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Propulsive forces generated by cilia and flagella are used in events that are critical for the
thriving of diverse eukaryotic organisms in their environments. Despite distinctive strokes
and regulations, the majority of them adopt the 9þ2 axoneme that is believed to exist in the
last eukaryotic common ancestor. Only a few outliers have opted for a simpler format that
forsakes the signature radial spokes and the central pair apparatus, although both are unnec-
essary for force generation or rhythmicity. Extensive evidence has shown that they operate as
an integral system for motility control. Recent studies have made remarkable progress on the
radial spoke. This review will trace how the new structural, compositional, and evolutional
insights pose significant implications on flagella biology and, conversely, ciliopathy.

The intricate radial spokes (RSs) and central
pair apparatus (CP) in the 9þ2 axoneme

have attracted the interest of many. By all ac-
counts, flagellar motility is contingent on their
direct interactions, and thus they are often men-
tioned in the same context. Although motile
cilia and flagella in some cell types or some
organisms naturally lack both RSs and the CP,
for the majority that possess the 9þ2 axoneme,
they prove to be critical for motility. Genetic
defects afflicting either structure will result in
a spectrum of dyskinesia, ranging from paralysis
to jerking to a mixed population of motile and
dysmotile cilia.

As mentioned in Loreng and Smith (2016),
the CP is substantially more complex than the
RS. The synchronized spinning of the CP with
rhythmic beating in certain cilia (Omoto and

Witman 1981) has especially fueled much imag-
ination. In contrast, the RS is relatively simple.
Nonetheless, the simplicity presented a distinc-
tive opportunity for asking questions funda-
mental to flagella biology. Vigorous efforts in
combination with brilliant ideas and new tech-
nologies in recent years have shed considerable
insight on RSs from diverse organisms, includ-
ing humans. Although many earlier RS studies
used Chlamydomonas, emerging evidence
showed species-specific differences in RSs and
experimental advantages. This review will nar-
rate the converging discoveries that unveil RSs’
structures, molecular interactions, functions
and divergence among different organisms,
and the implications. The in-depth discussion
of motility control mechanism, radial spoke
proteins (RSPs) and RS mutants in Chlamydo-
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monas could be found in a previous review
(Yang and Smith 2008).

MORPHOLOGY AND PERIODICITY
OF RADIAL SPOKES

Physical attributes of axonemal components are
integral to the mechanics of motile cilia and
flagella. RSs were named after their radial pat-
tern in the axoneme cross sections (Ishikawa
2016). Individual RSs rendered by conventional
electron microscopy (EM) often were hard to
discern or varied substantially. Recent cryo-
electron tomography (ET) that bypassed fixa-
tions and metal decoration finally resolves the
discrepancies. Interestingly, RSs from diverse
organisms actually bear striking resemblances
but indeed with distinctions. A side view of
the Trypanosome axoneme (Koyfman et al.
2011) in which the CP is extruded (Fig. 1A)
reveals the typical radial pattern of RSs, with
the thinner spoke stalk docking to each outer
doublet and the enlarged head projecting to-
ward the CP. In a lateral view of Chlamydomonas
axoneme (Fig. 1B), there are two RSs—RS1 and
RS2—in each 96-nm repeat, contrary to three
RSs for most organisms. The missing third RS—
RS3—is replaced by a stand-in stub, RS3S (Pi-
gino et al. 2011; Barber et al. 2012; Lin et al
2014). The distances among the three RSs ad-
here to a multiplication of 8 nm—the length of
ab-tubulins—namely 32, 24, and 40 nm.

As revealed by negative-stained splayed ax-
oneme (Witman et al. 1978), RS1 and RS2 ap-
pear as a T shape, which, as the view rotates
outward, turns into a Y shape with an enlarged
head connected to a neck region by two arms
(Fig. 1C). The top view shows spoke heads com-
prised of two asymmetric modules arranged in a
twofold rotational symmetry (Fig. 1D), pre-
sumably each connected to the neck by one
arm. At higher resolutions, the spoke head in
humans (Fig. 1E) or sea urchins appeared small-
er and more compact, lacking the tendril-like
extensions in protist spoke heads. Notably,
RS3 has a rather different morphology, with
an asymmetric head (Fig. 1E) and a kinked stalk.
Furthermore, RS3 seems unaffected in primary
cilia dyskinesia (PCD) patients with defective

spoke head proteins (Lin et al. 2014). The bio-
chemical bases underlying the distinctive RS3
morphology are unknown.

The molecular context at the base of each RS
is also distinct, suggesting that the task of the
three RSs are not identical. RS1 base is adjacent
to the base of the two-headed inner dynein arm
I1, whose base module contacts the MIA com-
plex named after the deficiencies in modifier of
inner arm (mia) mutants (King and Dutcher
1997; Yamamoto et al. 2013). mia mutants, al-
beit containing all I1 components, are slow
swimmers deficient in phototaxis as I1 mutants
(see the section Chemical Signaling for a detailed
discussion). RS2 and RS3/RS3S are, respective-
ly, adjacent to the front and back of the nexin–
dynein regulatory complex (N-DRC) and per-
haps the calmodulin- and spoke-associated
complex (CSC) (Gardner et al. 1994; Dymek
and Smith 2007; Heuser et al. 2009, 2012; Ur-
banska et al. 2015). This arrangement is consis-
tent with distinct inner dynein anomalies in mia
mutants (King and Dutcher 1997) and N-DRC
mutants (Piperno et al. 1992). These precise
structural relationships are predetermined by a
complex coined as a molecular ruler that is, sur-
prisingly, comprised of only two coiled-coil pa-
ralogous proteins (FAP59 and FAP172) (Oda
et al. 2014a). Defects in their encoding genes
in Chlamydomonas mutants ( pf7 and pf8) result
in diminished inner dynein arms and N-DRC.
Interestingly, the 32- to 64-nm RS periodicity is
replaced by a 32-nm only periodicity. Length-
ening these ruler proteins also alters the period-
icity of RSs or their adjacent ensemble. It is in-
terpreted that RS periodicity is founded on the
molecular ruler that recruits N-DRC and inner
dynein arms, which in turn inhibits the inherent
ability of RSs in binding to outer doublets.

RADIAL SPOKE PROTEINS
IN CHLAMYDOMONAS

The repertoire of RS mutants (Huang et al.
1981), the RSP 2D map (Piperno et al. 1981),
nuclear transformation (Diener et al. 1990), and
extraction of RS particles (Yang et al. 2001) set
the stage for the comprehensive identifications
of RSPs in Chlamydomonas, Ciona (Satouh et al.
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2005; Satouh and Inaba 2009), and other organ-
isms. RSPs were first defined based on the miss-
ing 17 proteins in the spokeless axonemes of
Chlamydomonas mutant, pf14 (Huang et al.
1981). Extracted RS particles contain these 17
RSPs, tubulins, and at least six more polypep-

tides. Two are ubiquitous—calmodulin and
LC8, which are present in multiple protein com-
plexes—and therefore are not absent in pf14.
Together, these 19 proteins reside in the Y-
shaped RS complex. The rest are likely tethered
to the RS base and coextracted when microtu-
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Figure 1. Structures of radial spokes. (A–E) Cryo-electron tomogram renditions of axonemes. (A) Cross section
from Trypanosome brucei in which the central pair apparatus was extruded offered an unobstructed view of the
entire radial spoke. The central pair apparatus is absent in this sample (electron microscopy [EM] Data Bank
[EMDB] ID 5302; Koyfman et al. 2011). (B,C) Lateral view of the T-shaped twin radial spokes, RS1 and RS2, in
one 96-nm repeat of Chlamydomonas flagella and a counterclockwise rotation view to reveal the bifurcation of
the neck region (EMDB ID 1941; Pigino et al. 2011). The bottom panels depict predicted positions of the helices
from RSP2, RSP3, and NDK5 (pink, green, and blue lines) that form the two arms at the neck and tether to two
head modules. Spoke HSP40 at this position is not illustrated for clarity. (D,E) Top view of a 96-nm repeat in a
Chlamydomonas flagellum (EMDB ID 5845; Oda et al. 2014b) and human respiratory cilium (EMDB ID 5950;
Lin et al. 2014). Each spoke head has two modules arranged in rotary symmetry. Numbers in D indicate
predicted locations of RSPs. Note humans have triplet RSs, with RS3 strikingly different from RS1 and RS2.
The images were generated using the EM Navigator at the Protein Data Bank Japan (PDBj) (pdbj.org). (F–G)
Crystallographic structures predicting the assembly process of the spokeneck region with Dpy-30 domains from
RSP2 (pink ribbons) and NDK5 (blue ribbons) and amphipathic helices from a RSP3 dimer (green ribbons).
(F) Crystallography of tetramers of the Dpy-30 domain that is comprised of two X helical bundles. The domain
exists as a homodimer in solution. In crystals, staggering of the two dimers partially exposes the binding cleft for
an amphipathic helix in their interacting partners. The polypeptides are from Dpy-30 protein. The illustration is
generated from PDB ID 3G36 (Wang et al. 2009). This may account for the direct association of RSP2 and NDK5
human orthologs. (G) The face-to-face orientation of the two dimeric Dpy-30 domains binding to an amphi-
pathic helix from Ash2 in the Set1-like histone methyltransferase complex. The illustration is generated from
PDB ID 4RIQ (Tremblay et al. 2014). This may represent the conformational change as the RSP2/NDK5
complex associates with RSP3’s amphipathic helix.

The Basic and Add-Ons of Radial Spokes
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bules are disrupted by the KI buffer. All Chla-
mydomonas RSPs have been identified except
RSP13 (Yang et al. 2006). RSP13 may be orthol-
ogous to CMUB116 in Ciona RSs, a conserved
protein with both a calmodulin-binding do-
main and a ubiquitin domain. There is no evi-
dence yet that the content in RS1 and RS2 dif-
fers. Only those that were studied further will be
discussed below.

ORGANIZATION OF RSPs

Based on partial deficiencies in a few Chlamydo-
monas RS mutants, the 17 RSPs were assigned to
separate regions—five (RSP 4, 6, 1, 10, and 9) in
the head, three (RSP2, HSP40, and RSP23) at the
neck, and the rest at the stalk (Huang et al. 1981;
Patel-King et al. 2004; Yang et al. 2006) (Fig. 1B–
E). The comprehensive data showed that the
largely symmetric RS1 and RS2 contained
many homodimers and paired paralogs with
an identical domain. For example, in the spoke
head, RSP4 and 6 are paralogs expressed from
duplicated genes (Curry et al. 1992), whereas
RSP1 and 10 are homologs with membrane oc-
cupation and recognition nexus (MORN) re-
peats. Analysis of recombinant proteins and tag-
ging indicate that each spoke head contains two
copies of each protein that is inherently dimeric
(Kohno et al. 2011; Oda et al. 2014b). Further-
more, the RIIa domains in RSP11 and RSP7, and
the Dpy-30 domains in RSP2 and RSP23
(NDK5) in the stalk are dimerization and dock-
ing (DD) domains of striking similar tertiary
structures (Sivadas et al. 2012). Finally, RSP3
that docks the RS to outer doublets also exists
as a homodimer (Diener et al. 1993; Wirschell
et al. 2008).

RIIa-containing RSPs showed the physio-
logical relevance of the binding of RSP3 to the
RIla-containing RII in the cAMP-dependent
protein kinase (PKA) (Gaillard et al. 2001) in
an in vitro assay credited for the discoveries of
many PKA-anchoring proteins (AKAPs). As
such, RSP3 is often referred to as an AKAP. De-
letion mutagenesis (Sivadas et al. 2012) and
structural tagging (Oda et al. 2014b) confirmed
that an RII-binding amphipathic helix in RSP3
binds to the RIIa domain in RSP7 and RSP11,

which otherwise bears no other PKA signature
features (Fig. 1B). This led to a prediction that
some “AKAPs”—including RSP3 in Chlamydo-
monas—anchors proteins with a RIIa domain
that tethers functional modules irrelevant to
PKA, and the term of “AKAPs” should be re-
served for those that anchor PKA holoenzyme
in vivo (see detailed discussion in the section
Evolution of Radial Spokes). In addition, RSP3
harbors another amphipathic helix that binds
Dpy-30 domains in RSP2 and NDK5. Chemical
cross-linking suggests further association of
NDK5 with RSP1, and RSP2 with RSP4/RSP6
(Kohno et al. 2011).

Taken together, these observations support
a model that one RSP3 dimer serves as a scaffold
to anchor the rest of the RSPs. The conserved
region of RSP3 likely defines the RS length that
is strictly conserved (Gaillard et al. 2001). Its
amino-terminal region docks RSs to the outer
doublets, whereas its carboxyl terminus directs
toward the spoke head (Sivadas et al. 2012; Oda
et al. 2014b). This orientation positions the
RIIa-containing RSP7 and RSP11 toward the
outer doublets and the two Dpy-30-containing
RSP2 and NDK5 toward the spoke head (Fig.
1B). As such, the carboxy-terminal helices in
RSP2, RSP3, and NDK5 may form the arms
that bifurcate at the neck and secure two spoke
head modules directionally (Fig. 1B,C, bottom
panel). For the spoke head, we designate that
RSP6 is peripheral to RSP4, and RSP1 is periph-
eral to RSP10 (Fig. 1D), because both RSP6 and
RSP1 are not required for spoke head assembly
in Chlamydomonas (Wei et al. 2010; X Zhu, un-
publ.); and RSP10 could be chemically cross-
linked into a homodimer (Kohno et al. 2011).
RSP9 is required for spoke head assembly but
there is insufficient data to predict its location.

EVOLUTION OF RADIAL SPOKES

In spite of the similar Y-shaped morphology,
RSs diverged evolutionarily—toward simplic-
ity—perhaps accelerated by gene duplication,
redundancy, and the versatility of DD domains.
Consistent with partial redundancy of spoke
head proteins, the Basic Local Alignment Search
Tool (BLAST) search indicates that RSP1 and
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its predicted partner, NDK5, are absent in Tet-
rahymena and other ciliates, whereas Ciona in-
testinalis as well as sea urchins only have one
gene for RSP4/6 (Table 1) (P Yang, unpubl.).
This is substantiated by the presence of only one
RSP4/6 and one MORN protein in purified
Ciona RSs (Satouh and Inaba 2009). This may
be also true for humans, although humans have
genes for RSP4, 6, 1, and 10. The abundance
of the transcripts (Kott et al. 2013) or express
sequence tags (ESTs) for RSP1 (RSPH1) and
RSPH10 are opposite in airway and testis. Sim-
ilarly, RSPH4 transcripts are far more abundant
than RSPH6 transcripts. This raises the pos-
sibility that the spoke head in human cilia may
contain homodimers of RSPH4 and RSPH1,
forsaking RSPH6 and RSPH10, whereas
RSPH1 is absent in sperm flagella. As such, the
notion that certain defective RS genes will not
affect fertility and thus will be more prevalent
(Onoufriadis et al. 2014) should be entertained.

Simplification also reflects in the sizes of
RSP1, 2, 3, and NDK5 in the head/neck region
(Table 1). These proteins from Tetrahymena and
Chlamydomonas have a long carboxy-terminal
extension that is absent in their metazoan coun-

terparts. For instance, contrary to Chlamydo-
monas RSP2’s 738 aa residues, human RSP2
counterparts—DYDC1 and DYDC2—are only
�170-aa long, encompassing only the region
required for rhythmic beating, including the
Dpy-30 domain for docking to RSP3, and the
flanking helices perhaps for forming the bifur-
cated arms that interact with RSP4/6 (Fig.
1B,C) (Gopal et al. 2012). As the extensions
are predicted to be near the spoke head, absence
of the extension is consistent with metazoans’
smaller, compact spoke head. Although these
carboxy-terminal tails are dispensable, RSP2s
and NDK5s have calmodulin-binding motifs.
Chlamydomonas cells lacking RSP2’s tail cannot
steer properly under bright light (Gopal et al.
2012). This suggests that the calmodulin-bind-
ing extension acts on the spoke head region
(Fig. 1B,C) to coordinate flagellar motility as
this photosynthetic organism navigates illumi-
nated environments. Such measures apparently
are unnecessary for most organisms.

The RS epitomizes the versatility of DD do-
mains and their amphipathic helix partners
(Gopal et al. 2012; Sivadas et al. 2012). The
DD domains bring to molecular complexes

Table 1. Divergence of radial spoke proteins (RSPs) in the head and neck region of four representative species, as
shown by their sizes and selective absence

RSP

Species

C. r. T. t. C. i. H. s.

RSP4 465 463 527 717
486

RSP6 459 493 N/D 612
RSP1 814 N/D 300 309
RSP10 216 227 N/D 870

221
RSP9 269 296 276 276

463
RSP2 (DYDC1,2) 738 628 169 177
RSP23 (NDK5) 586 N/D 257 212
RSP3 516 691 336 380 (N’160)

950
764

RSPs in the head region are shaded in gray. C.r., Chlamydomonas reinhardtii; T. t., Tetrahymena thermophile; C. i., Ciona

intestinalis; H. s., Homo sapiens. The polypeptides were identified based on a BLAST search against Chlamydomonas RSPs.

Those from C. r. and C. i. were also confirmed by protein biochemistry of isolated RS particles (Yang et al. 2006; Satouh and

Inaba 2009). Note that some RSPs in the protists are far larger, while human RSP3 has an additional 160-aa fragment at the

amino terminus (N’160) (Jivan et al. 2009). N/D, Not detectable in the genome or RS proteome.

The Basic and Add-Ons of Radial Spokes
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their tethered effector moieties—for cNMP sig-
naling in the case of RII in PKA, for calcium-
sensing such as RSP7, for nucleoside metabo-
lism such as NDK5, and for assembly such as
DYDC2 and RSP11. The tethered moieties
could further duplicate or combine, as in Chla-
mydomonas’ RSP2 and NDK5. Mammals par-
ticularly have multiple genes that encode RIIa-
containing proteins, most of which are enriched
in testis. But they share little semblance to each
other, RSP7, or RSP11 except the RIIa domain
(e.g., Newell et al. 2008). The divergence of DD
domain proteins may allow airway and testis to
build slightly different RSs and perhaps CPs that
also contains an RIIa-binding protein (Gaillard
et al. 2001; Rao et al. 2016). Some of them bind
to “AKAPs” in the fibrous sheath of sperm fla-
gella (e.g., Fiedler et al. 2012). As such, bona fide
RIIa partners of RSP3 and any AKAPs may dif-
fer in each cell type, and should be determined
empirically. Although RSP3 does not bind
PKA’s RII in Chlamydomonas, it potentially
could in animals’ motile cilia or flagella as a
bona fide AKAP. Different RIIa partners may
explain opposite effects of PKA on Chlamydo-
monas flagella and other cilia and flagella (Ha-
segawa et al. 1987). It is worthwhile to point out
that RSP3 indeed possesses a key feature of
AKAPs, the scaffold of molecular complexes,
to integrate proteins of diverse functions for
flagellar motility control. Although Chlamydo-
monas RSP3 is not a typical PKA-anchoring
AKAP, it still anchors calcium-sensing mole-
cules perhaps for calcium-related motility con-
trol and structural proteins for transducing me-
chanical feedback.

RS ASSEMBLY

RSPs are assembled into RSs in two phases.
Fractionations of cell body extracts and the fla-
gellar membrane matrix suggest that the cell
body only makes partially furbished RSs that
sediment as 12S particles in the sucrose gradient
(Qin et al. 2004). After delivery into flagella by
intraflagellar transport (IFT), 12S precursors
are converted into 20S mature RSs. The direct
interaction of human orthologs of NDK5 and
RSP2 at the neck (e.g., Rual et al. 2005) suggests

that they assemble first, perhaps mediated by
the Dpy-30 domain that was crystallized as two
partially staggered dimeric dimers (Fig. 1F). In-
teractions with amphipathic helices in the RSP3
dimer during the assembly of the 12S RS pre-
cursors might reposition the two sets of dimers
into a face-to face orientation (Fig. 1G). This
structure-based interpretation is concordant
with the detection of RS subparticles in the
RSP3 mutant (Diener et al. 2011).

The distinct sedimentation coefficients of
12S and 20S RS particles are more likely caused
by disparateness in shapes than masses. While
the Y-shaped mature RSs are about 32 nm by
42 nm, the 12S RS is a D-shape of 20 nm by
28 nm in negative-stained EM (Diener et al.
2011). The precursors lack the two strictly con-
served small dimeric proteins—HSP40 and
LC8—that are involved in the conformational
change during RS assembly. Most organisms
have a multitude of HSP40 genes. Typically,
HSP40s cooperate with other chaperones to
mediate protein folding, whereas some may
act solitarily. Flagella that lack HSP40 jerk in-
cessantly although the other RSPs appear nor-
mal (Yang et al. 2008). EM revealed irregular tilt
or a lower bifurcated neck of RSs. These obser-
vations support a model that the V-shaped di-
meric HSP40, transported differently from 12S
precursors, bind to the polypeptides at the neck
region at the flagellar tip where final assembly
occurs (Johnson and Rosenbaum 1992). LC8
dimer, present in numerous protein complexes
including multiheaded dyneins and RSs, typi-
cally brings two polypeptides in a complex to-
gether. But in RSs, a stack of LC8 dimers bring
together the amino terminus of an RSP3 dimer
in RS precursors to form a rod at the RS base,
promoting RSP3’s phosphorylation and dock-
ing to the outer doublets (Yang et al. 2009;
Gupta et al. 2012).

RSP3 phosphorylation is tightly linked to RS
docking. RSP3 is hypophosphorylated in RS
precursors and in mutants with reduced RSs,
such as fla14 that lacks LC8 and pf27 (Yang and
Yang 2006; Gupta et al. 2012), suggesting that the
RSs in pf27, as in fla14, are not assembled via a
normal process that involves phosphorylation.
The PF27 gene has not been identified but likely
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encodes a protein outside of flagella (Huang
et al. 1981). Interestingly, RSs in pf27 preferen-
tially distribute toward the base of flagella (Al-
ford et al. 2013). It is proposed that PF27 is an
adaptor linking spoke precursors to IFT.

RS OUTER DOUBLET CONNECTIONS

Much progress has been made in elucidating the
distinct structural linkages of the three RSs.
Three proteins (CaM-IP2, IP3, and IP4) cosedi-
ment with the 20S RS fraction but were not
abundant enough for identification. Instead,
they were identified in the pull-down of the
anticalmodulin antibody. Knockdown of CSC
proteins impaired RS2, RS3S, N-DRC, and a
single-headed dynein, e (Dymek et al. 2011;
Heuser et al. 2012), suggesting that the CSC is
among the base of RS2 and RS3, N-DRC, and
the nearby dynein. Consistent with this, the an-
tibody for a CSC protein inhibits microtubule
sliding velocity as the reduced microtubule slid-
ing velocity of pf14 axonemes. And yet the
seemingly normal CSC in pf14 axonemes indi-
cates that the CSC assembly is independent of
the rest of RSs (Dymek and Smith 2007).

A pull-down of the spoke stalk recovered the
CSC and another protein that associated with
RS2, FAP206 (Gupta et al. 2012). FAP206 is
reduced in pf14 axonemes (Lin et al. 2011).
Knockout of Tetrahymena FAP206 also impaired
RS2 specifically, and indicated that FAP206
linked the proximal end of RS2 base to the sin-
gle-headed dynein, c (Vasudevan et al. 2015).
Therefore, FAP206 and the CSC appear to link
the base of RS2 to different single-headed dyne-
ins aligned in tandem. The biochemical evi-
dence for direct coupling among RS1, the MIA
complex, and I1 has not yet emerged.

THE SPECTRUM OF MOTILITY ANOMALIES
OF RS MUTANTS

It is important to note that not all RS mutants
are immotile. Although Chlamydomonas RS
mutants are known for paralyzed flagella, they
actually show a spectrum of motility anomalies,
depending on the defective RSP, the nature of
mutations, and, surprisingly, the culture condi-

tions. They are paralyzed if RS-CP contacts are
absent because they lack the entire RS, the spoke
head, or spoke head and neck. Flagella lacking
spoke HSP40 jerk constantly. In contrast, the
paralysis of the spoke head mutant pf26 (RSP6)
is conditional. In the healthy log phase cultures
at room temperature, the motility and the other
spoke head proteins appear normal (Huang et
al. 1981; Wei et al. 2010). However, in stationary
phase cultures, pf26 cells are largely paralyzed,
lacking nearly all spoke head proteins in flagella.
In an intermediate condition, a culture will con-
tain swimmers, immotile cells, and cells with
jerky (uncoordinated) flagella. Therefore, al-
though RSP26 is dispensable in the laboratory,
it is presumably needed in Chlamydomonas’ nat-
ural environment in which the temperature and
nutrient availability are expected to fluctuate.
Similar motility phenotypes are shown by pf25
that lacks RSP11 (Yang and Yang 2006) and par-
tially rescued RS mutants (Gupta et al. 2012).

Similar scenarios were noted in other spe-
cies. Tetrahymena FAP206 knockout could
swim despite diminished RS2. Its velocity is re-
duced, attributed to altered waveform, likely
because of the deficit of inner dynein arms (Va-
sudevan et al. 2015) and uncoordinated beat as
expected of minor RS deficits. Unexpectedly,
cilia of human RS PCD patients beat rhythmi-
cally with helical waveform—amid asynchro-
nous beating ones in some cases—despite lack-
ing spoke heads in RS1 and RS2 or most of RSs
(Burgoyne et al. 2014; Jeanson et al. 2015). The
helical movement is attributed to the presence
of RS3, because Chlamydomonas flagella with
same genetic defect and lacking RS3 are immo-
tile. However, one should bear in mind that
natural 9þ0 cilia and flagella generate rhythmic
beating with helical waveform without any RS
(Nonaka et al. 2002). Therefore, phenotype
polymorphism, cell conditions, and evolution-
ary divergence should be considered in pheno-
typing RS mutants.

ROLES OF RSS

It will be easier to appreciate RSs if one consid-
ers the 9þ2 cilia and flagella as reversible bio-
logical nanomachines.
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Generation of Planar Waveform

This is not absolute. The 9þ0 motile cilia is
rare, such as that found in the node or certain
eel and horseshoe crab sperm (Gibbons et al.
1985; Ishijima et al. 1988). As such, they con-
note an inferior perception. However, these
sperm swim rapidly with a 9þ0 flagellum of a
high beat frequency. Importantly, the typical
waveform is helical, similar to the movement
of the respiratory cilia of RS PCD patients
(e.g., Castleman et al. 2009; Jeanson et al.
2015) and reactivated axonemes of paralyzed
Chlamydomonas RS or CP mutants under al-
tered conditions (e.g., Yagi and Kamiya 2000;
and see Loreng and Smith 2016).

In contrast, 9þ2 cilia usually display planar
waveform of a large amplitude, but retain the
ability to generate helical waveform. For Chla-
mydomonas, power strokes are largely planar,
but recovery strokes are helical. The planar
waveform with large amplitude appears to be
crucial for respiratory cilia to generate sufficient
propulsive forces, because the helical movement
of cilia in RS PCD patients does not offer suffi-
cient mucociliary clearance despite a normal
beat frequency. An exception is the 9þ2 axo-
neme of Trypanosome that generates 3D bihel-
ical movements, perhaps because of the para-
flagellar rod, a cytoskeletal system unique to
kinoplastid parasites (Portman and Gull 2010;
Koyfman et al. 2011). Interestingly, helical and
planar waveforms of both 9þ0 and 9þ2 flagella
could be switched by changes in physical prop-
erties of the aqueous environment, such
as surface tension and viscosity (Ishijima et
al. 1988; Woolley and Vernon 2001). Therefore,
nine outer doublets are inherently switchable to
various waveforms.

We envisage that the RS-CP system is a de-
vice for swift reordering of the activation se-
quence of motors in the nine outer doublets.
The resulting high-frequency beating of planar
waveform is hydrodynamically favorable in
most circumstances. But such movement may
not be appropriate for a select few. The low-
frequency helical beat of 9þ0 nodal cilia may
be just right for establishing a gradient of mor-
phogens that direct the development of left–

right asymmetry (Nonaka et al. 2002; Shinohara
et al. 2015). By the same token, 3D-bihelical
movement is what Trypanosome adopt to navi-
gate in the viscous bloodstream.

Coordination of Molecular Motors by
Mechanical Feedback

Diverse evidence suggests that the RS-CP system
overrides the inherent helical movement of the
outer doublet bundle by serving as a venue for
mechanical feedback, perhaps of forces or
tensions. Although Chlamydomonas RS or CP
mutants have paralyzed flagella, their axonemes
are able to vibrate in reactivation conditions,
suggesting that dynein motors are active but
are not coordinated (Yagi et al. 1994). An
additional mutation in outer dynein or N-
DRC partially rescues the paralysis (e.g., Huang
et al. 1982; Porter et al. 1994; Rupp et al. 1996).
This leads to the prediction that the RS-CP
system coordinates the activation of dynein
motors via N-DRC—to generate planar wave-
form in most cases.

Generation and propagation of a planar
waveform are a result of alternate sliding of op-
posing subsets of outer doublets at any par-
ticular moment. The selection appears deter-
mined by the CP with asymmetric projections
(see Loreng and Smith 2016). The geometric
clutch model (Lindemann and Lesich 2015)
offers an explicit explanation of mechanical
feedback. It posits that the CP and RSs, which
contact intermittently during each beat cycle
(Warner and Satir 1974), transmit transverse
forces developed from flagellar bend, which in
turn differentially alter the distances among
doublets confined by the base, tip, and N-
DRC links. Like the action of an automobile
clutch, increasing and reducing interdoublet
distances would, respectively, disengage and en-
gage distinct subsets of dynein motors, leading
to bend propagation and rhythmic beating.
This theory is concordant with elliptic versus
circular cross sections of motile and immotile
axonemes, and oscillation of axoneme diame-
ters during rhythmic beating (Warner 1978; Sa-
kakibara et al. 2004; Lindemann and Mitchell
2007; Yang et al. 2008).
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Mechanical feedback is also supported by
perturbations that paralyze motile flagella or
rescue the paralyzed. For example, simply re-
moving HSP40 at a spoke neck resulted in jerky
flagella with uncoordinated bend initiation,
propagation, and switching, presumably be-
cause of weakening of RS rigidity necessary for
force transmission (Yang et al. 2008). Converse-
ly, forced bending could jolt paralyzed flagella to
beat rhythmically for a brief period (Hayashibe
et al. 1997). Finally, adding a large tag to the
spoke head rescued paralyzed flagella of a CP
mutant, probably complementing a missing
CP projection to restore structural contact nec-
essary for mechanical signaling (Oda et al.
2014b). Suppressor mutations may alter N-
DRC or motors as to bypasses the defective me-
chanical feedback, or return toward the 9þ0
machinery.

Chemical Signaling

The RS-CP system is integral to the modulation
of cilia and flagella motility by calcium, cal-
modulin, cyclic nucleotides, and phospho-
rylation. Consistent with this, the calcium-
dependent waveform changes appeared missing
in 9þ0 sperm flagella (Gibbons et al. 1985).
Contrary to the expected universal principle
of mechanical feedback, the mechanisms of
chemical signaling may differ substantially
for Chlamydomonas, which use two relatively
short flagella to steer, and for sperm’s long fla-
gella, which are activated by Wnt signaling
(Koch et al. 2015).

The biflagellate Chlamydomonas is known to
show two calcium-dependent responses: awave-
form switch when encountering barriers or
stimulated by intense white light (photoshock),
and phototaxis in an environment with differ-
ential light intensity (Yang and Smith 2008). The
RS-CP system is proposed to be involved in the
former because of the symmetric waveform of
the suppressor of RS mutants (Brokaw et al.
1982). While this is likely, calcium signaling
pathways are far more complicated given more
than 80 proteins in algal flagella are capable of
binding calcium or calmodulin (Pazour et al.
2005), including multiple ones residing in the

structure corridor from the CP to dynein motors
(see Loreng and Smith 2016). Indeed, the mu-
tant lacking the calmodulin-binding region in
RSP2 is capable of normal swimming and both
light-induced responses, but cannot steer under
bright light (Gopal et al. 2012). It is likely that
motility control is via concerted actions of mul-
tiple calcium sensors, rather than a handful of
calcium switches. RSs may be involved in this via
the RSPs with calcium- and calmodulin-bind-
ing motifs. If calmodulin binding of Tetrahyme-
na RSP4 and RSP6 (Ueno et al. 2006) proves
physiologically relevant, these two conserved
molecules are appealing candidates for universal
major calcium switch.

Independent approaches strongly suggest
that RSs also regulate dynein motors via phos-
phorylation—of the inner dynein arm, I1.
While RS mutant flagella are paralyzed, their
axoneme can undergo interdoublet sliding al-
beit with a reduced velocity (Witman et al. 1978;
Smith and Sale 1992). The inhibition stems
from phosphorylation mediated by kinases
such as PKA and CK1 (Howard et al. 1994;
Yang and Sale 2000) when RSs are defective,
and could be antagonized by calcium-indepen-
dent phosphatases (Habermacher and Sale
1996). The key substrate of these enzymes is
the intermediate chain IC138 at I1 base, near
RS1 (Habermacher and Sale 1997). IC138 hy-
perphosphorylation as well as defects in I1 and
the MIA complex correlate with reduced sliding
velocity (Yamamoto et al. 2013) and, interest-
ingly, ineffective phototaxis (King and Dutcher
1997; Okita et al. 2005). Therefore, I1 is a key
effector that enables the calcium-dependent
dominance of one flagellum for turning the tra-
jectory during phototaxis. RS may operate to
suppress IC138 phosphorylation that may oth-
erwise hinder such responses.

Maintenance of 9þ2 Axoneme Structural
Stability

This role is not as well known as motility con-
trol, and is less obvious in Chlamydomonas than
in some other organisms. First of all, RSs nudge
the CP to its central location (e.g., Sivadas et al.
2012). The CP shifts from the central location
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when RSs are defective. In addition, RSs en-
hance the stability of the CP and the entire ax-
oneme. Cilia EMs from RS PCD patients often
show an array of structural anomalies such as
two CPs and transposition—the replacement of
the CP by an outer doublet (e.g., Castleman
et al. 2009; Kott et al. 2013). Cilia tomography
suggests that with defective RSs, the CP actually
is assembled but tends to disassemble, leading
to transposition (Burgoyne et al. 2014). Tetra-
hymena axonemes with diminished RS2 are also
susceptible to deformation (Vasudevan et al.
2015). Eel 9þ0 axoneme is exceptionally fragile
when the membrane is removed (Gibbons et al.
1985). Conversely, the perceived structural
stability of spokeless axonemes in Chlamydo-
monas RS mutant may be caused by multiple
factors (LeDizet and Piperno 1995; Kubo et al.
2015). Nonetheless, the structural instability
surfaces as short flagella of double mutants
lacking both RSs and the CP, likely caused by
an increasing disassembly rate.

While all major axonemal complexes may
confer stability to the axoneme that is built on
inherently unstable microtubules (Kubo et al.
2015), we take the liberty to speculate that the
RS-CP system is particularly so by filling up the
hollow center, and by the transient contact that
dissipates forces and tensions, which the axo-
neme endures as it repetitively sweeps through
fluid of relatively high viscosity. This may ex-
plain the nearly identical dimensions of RSs
and thus the diameter of 9þ2 axonemes across
all sources. Interestingly, the ratio of the dimen-
sions of the CP and RS versus the CP in cross
sections is strikingly similar to the golden ratio
(w). Perhaps the 9þ2 axonemal platform of the
last common ancestor of eukaryotes is as good
as it gets. Much of the subsequent changes are
all but individual preferences.

FUTURE DIRECTIONS

Much about RSs is now known, but key ques-
tions remain. First and foremost is how the
RS-CP system is involved in calcium/calmodu-
lin-signaled motility changes and, second, is re-
garding phosphorylation. It is still unclear how
RS defects enhance phosphorylation of dynein

mediated by PKA and CK1 that also regulate
critical events occurring at the basal body area
in diverse organisms (Briscoe and Therond
2013). Although Chlamydomonas, like plants,
do not have the typical PKA tetramer common
in animals, PKA activity is indisputable (Hase-
gawa et al 1987; Howard et al. 1994; Yang and
Sale 2000). Identification of PKA in this organ-
ism and elucidation of how anchored PKA and
CK1 phosphorylate IC138 is central to eluci-
date RS-mediated regulation. Related, but not
identical, to this are the questions about how
RSPs become phosphorylated and whether the
phosphorylation is a consequence or a cause of
RS assembly. The third is RS assembly, likely via
spoke-unique mechanisms because of drastic
differences between spoke precursor and mature
RSs, the multiple chaperone-like spoke sub-
units, and subunits of a low stoichiometry (Pi-
perno et al. 1981). The fourth is characterization
of RS3. Aside from satisfying curiosity, the find-
ings may lead to new insight of RS evolution—
how Chlamydomonas managed to lose RS3, and
what are the expense and benefits to retain a
distinct RS3. Last, but not least, is to elucidate
RSs of mammals and phenotype RS PCD pa-
tients. With the advance of technologies and
reagents (Lin et al. 2014; Frommer et al. 2015),
the challenges inherent to these systems (Papon
et al. 2010) will be overcome and the findings
will complement the limitations of simple mod-
el systems.
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