Character Degrees of Normally Monomial Maximal Class 5-Groups

Michael Slattery
Marquette University, michael.slattery@marquette.edu

Published version. Contemporary Mathematics, Volume 524 (2010), Publisher website. © 2010 American Mathematical Society. Used with permission.
First published in Contemporary Mathematics in Volume 524, 2010, published by the American Mathematical Society.

Character Degrees of Normally Monomial Maximal Class 5-Groups

Michael C. Slattery

Abstract

This paper will impose limits on the possible sets of irreducible character degrees of a normally monomial 5 -group of maximal class.

1. Introduction

Let G be a finite p-group. Then G is an M -group ("monomial") which means that every irreducible ordinary character of G can be induced from a linear character of some subgroup. If one can always choose the subgroup from which one is inducing the linear character to be normal, then we say G is an nM-group ("normally monomial"). Recently some papers ([3], [6]) have studied the character degrees of normally monomial p-groups and especially, normally monomial p-groups of maximal class.

In this paper we will prove:
Theorem. Let G be a normally monomial, maximal class 5 -group. Then $\operatorname{cd}(G)$ is either $\left\{1,5,25,5^{4}\right\}$, the set of all powers of 5 up to some limit, $\left\{1,5,25, \ldots, 5^{k}\right\}$ with $k \geq 1$, or either of those two forms with degree 25 removed.

Throughout the paper, the computer algebra system Magma [2] was used to gain insight, verify computations, and compute required small cases.

REMARK. In computations of character degrees of all maximal class 5-groups of order up to 5^{13} and some up to 5^{15}, no groups have been found with character degrees of the form $\left\{1,5,25,5^{4}\right\}$ or $\left\{1,5,5^{4}\right\}$. Furthermore, all these groups have character degrees $\left\{1,5,5^{3}\right\}$ or $\left\{1,5,25, \ldots, 5^{k}\right\}$ even when having nilpotence class of P_{1} greater than 2 or G not normally monomial.

2. Certain Module Homomorphisms

In this paper, we are only concerned with $p=5$. Nonetheless, we will occasionally use " p " for " 5 " in order to make certain formulas more readable or familiar.

We need to set up the machinery from [5, Section 8.2]. Let K be the 5 th local cyclotomic number field and \mathcal{O} be the ring of integers in K.

[^0]In \mathcal{O}, let θ be a fixed primitive 5 th root of unity. Note that multiplication by θ is an additive automorphism of \mathcal{O} which has order 5 . Thus we can use this action to view \mathcal{O} as a C_{5}-module.

Let $\kappa=\theta-1$ and $\mathfrak{p}=(\kappa)$. Then \mathfrak{p} is the unique maximal ideal of \mathcal{O}, $\left|\mathfrak{p}^{i}: \mathfrak{p}^{i+1}\right|=p$ for all $i \geq 1$, and $\mathfrak{p}^{p-1}=(p)$

Definition 2.1. For any $\zeta \in \mathcal{O}$, define the κ-weight of ζ to be the smallest positive integer i such that $\zeta \notin \mathfrak{p}^{i}$. For instance, units of \mathcal{O} have κ-weight 1 .

The patterns of commutators in our groups will be closely related to homomorphisms from $\mathcal{O} \wedge \mathcal{O}$ to \mathcal{O}, so we wish to examine some of these maps. For any integer a coprime to 5 , define σ_{a} to be a ring automorphism of \mathcal{O} which maps θ to θ^{a}. We then define $S_{2}: \mathcal{O} \wedge \mathcal{O} \rightarrow \mathcal{O}$ by

$$
(x \wedge y) S_{2}=\left(x \sigma_{2}\right)\left(y \sigma_{-1}\right)-\left(y \sigma_{2}\right)\left(x \sigma_{-1}\right)
$$

We would also like to define $\kappa_{a}=\kappa \sigma_{a}$ and u_{a} to be the unit in \mathcal{O} such that $\kappa_{a}=\kappa u_{a}$.

Lemma 2.2. The value $\left(\kappa^{j+1} \wedge \kappa^{j}\right) S_{2}$ has κ-weight $2 j+2, j \geq 0$.
Proof. We compute

$$
\begin{aligned}
\left(\kappa^{j+1} \wedge \kappa^{j}\right) S_{2} & =\kappa_{2}^{j+1} \kappa_{-1}^{j}-\kappa_{2}^{j} \kappa_{-1}^{j+1} \\
& =\kappa^{2 j+1}\left(u_{2}^{j+1} u_{-1}^{j}-u_{2}^{j} u_{-1}^{j+1}\right) \\
& =\kappa^{2 j+1}\left(u_{2}-u_{-1}\right)\left(u_{2} u_{-1}\right)^{j} \\
& \in \mathfrak{p}^{2 j+1} \backslash \mathfrak{p}^{2 j+2}
\end{aligned}
$$

where the last step is true because both $\left(u_{2}-u_{-1}\right)$ and clearly $\left(u_{2} u_{-1}\right)^{j}$ are units. Therefore $\left(\kappa^{j+1} \wedge \kappa^{j}\right) S_{2}$ has κ-weight $2 j+2$

Similarly, we have
Lemma 2.3. The value $\left(\kappa^{j+2} \wedge \kappa^{j}\right) S_{2}$ has κ-weight $2 j+3, j \geq 0$.
Proof. As above, using the fact that $\left(u_{2}^{2}-u_{-1}^{2}\right)$ is a unit in \mathcal{O}.
Just to simplify notation, we write T_{1} for the map $\kappa^{-1} S_{2}$ (Note: This is not precisely the map T_{1} in [5, p.162]. It differs by a unit multiple).

Corollary 2.4. The value $\left(\kappa^{j+1} \wedge \kappa^{j}\right) T_{1}$ has κ-weight $2 j+1$ and $\left(\kappa^{j+2} \wedge \kappa^{j}\right) T_{1}$ has κ-weight $2 j+2, j \geq 0$.

In order to define another homomorphism, we need more detailed information about $\mathcal{O} \wedge \mathcal{O}$. Let \mathbb{Z}_{5} denote the 5 -adic integers. Then we can view \mathcal{O} as a free \mathbb{Z}_{5}-module of rank 4 generated by $1, \theta, \theta^{2}$ and θ^{3}. With this view, it is clear that $\mathcal{O} \wedge \mathcal{O}$ is a free \mathbb{Z}_{5}-module of rank 6 generated by
(B1)

$$
\theta \wedge 1, \theta^{2} \wedge 1, \theta^{2} \wedge \theta, \theta^{3} \wedge 1, \theta^{3} \wedge \theta, \theta^{3} \wedge \theta^{2}
$$

On the other hand, by Proposition 8.3.5 of [5], $\mathcal{O} \wedge \mathcal{O}$ is the direct sum of a free $\mathbb{Z}_{5} C_{5}$-module of rank 1 generated by $\kappa \wedge 1$ and a free \mathbb{Z}_{5}-module generated by an element z satisfying certain conditions. In the case of $p=5$, the element $z=\theta \wedge 1+\theta^{3} \wedge 1+\theta^{3} \wedge \theta^{2}$ meets the conditions. Therefore $\mathcal{O} \wedge \mathcal{O}$ is also generated over \mathbb{Z}_{5} by

$$
\begin{equation*}
(\kappa \wedge 1),(\kappa \wedge 1) \theta,(\kappa \wedge 1) \theta^{2},(\kappa \wedge 1) \theta^{3},(\kappa \wedge 1) \theta^{4}, z \tag{B2}
\end{equation*}
$$

In order to convert from one basis to another, we can expand each element in B2 in terms of B1. For instance,

$$
\kappa \wedge 1=(\theta-1) \wedge 1=(\theta \wedge 1)-(1 \wedge 1)=\theta \wedge 1
$$

and, using the diagonal action of C_{5} on $\mathcal{O} \wedge \mathcal{O}$

$$
\begin{aligned}
(\kappa \wedge 1) \theta^{3} & =\left(\kappa \theta^{3}\right) \wedge\left(\theta^{3}\right) \\
& =\left(\theta^{4}-\theta^{3}\right) \wedge \theta^{3}=\theta^{4} \wedge \theta^{3} \\
& =\left(\left(-\theta^{3}-\theta^{2}-\theta-1\right) \wedge \theta^{3}\right. \\
& =-\left(\theta^{2} \wedge \theta^{3}\right)-\left(\theta \wedge \theta^{3}\right)-\left(1 \wedge \theta^{3}\right) \\
& =\left(\theta^{3} \wedge 1\right)+\left(\theta^{3} \wedge \theta\right)+\left(\theta^{3} \wedge \theta^{2}\right)
\end{aligned}
$$

and so on. This produces the translation matrix W

so on. This produces the translation mater						
	$\theta \wedge 1$	$\theta^{2} \wedge 1$	$\theta^{2} \wedge \theta$	$\theta^{3} \wedge 1$	$\theta^{3} \wedge \theta$	$\theta^{3} \wedge \theta^{2}$
$\kappa \wedge 1$	1	0	0	0	0	0
$(\kappa \wedge 1) \theta$	0	0	1	0	0	0
$(\kappa \wedge 1) \theta^{2}$	0	0	0	0	0	1
$(\kappa \wedge 1) \theta^{3}$	0	0	0	1	1	1
$(\kappa \wedge 1) \theta^{4}$	1	1	0	1	0	0
z	1	0	0	1	0	1
We can now define a homomorphism $T^{*} \in \operatorname{Hom}_{C_{p}}\left(\wedge^{2} \mathcal{O}\right.$,						

We can now define a homomorphism $T^{*} \in \operatorname{Hom}_{C_{p}}\left(\wedge^{2} \mathcal{O}, \mathcal{O} / \mathfrak{p}^{n \sim m}\right)$ where $n>m \geq 4$ are integers which will be specified later. For now, $n-m$ can be viewed as an arbitrary positive integer. Our map will be defined using the generators B2 above. In particular,

$$
(\kappa \wedge 1) T^{*}=\mathfrak{p}^{n-m}, \quad z T^{*}=\kappa^{n-m-1}+\mathfrak{p}^{n-m}
$$

Lemma 2.5. The values $\left(\kappa^{2} \wedge 1\right) T^{*},\left(\kappa^{2} \wedge \kappa\right) T^{*}$, and $\left(\kappa^{3} \wedge 1\right) T^{*}$ all have κ-weight $n-m$ and $\left(\kappa^{i} \wedge \kappa^{j}\right) T^{*}=\mathfrak{p}^{n-m}$ for all other values of $i>j \geq 0$.

Proof. The value of $(x) T^{*}$ is determined by the coefficient of z in x relative to the basis B2 above. If that coefficient is a multiple of 5 , then, since (5) $=\mathfrak{p}^{4}=\left(\kappa^{4}\right)$, the κ-weight of $(x) T^{*}$ will be at least $4+$ the κ-weight of $(z) T^{*}$. That is $4+n-m$ and so, in the quotient module, $(x) T^{*}=\mathfrak{p}^{n-m}$. However, if i or j is at least 4, we can factor out a scalar value of 5 showing that the coefficient of z must be a multiple of 5. Hence, $\left(\kappa^{i} \wedge \kappa^{j}\right) T^{*}=\mathfrak{p}^{n-m}$ for $i>j \geq 4$. To finish the proof, it suffices to compute the z component of $\kappa^{i} \wedge \kappa^{j}$ for $3 \geq i>j \geq 0$. In each case, we can expand $\kappa^{i} \wedge \kappa^{j}$ into a linear combination of basis B 1 and then use the translation matrix W to switch to basis B2. In that way we find

Coefficient of z Con \wedge	1	κ	κ^{2}
κ	0		
κ^{2}	-1	1	
κ^{3}	4	-5	5

In particular, we note that the κ-weights of the remaining values of T^{*} are as claimed.

3. Groups

We recall some standard notation. Let G be a maximal class p-group of order p^{n} and $\gamma_{i}(G)$ denote the terms of the lower central series. Let $P_{i}=P_{i}(G)=\gamma_{i}(G)$ for $2 \leq i \leq n$ and let $P_{1}=P_{1}(G)$ be the centralizer in G of P_{2} / P_{4}, and $P_{0}=G$. Then the P_{i} form a chief series of G.

Let s and s_{1} denote elements of G with $s \in G \backslash P_{1}$ and $s_{1} \in P_{1} \backslash P_{2}$ and define $s_{i}=\left[s_{i-1}, s\right]$ for $2 \leq i \leq n$. If G has positive degree of commutativity, then Lemma 3.2.4 of [5] says that $P_{i}=\left\langle s_{i}\right\rangle P_{i+1}$, for $1 \leq i \leq n$. In this case it follows that every element of G has a unique representation of the form $s^{e_{0}} s_{1}^{e_{1}} s_{2}^{e_{2}} \cdots s_{n-1}^{e_{n-1}}$ where $0 \leq e_{i}<p$.

Following [5, p.157], let G be a 5 -group of maximal class of order 5^{n} with positive degree of commutativity. Suppose that P_{1} is class 2 and let m be such that $P_{1}^{\prime}=P_{m}$. Then P_{1} / P_{m} and P_{m} are abelian. By Lemma 8.2.1 of [5], we have \mathcal{O}-module isomorphisms $f_{G}: \mathcal{O} / \mathfrak{p}^{m-1} \rightarrow P_{1} / P_{m}$ and $g_{G}: \mathcal{O} / \mathfrak{p}^{n-m} \rightarrow P_{m}$ given by

$$
\begin{gathered}
\left(\mathfrak{p}^{m-1}+a_{0}+a_{1} \kappa+\cdots+a_{n-2} \kappa^{m-2}\right) f_{G}=P_{m} s_{1}^{a_{0}} s_{2}^{a_{1}} \ldots s_{m-1}^{a_{m-2}} \\
\left(p^{n-m}+a_{0}+a_{1} \kappa+\cdots+a_{n-m-1} \kappa^{n-m-1}\right) g_{G}=s_{m}^{a_{0}} s_{m+1}^{a_{1}} \ldots s_{n-1}^{a_{n-m-1}}
\end{gathered}
$$

Then commutation in P_{1} induces a homomorphism η_{G} from $\wedge^{2}\left(P_{1} / P_{m}\right) \rightarrow P_{m}$. Define

$$
\alpha_{G}=\left(f_{G} \wedge f_{G}\right) \eta_{G} g_{G}^{-1}: \mathcal{O} / \mathfrak{p}^{m-1} \wedge \mathcal{O} / \mathfrak{p}^{m-1} \rightarrow \mathcal{O} / \mathfrak{p}^{n-m}
$$

Note that α_{G} is built out of commutation and, in particular, if $\zeta=\left(\kappa^{i} \wedge \kappa^{j}\right) \alpha_{G}$, then ζg_{G} is just the commutator $\left[s_{i+1}, s_{j+1}\right]$.

The next theorem provides some details about this homomorphism α_{G}. In order to describe α_{G} it is useful to note that the homomorphisms T_{1} and T^{*} map from $\mathcal{O} \wedge \mathcal{O}$ to $\mathcal{O} / \mathfrak{p}^{n-m}$. Now, $\mathcal{O} / \mathfrak{p}^{m-1} \wedge \mathcal{O} / \mathfrak{p}^{m-1} \cong(\mathcal{O} \wedge \mathcal{O}) / I$ for some C_{5}-submodule I. In [4, Section 7] it is shown that this I is in the kernel of each of T_{1} and T^{*} and so each induces a homomorphism from $\mathcal{O} / \mathfrak{p}^{m-1} \wedge \mathcal{O} / \mathfrak{p}^{m-1}$ to $\mathcal{O} / \mathfrak{p}^{n-m}$.

Theorem 3.1. Let G be a group of maximal class of order 5^{n} with $P_{1}^{\prime}=P_{m}$ central in P_{1} where $n \geq m \geq 4$. We assume G has positive degree of commutativity (this only rules out a few groups of order 5^{6}).

If P_{1} is not abelian, then G corresponds to a homomorphism α_{G} induced by $a T_{1}+b T^{*}$ where $a \in \mathcal{O}, 0 \leq b \leq 4$, and if $a \in \mathfrak{p}$, then $n=m+1$ and $b \neq 0$. Also one of the following holds:
(1) $m \equiv 1 \bmod 4$ and $2 m \geq n+1$,
(2) $m>4, m \not \equiv 1 \bmod 4$ and $2 m \geq n+2$,
(3) $m=4, n=7$ and $b \equiv a \bmod p$,
(4) $m=4, n=5$ or 6 and $b=0$.

Proof. This is part of Theorem 7.6 of [4].
We now wish to compute the pattern of commutators in P_{1} for some special cases of α_{G}.

Remark 3.2. Any value of κ-weight k is mapped by g_{G} to an element of the form
$s_{m+k-1}^{a_{m+k-1}} s_{m+k}^{a_{m+k}} \ldots s_{n-1}^{a_{n-m-1}}$
where a_{m+k-1} is not zero.

LEMMA 3.3. If G is a group with α_{G} induced by T_{1}, then $\left|P_{i}^{\prime}\right|=p^{2}\left|P_{i+1}^{\prime}\right|$ unless $\left|P_{i+1}^{\prime}\right|=1$. If $\left|P_{i+1}^{\prime}\right|=1$ then $\left|P_{i}^{\prime}\right| \leq p^{2}$.

Proof. Fix r and consider P_{r}^{\prime}. This subgroup is generated by the g_{G}-images of $\left\{\left(\kappa^{i} \wedge \kappa^{j}\right) T_{1}\right\}$ where $m-1>i>j \geq r-1$. By Corollary 2.4 these T_{1} values include items of κ-weight $2 r-1,2 r, 2 r+1, \ldots, 2 m-5$. We want to know that $2 m-5 \geq n-m$ or, equivalently, $3 m \geq n+5$. By Theorem $3.12 m \geq n+1$ and since $m \geq 4$, we have $3 m \geq n+5$. So, we can say that the T_{1} values above include items of κ-weight $2 r-1,2 r, 2 r+1, \ldots, n-m$.

Based on these κ-weights, the g_{G}-images of these values will include elements of G with leading terms $s_{m+2 r-2}, s_{m+2 r-1}, \ldots, s_{n-1}$. It follows that $P_{r}^{\prime}=P_{m+2 r-2}(G)$. From this formula, the stated conditions on $\left|P_{i}^{\prime}\right|$ are immediate.

Lemma 3.4. If G is a group with α_{G} induced by T^{*}, then $\left|P_{1}^{\prime}\right|=\left|P_{2}^{\prime}\right|=5$, and $\left|P_{i}^{\prime}\right|=1$ for $i \geq 3$.

Proof. By Corollary 2.5, the only non-trivial values of $\left(\kappa^{i} \wedge \kappa^{j}\right) T^{*}$ have κ weight $n-m$ and so $P_{1}^{\prime}=P_{2}^{\prime}=P_{n-1}(G)$.

Combining these, we have

Theorem 3.5. The possible values of the sequence $\left|P_{1}^{\prime}\right|,\left|P_{2}^{\prime}\right|, \ldots$ for a maximal class 5-group with P_{1} of nilpotence class 2 are:

$$
\begin{aligned}
& p^{2 k-1}, p^{2 k-3}, \ldots, p, 1,1, \ldots \\
& p^{2 k}, p^{2 k-2}, \ldots, p^{2}, 1,1, \ldots \\
& p^{2 k}, p^{2 k-2}, \ldots, p^{2}, p, 1,1, \ldots \text { for } k \geq 1
\end{aligned}
$$

or

$$
p, p, 1,1, \ldots
$$

Proof. We first note that the computations above often assume that G has positive degree of commutativity. This is guaranteed if $|G|>5^{6}$. Using the SmallGroups database [1], we check the properties of small maximal class 5 -groups with P_{1} having class 2. The 6 groups of order 5^{5} and 25 groups of order 5^{6} have sequences $\left|P_{1}^{\prime}\right|,\left|P_{2}^{\prime}\right|, \ldots$ equal to $(5,1, \ldots),(5,5,1, \ldots)$, or $(25,1, \ldots)$.

Now we can assume that G has positive degree of commutativity and so $\alpha_{G}=$ $a T_{1}+b T^{*}$ as above.

First we consider $b=0$. By Lemma 3.3, the desired result holds if $a=1$ and, similary, if the κ-weight of a is 1 . However, if the κ-weight of a is greater than 1 then the κ-weight of ($\kappa^{i} \wedge \kappa^{j}$) aT T_{1} is uniformly larger than $\left(\kappa^{i} \wedge \kappa^{j}\right) T_{1}$ and so the indices $\left|P_{i}^{\prime}: P_{i+1}^{\prime}\right|$ will not change unless the subgroups in question become trivial. Consequently, the sequence $\left|P_{1}^{\prime}\right|,\left|P_{2}^{\prime}\right|, \ldots$ will still fall into one of the patterns given, but the values will be smaller and will reach 1 sooner.

Now if $b>0$, the addition of $\left(\kappa^{i} \wedge \kappa^{j}\right) b T^{*}$ will affect at most $\left|P_{1}^{\prime}\right|$ and $\left|P_{2}^{\prime}\right|$. Furthermore, since we are only introducing values of κ-weight $n-m$, the orders of the commutator subgroups will only be affected if they are trivial. That is, sequences of the form $25,1, \ldots$ and $5,1, \ldots$ will become $25,5,1, \ldots$ and $5,5,1, \ldots$ each of which are in the stated list.

4. Character Degrees

If G is normally monomial, the sequence $\left|P_{1}^{\prime}\right|,\left|P_{2}^{\prime}\right|, \ldots$ is sufficient to compute the character degrees of G as follows.

Lemma 4.1. Let G be a normally monomial p-group of maximal class. Then $\operatorname{cd}(G)-1=\left\{\left|G: P_{i+1}\right|, 0 \leq i<n\right.$ such that $\left.P_{i}^{\prime}>P_{i+1}^{\prime}\right\}$.

Proof. This result is found in the proof of Corollary 2.6 in [3]. \square
This allows us to classify the possible character degrees when P_{1} has class 1 or 2.

THEOREM 4.2. Let G be a normally monomial, maximal class 5-group with $P_{1}(G)$ at most class 2. Then $\operatorname{cd}(G)$ is either $\{1,5,125\}$ or the set of all powers of 5 up to some limit, $\left\{1,5,25, \ldots, 5^{k}\right\}, k \geq 1$.

Proof. If P_{1} is abelian, then G has an abelian group of index p and so the possible character degrees are 1 and p.

Otherwise, P_{1} has class 2 and we can apply Theorem 3.5 to deduce possible values for $\left|P_{1}^{\prime}\right|,\left|P_{2}^{\prime}\right|, \ldots$. In particular, the non-trivial orders if P_{i}^{\prime} strictly decrease in every case except $(5,5,1, \ldots)$. For these strictly decreasing sequences, Lemma 4.1 implies that the character degrees of G will form a full set of powers of 5 up to some limit, $\left\{1,5,25, \ldots, 5^{k}\right\}, k \geq 1$.

On the other hand a commutator subgroup pattern of $5,5,1, \ldots$ implies

$$
\operatorname{cd}(G)=\left\{1,\left|G: P_{1}\right|,\left|G: P_{3}\right|\right\}=\{1,5,125\}
$$

Now, a result of Mann's will allow us to lift this character degree information to any normally monomial, maximal class 5-group (regardless of class of $P_{1}(G)$).

Lemma 4.3. Let G be a normally monomial p-group satisfying $\left|G: G^{\prime}\right|=p^{2}$, and let $\operatorname{cd}(G)=\left\{1, p, p^{r_{3}}, \ldots, p^{r_{k}}\right\}$. If M is a maximal subgroup of G, then $\operatorname{cd}(M)$ consists of 1 , possibly p, and the numbers $p^{r_{i}-1}$.

Proof. This is one case of Corollary 13 of [6].
Theorem 4.4. Let G be a normally monomial, maximal class 5-group. Then $\operatorname{cd}(G)$ is either $\left\{1,5,25,5^{4}\right\}$, the set $\left\{1,5,25, \ldots, 5^{k}\right\}$ with $k \geq 1$ of all powers of 5 up to some limit, or either of those two forms with degree 25 removed.

Proof. Let G be any normally monomial maximal class 5 -group, and let M be a maximal subgroup G not equal to P_{1}. Then, by [6], M is normally monomial and maximal class. Furthermore, by Corollary 3.4.12 of [5] (with $p=5$), $P_{1}(M)=$ $P_{2}(G)$ has class at most 2 . Thus, by the previous section, $\operatorname{cd}(M)$ is constrained. Now, the preceding lemma shows that $\operatorname{cd}(G)$ is closely determined by $\operatorname{cd}(M)$ and so we deduce that $\operatorname{cd}(G)$ must be one the forms listed.

5. Future Directions

As mentioned in the Introduction, I only know of maximal class 5 -groups which have character degrees $\left\{1,5,5^{3}\right\}$ or $\left\{1,5,25, \ldots, 5^{k}\right\}$. Thus the current result, while nice, is probably not the end of the story, even for 5 -groups.

A natural question is to ask what happens for $p=7,11, \ldots$. It seems likely that the character degrees of maximal class 7 -groups will have all of the 5 -group patterns (i.e. $\left\{1,7,7^{3}\right\}$ and $\left\{1,7,49, \ldots, 7^{k}\right\}$) and it appears from very preliminary computations that some other patterns of powers of 7 show up as well. I conjecture

[^0]: 2000 Mathematics Subject Classification. 20C15.

