' 1 d 7 that don't 
that (as with p = 5) there are sets of pow.ers 0 7 contammg an 
appear as character degree sets of any mroClmal cla~s 7-group: _ 7 (and 

There are a few difficulties in applying the techmques of this paper to ~ - . f 
higher) For p = 7 the homomorphisms O'.G which arise are linear combmatlOns 0 

T T* ~nd anothe; map T2 . Linear combinations of TI and T2 seem to ~ave mdore 
1, . 'n b bl k the case analysIs har er. 

opportunities for interaction whlCh WI pro a Y ma e. h . al 
Similarly the structure of 0/\0 is more complicated. It remams true t at r;~m d 
class 7-g;oups have derived length at most 2, but, by p = 11, groups 0 enve 

length 3 and more begin to appear. 
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